
Symbolic Computation in Maude:
Some Tapas

José Meseguer(B)

Department of Computer Science, University of Illinois, Urbana-Champaign, USA
meseguer@illinois.edu

Abstract. Programming in Maude is executable mathematical model-
ing. Your mathematical model is the code you execute. Both determin-
istic systems, specified equationally as so-called functional modules and
concurrent ones, specified in rewriting logic as system modules, are math-
ematically modeled and programmed this way. But rewriting logic is also
a logical framework in which many different logics can be naturally rep-
resented. And one would like not only to execute these models, but to
reason about them at a high level. For this, symbolic methods that can
automate much of the reasoning are crucial. Many of them are actually
supported by Maude itself or by some of its tools. These methods are
very general: they apply not just to Maude, but to many other logics,
languages and tools. This paper presents some tapas about these Maude-
based symbolic methods in an informal way to make it easy for many
other people to learn about, and benefit from, them.

1 Introduction

1.1 What is Maude?

Maude is a high-performance declarative language whose modules are theories
in rewriting logic, a simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories. A rewrite theory is a triple
R = (Σ, E ∪ B,R) where:

– Σ specifies a signature of typed function symbols.
– (Σ, E∪B) is an equational theory specifying the concurrent system’s states as

elements of the algebraic data type (initial algebra) TΣ/E∪B defined by (Σ, E ∪
B).

– R are rewrite rules specifying the system’s local atomic transitions.
– Concurrent Computation = Deduction in R = Concurrent Rewriting in

R.

In Maude, a rewrite theory R named FOO is specified —with mostly self-
explanatory syntax—as a so-called system module of the form: mod FOO is

(Σ, E ∪ B,R) endm.

c© Springer Nature Switzerland AG 2021
M. Fernández (Ed.): LOPSTR 2020, LNCS 12561, pp. 3–36, 2021.
https://doi.org/10.1007/978-3-030-68446-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68446-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-68446-4_1

4 J. Meseguer

But, since when R = ∅, R = (Σ, E ∪ B,R) becomes just an equational theory,
Maude has a functional sublanguage of so-called functional modules. A functional
module BAR is specified as follows: fmod BAR is (Σ, E ∪ B) endfm, where:

– B Ď {A,C,U} is any combination of associativity (A) and/or commutativity
(C) and/or identity (U) axioms, specified with the corresponding assoc, comm,
and id: keywords, and

– the equations E, when used as left-to-right simplification rules, are convergent,
i.e., Church-Rosser and terminating,1 modulo the axioms B.

We make the exact same assumptions about B and E for a system module mod
FOO is (Σ, E ∪ B,R) endm. What this intuitively means is that the states of the
concurrent system so specified enjoy structural axioms B, and can also have state-
updating functions computable by equational left-to-right simplification with the
equations E modulo B.

1.2 Symbolic Computation in Maude

Since all computation in Maude is performed by logical deduction in equational
logic and/or rewriting logic, talking about symbolic computation seems tauto-
logical. But it isn’t. The point is that the usual computations in a functional
or system module involve elements of an algebraic data type TΣ/E∪B, which are
represented as ground terms (terms without variables) in the syntax of Σ. But
Maude supports many useful computations involving terms with variables. For
example, for u and v terms with variables among the x1, . . . , xn, solving the so-
called E ∪ B-unification problem u(x1, . . . , xn) =? v(x1, . . . , xn) means answering
the question of whether the constraint u(x1, . . . , xn) = v(x1, . . . , xn) is satisfi-
able in the algebraic data type TΣ/E∪B for some instantiation of the variables
x1, . . . , xn. So, roughly speaking, problems involving logical variables and their
solutions are those I shall describe as symbolic computation problems. Maude,
either directly or through Maude-based tools, supports the following symbolic
computation features:

1. B-Unification (modulo any B Ď {A,C,U}),
2. B-Generalization (modulo any B Ď {A,C,U}),
3. E, B-Variants of a term t in a convergent (Σ, E ∪ B), which is finitary iff

(Σ, E ∪ B) has the finite variant property (FVP), in the sense explained in
Sect. 4,

4. E∪B-Unification for any convergent (Σ, E∪B), which is finitary iff (Σ, E∪B)
is FVP,

5. Domain-Specific SMT-Solving, thanks to CVC4 [19] and Yices [74] inter-
faces,

6. Theory-Generic SMT-Solving for FVP theories (Σ, E ∪ B) under natural
requirements about their constructors,

1 Termination can of course be dropped for some applications: the lambda calculus
or a deterministic Turing machine can be easily specified as functional modules in
Maude.

Symbolic Computation in Maude: Some Tapas 5

7. Symbolic Reachability Analysis of any system module mod (Σ, E ∪
B,R) endm with (Σ, E ∪ B) FVP,

8. B-Homeomorphic Embedding (modulo any B Ď {A,C}).

In this paper I will focus on features (1), (3)–(4), and (6)–(7) in the above list.
For generalization modulo B—which is dual to unification and is also called “anti-
unification”—please see [2,4]. Homeomorphic embedding is a very useful relation
for termination criteria in various symbolic analyses. It has been generalized for
the first time to work in an order-sorted setting and modulo combinations of
associativity and commutativity axioms, with new efficient algorithms, in [1].
Both generalization and homeomorphic embedding modulo axioms are crucial
components of the variant-based partial evaluation (PE) approach for Maude
functional modules presented in [3].

1.3 Tapas and Paper Napkins

To explain the symbolic features (1), (3)–(4), and (6)–(7) requires explaining
some basic technical ideas that convey the precise meaning of such features.
But this runs the risk of getting us bogged down in technicalities. How shall we
proceed? I propose that we use our imagination a little: think of this paper as
an informal conversation that you, dear reader, and I are having in a Tapas Bar,
as we share some pleasant tapas and wash them down with some good Rioja.
The bar’s setting is informal: instead of sitting at a formal table, we sit at a
small wooden table where there is a stack of small paper napkins. Tapas are now
gradually making their appearance at two levels: each time our waiter brings us
the next tapas serving, there are also some Maude tapas that I explain to you
by scribbling on the paper napkins in the stack. The Maude tapas have to be
small, since these are cocktail napkins. I have also brought my laptop to run
a few examples; but the main action is our conversation, scribbling on paper
napkins. Of course, a few technicalities have to be glossed over: I just give you
the main intuitions; but I promise to email you some material to fill in those
details later. This is what we are going to do here. In this paper, that more
precise technical background can be found in Sect. 7 and in the list of references;
but let us disregard them for now.

2 First Tapas Serving: Rewriting Modulo Axioms B

I have always claimed and felt that Maude, unlike other programming languages,
can be explained on a paper napkin to somebody with no prior acquaintance with
computing. Here is the example I would write on such a napkin:

fmod NATURAL is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

6 J. Meseguer

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

endfm

This module, defining natural number addition in Peano notation, does of course
fit the general pattern fmod BAR is (Σ, E ∪ B) endfm, where here the module’s
name BAR is NATURAL, the typed signature Σ has a single type (called a sort
in Maude), which we have chosen to call Nat, a constant 0 and two function
symbols: s and _+_, where the underbars indicate argument positions, and where
the ctor attribute is declared for 0 and s as data constructors to distinguish them
from the defined function _+_, which is defined by the two equations E. In this
case there are no attributes B, although, if we wished, we could have declared _+_

with the assoc and comm keywords as an associative and commutative operator.
How do we compute with this module? By simplifying any arithmetic expres-

sion to its result as a data value, i.e., either to 0 or to sn(0) for some n � 1, using
the two equations E to perform left-to-right replacement of equals for equals in
the usual way this is done in algebraic simplification. This process is called term
rewriting ; and the result of thus simplifying an expression is called its normal
form. Let us see (in another paper napkin) how this process reduces adding 2
plus 2, i.e., the arithmetic expression s(s(0)) + s(s(0)) to 4, i.e., the data
value s(s(s(s(0)))). For this, it is useful to add some simple notation to indi-
cate where in an expression a simplification is applied. I will use the notation
t[u] to indicate that we are focusing on the subexpression u of the expression, or
term, t. The process in this notation is as follows:

[s(s(0)) + s(s(0))] Ñ s([s(s(0)) + s(0)]) Ñ s(s([s(s(0)) + 0])) Ñ s(s(s(s(0)))

where we have applied the second equation in the first two steps, and the first
equation in the last step, to corresponding instances by some matching sub-
stitution instantiating the equation’s variables to the term or subterm to be
simplified. For example, in the second step, the variables N and M have been
instantiated by the substitution θ = {N �Ñ s(s(0)),M �Ñ 0}, so that the subterm
we focus on, s(s(0)) + s(0), becomes an instance of the pattern term N + s(M)
in the second equation’s lefthand side, and is replaced in this step by the cor-
responding instance of the righthand side s(N + M). We can summarize this
(focused) step in the following notation:

s(s(0)) + s(0) ” (s(N) + M)θÑ s(N + M)θ ” s(s(s(0)) + 0)

where ” denotes syntactic equality, and tθ denotes the result of instantiating a
pattern term, i.e., a term with variables t, by a substitution θ.

Symbolic Computation in Maude: Some Tapas 7

But Maude’s functional modules do support this kind of algebraic simpli-
fication modulo structural axioms B. Let us illustrate this case with a simple
example (it fits on another paper napkin) of a data type of sets:

fmod SET is

sort Set .

ops mt a b c d e f g : -> Set [ctor] .

op _U_ : Set Set -> Set [ctor assoc comm] . *** union

vars S S’ : Set .

eq S U mt = S [variant] . *** identity

eq S U S = S [variant] . *** idempotency

eq S U S U S’ = S U S’ [variant] . *** idempotency

endfm

Its constants are a b c d e f g and the empty set constant mt. There is also
a union operator, for which we have chosen2 the syntax _U_, which has been
declared associative (A) and commutative (C) by the assoc and comm attributes.
Note that in this module all constants and _U_ are data constructors. Set union
is defined by the three equations (the third one follows from the second: it is
added for technical reasons) of mt as identity element for set union, and set
idempotency. Disregard for the moment the [variant] attribute in the equa-
tions: it will become clear in Sect. 4. Let us see an example of how we compute
in this module modulo AC.

mt ∪ [a ∪ c ∪ b ∪ a ∪ b] Ñ [mt ∪ a ∪ b ∪ c] Ñ a ∪ b ∪ c

where we have used the third equation in the first step, and the first equation
in the second step. Note that, because of associativity, we, as well as the Maude
parser, can dispense with parentheses. The most interesting step is the first one,
which uses the substitution θ = {S �Ñ (a∪ b), S ′ �Ñ c}. This step can be applied
because:

(S ∪ S ∪ S ′)θ ” (a ∪ b) ∪ (a ∪ b) ∪ c =AC a ∪ c ∪ b ∪ a ∪ b.

Since, thanks to the AC axioms, reordering and parentheses do not matter, the
crucial point is that the subterm a ∪ c ∪ b ∪ a ∪ b is an instance of the lefthand
side pattern S ∪S ∪S ′ modulo AC. For the same reason, the fact that mt appears
on the left of the expression instead than on the right is no obstacle for applying
the first equation in the second step modulo AC.

It can be easily checked that the equations in NATURAL, resp. SET, are con-
vergent, and therefore the normal forms of, for example, s(s(0)) + s(s(0)), resp.
mt ∪ a∪ c∪ b∪ a∪ b, namely, s(s(s(s(0))), resp. a∪ b∪ c, are unique modulo B,
regardless of the order in which the equations are applied to the original term.
For example, b ∪ c ∪ a is the same normal form as a ∪ b ∪ c modulo AC. The
Maude command computing a term’s normal form is the reduce command.

2 In Maude, all syntax for sort and operator names is user-definable.

8 J. Meseguer

A Little Notation Does Not Hurt Anybody. The process of performing
one step of rewriting a term t (focusing on some subterm) using one of the
equations in E modulo the axioms B to obtain a term t′ is called E, B-rewriting,
and is denoted t ÑE,B t′. Likewise, t Ñ∗

E,B t′ denotes performing zero, one or more
steps of E, B-rewriting. The special case when B = ∅ is called E-rewriting, and
then we use the notation t ÑE t′ and t Ñ∗

E t′. The E, B-normal form of term t
(unique up to B-equality assuming E convergent) is denoted t!E,B, resp. t!E when
B = ∅.

3 Second Tapas Serving: Unification and Narrowing
Modulo B

As already mentioned, solving a B-unification problem u(x1, . . . , xn) =
? v(x1, . . . , xn) means answering the question of whether the constraint
u(x1, . . . , xn) = v(x1, . . . , xn) is satisfiable in the algebraic data type TΣ/B, where
terms are identified modulo the axioms B, such as any combination of A and/or
C and/or U axioms. The case B = ∅ is called syntactic unification. It is well-
known from the Prolog language, where the analog of the data type TΣ is the so-
called Herbrand model, which extends TΣ by adding predicate symbols. Maude
supports unification modulo B in any module where the axioms B have been
declared. Furthermore, this B-unification is order-sorted, i.e., it is carried out
with variables which can have different sorts, where some of them can be sub-
sorts of other sorts. In particular, since for the module NATURAL we have B = ∅,
we can perform syntactic unification in it with Maude’s unify command.

Since the syntactic case is well-known, and we will revisit it soon, let us focus
instead on the more interesting case of the SET module, where we can perform
AC-unification. What does this mean? Except for the fact that we are not dealing
with the equation making mt the identity for _U_, this means that we can solve
multiset equations, as opposed to solving set equations (but, please, be patient:
we will also solve set equations in the next serving of tapas). For example, we
may wish to solve the multiset equation: a ∪ a ∪ b ∪ S = a ∪ c ∪ S ′, that is, seek
substitutions θ such that (a∪a∪b∪S)θ =AC (a∪c∪S ′)θ, i.e., both side instances
yield the same multiset. We can do so in Maude by giving the command:

Maude> unify in SET : a U a U b U S =? a U c U S’ .

Unifier 1

S --> c U #1:Set

S’ --> a U b U #1:Set

Unifier 2

S --> c

S’ --> a U b

where the second solution is the most obvious, and the first solution allows
adding to the multiset a ∪ a ∪ b ∪ c obtained by the second solution an extra
multiset denoted by the extra variable #1:Set.

Symbolic Computation in Maude: Some Tapas 9

Maude supports unification modulo any possible combinations of A, C, and
U axioms in B; also when some axioms in B are declared associative but are
not commutative. This is noteworthy, since it is well-known that the number of
A-unifiers (or AU-unifiers) of a problem can be infinite. For example, if a is a
constant and · is associative, then the equation a·x = x ·a has the infinite set of
solutions: {{x �Ñ an} | n � 1}. When some operators are A or AU only, Maude’s
implementation of B-unification takes the following pragmatic approach: (i) the
unification algorithm is designed to favor the cases where the number of A or
AU-unifiers is known to be finite; and (ii) in all other cases, it searches for solu-
tions in a complete manner, but within a bound, so that: (a) if all solutions are
found before reaching the bound, it just returns them, but (b) if the bound is
reached without the certainty of having found all solutions, the solutions already
found are returned with a warning that the set of solutions may be incom-
plete. The good news is that, for a good number of applications—for example in
the symbolic analysis of various cryptographic protocols involving associativity
axioms—such warnings are never encountered, i.e., the corresponding analyses
are then, luckily, complete.

Narrowing. This is just technical jargon for symbolic execution, in the usual
sense one would expect: executing a program, not on concrete inputs, but on
“symbolic” inputs specified by variables [38,40]. In our case, a Maude functional
module and a term with variables in its syntax. For example, in our NATURAL

functional module for natural number addition, the symbolic expression x + y
cannot be evaluated in the standard sense: it is already in normal form, since
no equation in NATURAL can be used to further simplify it. However, it can be
executed symbolically. What does this mean? It means answering the following
question:

Are there instances of x + y that can be executed in the standard sense?
And, if so, can we systematically describe them and their results?

The answer, for any equational theory (Σ, E ∪ B) where the equations E are
convergent modulo the axioms B is an emphatic Yes! The method is very simple,
and amounts to a slight generalization of the already-described E, B-rewriting
relation ÑE,B between terms, to the more general E, B-narrowing relation �E,B

between terms. What is this generalization like? Very simple: we replace the
process of B-matching a subterm u as a substitution instance of the lefthand
side t of an equation t = t′ by one of B-unifying t and u, that is, of solving the
equation t =? u modulo B.

In which sense is this a slight generalization? In the precise sense that when
u is a ground term, i.e., it has no variables, then B-unification coincides with
B-matching. For example, the matching substitution θ = {S �Ñ (a ∪ b), S ′ �Ñ c}
by which we showed that (S ∪S ∪S ′)θ =AC a∪c∪b∪a∪b is indeed an AC-unifier
(not the only one) of the equality (S ∪ S ∪ S ′) =? a ∪ c ∪ b ∪ a ∪ b.

The crucial point, however, is that when the term u to be evaluated does
have variables, B-unification is strictly more general than B-matching and makes

10 J. Meseguer

symbolic execution possible: because we now view the variables of u as logical
variables in the Prolog sense, which can be instantiated. Let us see how x + y
can be symbolically executed this way. In NATURAL we have two equations E =
{N+0 = N, N+ s(M) = s(N+M)}. Focusing on the entire term x+y we get two
corresponding unification problems N + 0 =? x + y and N + s(M) =? x + y with
respective unifiers θ0 = {N �Ñ x, y �Ñ 0} and θ1 = {N �Ñ x,M �Ñ y′, y �Ñ s(y′)}.
Applying these substitutions to the righthand sides of the equations we get the
narrowing steps:

[x + y] �θ0
E x and [x + y] �θ1

E s(x + y′)

where we have indicated for each step the substitution used: θ0, resp. θ1. Narrow-
ing is never performed on variables, so the first narrowing step cannot be contin-
ued. But the second can, focusing on the subterm x + y′, again in two ways, by
the substitutions: θ′0 = {N �Ñ x, y′ �Ñ 0} and θ′1 = {N �Ñ x,M �Ñ y′′, y′ �Ñ s(y′′)},
yielding narrowing steps:

s([x + y′]) �θ′0
E s(x) and s([x + y′]) �θ′1

E s(s(x + y′′))

And, obviously, since s(x) cannot be unified with any lefthand side, it is only
the second term (focusing on x+ y′′) that can be narrowed again, in exactly the
same way, ad infinitum. We get this way what is called an (infinite) narrowing
tree rooted at our original term x+ y. But we could have started with any other
term in the syntax of NATURAL. In the same way, but in this case performing uni-
fication modulo AC, the three equations E in the SET module define a narrowing
relation �E,AC which performs symbolic execution of set expressions. Of course,
we also have a reflexive-transitive closure �∗

E,AC, which, when annotated with a

substitution, θ�∗
E,AC makes explicit the composed or “accumulated” substitution

θ = θ1 · · · θn for a length-n narrowing sequence.
Note the interesting fact that, although the equations E of a convergent

theory, such as NATURAL or SET, are always terminating, the associated narrowing
relation �E,B in general is not. When does it terminate? This is a topic that we
can save for the next tapas serving.

4 Third Tapas Serving: Variants, and Unification Modulo
E ∪ B

Let us you, dear reader, DR, and I, JM, play a little language game à la Wittgen-
stein. JM: What is a variant? DR: I don’t know what you are talking about. JM:
I mean, what is a variant in the Comon-Delaune [18] sense? DR: I don’t know:
you tell me. JM: An answer to a question. DR: Which question? JM: What are
the normal forms that a term t in a Maude functional module evaluates to? DR:
But the answer to your question is trivial, since we have already seen that, since
the module’s equations E are assumed convergent modulo its axioms B, up to

Symbolic Computation in Maude: Some Tapas 11

B-equality there is just one answer, namely, the unique normal form t!E,B of t,
which is the answer provided by Maude’s reduce command. JM: Sorry, what I
really meant is: What are the normal forms that a term t symbolically evaluates
to? Or, slightly more broadly: What are the normal forms of the instances of
t by various substitutions? DR: Well, that sounds more interesting. Can you
give me an example? JM: Why, of course! We have just seen an example! DR:
Where? JM: In the last paper napkin I scribbled for you, where I sketched the
narrowing tree for x + y. DR: What do you mean? JM: (1) A little reflection
shows that, if we have a narrowing sequence: t θ�∗

E,B u, and u is normalized, then,
by construction, u =B (tθ)!E,B and u is therefore a variant in the exact sense I
meant. (2) But if you inspect the narrowing tree for x + y, all the terms in that
tree are either of the form: sn(x), n � 0, or sn(x + y′n), n � 1, which are all in
normal form. So they are all variants of x + y in the sense I just meant. DR:
Ok, now I see your point. This looks interesting. Tell me more. JM: Of course,
these terms are not all the variants of x + y. But they cover all the variants of
x+y as instances. For example, the substitution θ = {x �Ñ s(0+ x′), y �Ñ s(s(z))}
yields the variant: ((x + y)θ)!E = s(s(s(0 + x′) + z)), which is itself an instance
of the term s(s(x+ y′′)) in x+ y’s narrowing tree. Therefore,—because of the so-
called lifting property of narrowing (references in Sect. 7.2)—we can use a term’s
t narrowing tree to compute a complete set of most general variants of t by just
selecting those narrowing paths in such a tree of the form t

θ�∗
E,B u, where u is

normalized. A little more notation cannot hurt. For technical reasons, we
do not call such a u a variant of t. Instead, we formally define that variant as
the pair (u, θ). This is because we might have a quite different (u′, γ), with u′

just a variable renaming of u, obtained by a completely different narrowing path
t
γ�∗
E,B u

′, and where γ itself might not be a variable renaming of θ. We shall see
examples like this during this tapas serving.

The Finite Variant Property. Here are two closely-related, yet different,
questions. Given a Maude functional module, say, fmod BAR is (Σ, E∪B) endfm,
as always with E assumed convergent modulo B,

1. When is it the case that any term t in this module has a finite, complete set
of most general variants—i.e., that, up to B-equality, any other variant of t
is a substitution instance of one in this finite set? If this holds, we then say
that (Σ, E ∪ B) has the finite variant property (FVP).

2. When does E, B-narrowing terminate for any term t in this module?

Since, as we have just seen, a complete set of variants of a term t can be
computed by narrowing, if E, B-narrowing terminates for all inputs t, then (Σ, E∪
B) is obviously FVP. But the converse does not hold in general: a term t may
have a finite set of most general variants and yet have an infinite narrowing
tree. Why? Because we should do something smarter than just generating t’s
narrowing tree. The problem we can easily face when generating t’s narrowing
tree is that, after a while, if we had looked carefully enough, we would have seen

12 J. Meseguer

it all. That is, seen that any variant to be generated further down the (infinite!)
tree is going to be an instance of one that we have already seen. But how can we
find that out, since the tree is infinite? By using the folding variant narrowing
strategy in [27]. This strategy has the useful property that: (1) (Σ, E∪B) is FVP
iff (2) folding variant E, B-narrowing terminates for any input term t. Folding
variant narrowing computes the desired finite set of most general variants of
a term t when (Σ, E ∪ B) is FVP; and in all cases —i.e., for any convergent
(Σ, E ∪ B)—it computes a complete set of variants of t, which may of course be
infinite. For example, NATURAL is not FVP. This is obvious from the fact that,
for any two n, k � 1, the terms sn(x + y′n) and sn+k(x + y′n) have disjoint sets of
instances.

But how does folding variant narrowing work? As its name suggests, by
folding. That is, we do not generate a tree, but a graph in a breadth first way.
But when we generate a new normalized node, we do not just add it to the graph:
we first check to see if in the graph generated so far we already have another
node of which this new one is an instance and, if so, we fold the new node into
that most general instance. If at some depth all new generated nodes must be
folded, then we have terminated with a finite graph that contains a set of most
general variants of the input term t.

Folding variant narrowing has been implemented in Maude. The set of vari-
ants of a term t can be computed with Maude’s get variants command. Since
in general this set can be infinite, the user can provide a bound n to get the
first n variants of a term t. But how can we know if a given (Σ, E ∪ B) is FVP?
This property is undecidable [8]. However, as explained in [12], if (Σ, E ∪ B)
is actually FVP, provided that B-unification is finitary,3 we can find this out
very easily in Maude by computing the variants of each term f (x1, . . . , xn) for
each function symbol f in Σ. For example, our SET example, which can easily be
shown convergent, is FVP, since Maude provides the following answer:

Maude> get variants in SET : S U S’ .

Variant 1

Set: #1:Set U #2:Set

S --> #1:Set

S’ --> #2:Set

Variant 2

Set: %1:Set

S --> mt

S’ --> %1:Set

Variant 3

Set: %1:Set

S --> %1:Set

3 As already mentioned, if B contains axioms of associativity without commutativity,
B-unification will not be finitary. The FVP property has been studied for this more
general case in [49].

Symbolic Computation in Maude: Some Tapas 13

S’ --> mt

Variant 4

Set: %1:Set

S --> %1:Set

S’ --> %1:Set

Variant 5

Set: %1:Set U %2:Set U %3:Set

S --> %1:Set U %2:Set

S’ --> %1:Set U %3:Set

Variant 6

Set: %1:Set U %2:Set

S --> %1:Set U %2:Set

S’ --> %2:Set

Variant 7

Set: %1:Set U %2:Set

S --> %2:Set

S’ --> %1:Set U %2:Set

No more variants.

which shows that SET is FVP. Note that, in general, a functional module’s equa-
tional theory (Σ, E ∪ B) need not be FVP. In reality, what the get variants

command for a term t provides is a very space-efficient way of describing the
narrowing tree of a term t, not as a tree, but as a graph with folding storing
only normalized nodes. In comparison with the tree description itself, this space
efficiency is enormous in all cases; and in the FVP case it can reduce an infinite
tree to a finite graph. Pragmatically,—particularly in the case of axioms such
as AC where the number of unifiers of a unification problem can be huge and
therefore the narrowing tree can have large degrees of branching—the difference
between a term’s narrowing tree and its narrowing graph with folding is one
between a hopeless procedure that can be easily overwhelmed at very small tree
depths and a practical procedure that can be used in many applications.

Constructor Variants. As we have seen in the NATURAL and SET modules,
Maude supports the distinction between constructor operators, which build data
and are specified with the ctor attribute, e.g., 0 and s in NATURAL, and the
remaining defined function symbols, like _+_ in NATURAL. This offers a very nat-
ural distinction at the level of variants: we call a variant (u, θ) of a term t a
constructor variant iff u is a constructor term, that is, a term built using only
constructor symbols and variables. Since in the SET module all symbols are con-
structor symbols, the above seven variants of the term S U S’ are all constructor
variants. Instead, in the already-described complete set of variants for the term
x + y in NATURAL, only the family of terms {sn(x) | n � 0} are constructor vari-

14 J. Meseguer

ants. This distinction between variants and constructor variants will prove useful
in our next tapas serving.

Variant E ∪ B-Unification. So far, we have only discussed Maude’s algorithm
for B-unification, with B any combination of A, C, and U axioms. Though very
useful, this is also very limited. Assuming, as I will do throughout, that all sorts
are inhabited, i.e., algebraic data types that do not have empty types/sorts,
what B-unification really means is that we can answer satisfiability questions for
constraints of the form:

∧
1�i�n ui = vi in algebraic data types of the form TΣ/B.

But, of course, what we would like to be able to do is to solve the same kind
of constraints for any Maude functional module, under the assumptions that
it is convergent and that its equations are unconditional. That is, to be able
to solve the above constraints over algebraic data types of the form TΣ/E∪B. In
other words, to perform E ∪ B-unification. For example, we already saw that for
(Σ, E∪AC) the equational theory of the SET module, AC-unification, i.e., solving
equations in TΣ/AC essentially amounted to multiset unification—up to a minor
quibbling about the empty set that could have been solved adding an extra U
axiom. But what we really would like to perform is set unification, i.e., to solve
constraints of the above form in the data type TΣ/E∪AC of sets. Can we do this?
The answer is Yes! Because we can reduce such a unification problem to one of
computing variants. Let us see how. All we need to do4 is to add to our functional
module of choice a new sort Pred of predicates with constant true, and a new
equality predicate. Let us illustrate this idea for the SET module, extended to the
module:

fmod SET-EQ is protecting SET .

sort Pred . *** Predicates sort

op true : -> Pred [ctor] .

op _=?_ : Set Set -> Pred [ctor] . *** equality predicate

vars S S’ : Set .

eq S =? S = true [variant] . *** equality definition

endfm

It is easy to check that this module is also FVP. This is a general fact: the
extension of an FVP theory (Σ, E ∪ B) to a theory (Σ=?, E=? ∪ B) by adding
an equality predicate =? is always also FVP. This can be easily checked
in this example by computing the variants of the term S =? S’. Recall that,
using AC unification, we were able to answer the multiset unification problem:
a U a U b U S =? a U c U S’. But what we would like to do is to solve the
set unification problem: a U a U b U S =? a U c U S’. We can do so by com-
puting variants in SET-EQ of the equality term a U a U b U S =? a U c U S’.
Maude returns 88 such variants. But the only ones that interest us are those

4 For simplicity, I treat the case of solving a single equation. The case of solving
systems of equalities and disequalities can likewise be treated by adding a binary
conjunction operator to Pred with identity true.

Symbolic Computation in Maude: Some Tapas 15

of the form: (true, θ), since those θ are the desired unifiers for this set unifica-
tion problem. There are only 24 variants of the form (true, θ), which give us our
desired family of set unifiers. Here are the first and the last of these:

Maude> get variants in SET-EQ : a U a U b U S =? a U c U S’ .

...

Variant 2

Pred: true

S --> c U %1:Set

S’ --> b U %1:Set

...

Variant 88

Pred: true

S --> b U c

S’ --> a U b U c

But why are these the unifiers of our set equation? Never let a theorem
that fits on a paper napkin go to waste! Because, as explained in Sect. 7.2,
for any convergent theory (Σ, E ∪ B) we have the Church-Rosser Equivalence:
t =E∪B t′ ⇔ t!E,B =B t′!E,B. Therefore, a substitution θ solves an equation u =? v
in TΣ/E∪B iff (uθ)!E,B =B (vθ)!E,B, i.e., iff ((u =?v)θ)!E=?,B =B true. That is, iff θ
is an instance of some γ in some variant of u =?v of the form (true , γ). q.e.d.
Note that this proof is much more general than: (i) solving equations for the
SET module; (ii) solving equations for any FVP theory (Σ, E ∪ B); since (iii) it
solves them for any convergent theory (Σ, E∪B). That is, this method provides a
general E∪B-unification procedure for any convergent theory (Σ, E∪B), which we
call the variant unification procedure. However, the case when (Σ, E∪B) is FVP
is noteworthy since, if B-unification is finitary (the case when any A axiom is
also AC), then variant E∪B-unification is also finitary and in fact a satisfiability
decision procedure. That is, we can decide in a finite number of steps whether
a constraint of the form

∧
1�i�n ui = vi is satisfiable in the algebraic data type

TΣ/E∪B. For the same reason, we can also decide the satisfiability in TΣ/E∪B of
any positive (no negations) DNF formula of the form:

Ž
1�i�n

∧
1�i. j�ni

ui. j = vi. j.
This suggests the question: What about satisfiability of any quantifier free (QF)
formula in TΣ/E∪B? We will revisit this question in the next tapas serving.
E ∪ B-unification is so important that, rather than solving a E ∪ B-unification
problem u =? v by computing the variants of the term u =?v in (Σ=?, E=? ∪ B),
which would yield other useless variants, Maude supports it directly in (Σ, E∪B),
for systems of equations

∧
1�i�n ui = vi, by the variant unify command. But

since the set of E ∪ B-unifiers computed this way often contains some unifiers
that are less general than some other unifier in the set and are therefore redun-
dant, Maude also supports a somewhat more expensive—yet quite practical for
reducing the size of many symbolic search problems— command that filters out
redundant E ∪ B-unifiers, namely, the filtered variant unify command. For
our example, it reduces the number of set unifiers from 24 to 9:

16 J. Meseguer

Maude> filtered variant unify in SET : a U b U c U S =? a U b U S’ .

Unifier 1

S --> %1:Set

S’ --> c U %1:Set

Unifier 2

S --> a U #1:Set

S’ --> c U #1:Set

Unifier 3

S --> b U #1:Set

S’ --> c U #1:Set

Unifier 4

S --> #1:Set

S’ --> a U c U #1:Set

Unifier 5

S --> #1:Set

S’ --> b U c U #1:Set

Unifier 6

S --> a U b U %1:Set

S’ --> c U %1:Set

Unifier 7

S --> a U %1:Set

S’ --> b U c U %1:Set

Unifier 8

S --> b U %1:Set

S’ --> a U c U %1:Set

Unifier 9

S --> %1:Set

S’ --> a U b U c U %1:Set

No more unifiers.

5 Fourth Tapas Serving: Variant Satisfiability

In computer science, decision procedures are used to automate reasoning about
data types. In a conventional language, such data types may include integers,
rational numbers, strings of characters, arrays, and so on. There is typically a
finite collection of such data types used in a given programming language, which
are often well supported by current SMT solvers. A theorem prover to verify
programs in a conventional language can make very good use of such decision

Symbolic Computation in Maude: Some Tapas 17

procedures to automate large portions of a program’s proof of correctness. In
Maude the situation is quite different. Why? Because in Maude algebraic data
types are completely user-definable. That is, any functional module fmod BAR

is (Σ, E ∪ B) endfm for any, finitely specifiable, convergent equational theory
(Σ, E ∪ B) can be specified by a Maude user to define the algebraic data type
TΣ/E∪B of his/her choice. And, unlike the case of a conventional language, there
is an infinite collection of such data types. Of course, for some specific Maude
data types, for example integers or rationals, existing domain-specific decision
procedures supported by an SMT solver may be available. But to automate rea-
soning about arbitrary Maude functional modules as much as possible, we need a
new kind of SMT solving: what I call theory-generic decision procedures, which
apply, not to a given data domain, but to an infinite class of user-definable data
types. The generic decision procedure in question is called variant satisfiability
[56], and is what this tapas serving is about.

The first piece of good news is that, for B any combination of A, C, and U
axioms, where any A symbol f must also be C, satisfiability of QF formulas in
the data type TΣ/B is decidable [56]. The million-dollar question is: How can we
take advantage of this piece of good news to obtain a much more general theory-
generic satisfiability decision procedure to help us reason about any algebraic
data type TΣ/E∪B defined by a Maude functional module fmod BAR is (Σ, E∪B)
endfm? Of course, we know a priori that the class of algebraic data types TΣ/E∪B

for which we can hope to have decidable satisfiability, even if infinite, must have
some restrictions: since just for the data type of natural numbers with addition
and multiplication, that is, just by adding a multiplication operator ∗ and the
equations N ∗ 0 = 0, N ∗ s(M) = N + (N ∗ M) to our NATURAL module, Gödel’s
Incompleteness Theorem rears its head dashing all our decidable satisfiability
hopes to the ground. So, one way to both rephrase the original question and
advance towards an answer is to ask the more precise question:

Given a Maude functional module fmod BAR is (Σ, E ∪ B) endfm, is there
a general method by which we could seek, and find, a sublanguage of QF
formulas, say, determined by a subsignature Σ1 Ď Σ such that satisfiability
of QF Σ1-formulas in TΣ/E∪B is decidable?

What is promising about trying to answer this question is its practical character:
hoping for decidable satisfiability of just any algebraic data type is both an act
of self-delusion and a mark of ignorance. But hoping for a subclass of formulas
enjoying decidable satisfiability is an eminently practical idea, which can help
automate large parts of a program’s proof of correctness effort.

The second piece of good news is that a general method answering the above
question does indeed exist. It is based on the idea of a telescope, i.e., a chain of
convergent theory inclusions of the form:

(Ω, BΩ) Ď (Σ1, E1 ∪ B1) Ď (Σ, E ∪ B)

such that: (i) Ω is the subsignature of operators that were specified as construc-
tors, with the ctor attribute, in the functional module specifying (Σ, E ∪ B), (ii)

18 J. Meseguer

BΩ Ď B are the axioms declared for such constructors, (iii) the constructors are
true constructors, i.e., for any ground term in the syntax of Σ we have t!E,B ∈ TΩ,
(iv) any u ∈ TΩ is already in normal form: u =BΩ u!E,B, and (v) the intermediate
theory (Σ1, E1 ∪ B1) is convergent, has also Ω as its constructors, is FVP, and
any A symbol f ∈ Σ1 is also C.

The third and last piece of good news is that, under conditions (i)–(v), sat-
isfiability of QF Σ1-formulas in TΣ/E∪B is decidable [56], which is what we were
fishing for; and there is a theory-generic satisfiability decision procedure for such
formulas, namely, variant satisfiability [56]. Of course, at the very least we may
have (Ω, BΩ) = (Σ1, E1 ∪ B1), and in that case just get decidable satisfiability
for QF Ω-formulas in TΣ/E∪B. But quite often, finding an FVP (Σ1, E1 ∪ B1)
having a strict containment (Ω, BΩ) ⊂ (Σ1, E1 ∪ B1) is relatively easy to do. For
example, any selector functions for the constructors in Ω will automatically be
in (Σ1, E1 ∪ B1) [30].
Eh bien! But how does this theory-generic decision procedure work? Recall that
solving the problem of the satisfiability in the data type TΣ/E∪B of any QF Σ1-
formula ϕ means to either: (i) effectively exhibiting a solution, i.e., a ground
substitution ρ such that the ground formula ϕρ is true in TΣ/E∪B [which by our
telescope is the case iff ϕρ is true in TΣ1/E1∪B1], or (ii) effectively showing that
there is no such solution. If this problem is solvable, in one blow, we have also
solved the validity problem for a QF Σ1-formula ϕ in TΣ/E∪B. That is, we can
either: (i) effectively prove that ϕ is a theorem of TΣ/E∪B, or (ii) effectively show
a counterexample when it is not: since ϕ will be a theorem of TΣ/E∪B iff ¬ϕ is
unsatisfiable in TΣ/E∪B. We will solve the satisfiability problem for a QF Σ1-
formula ϕ in TΣ/E∪B by reducing it to that of the satisfiability of QF Ω-formulas
in TΩ/BΩ , which we already know how to decide. Since, without loss of generality,
we may assume ϕ in DNF, that is,

ϕ ”
ł

1�i�n

(
∧

1�i. j�ni

ui. j = vi. j ^
∧

1�i.k�mi

wi.k �= w′
i.k)

it is enough to decide the satisfiability of a Σ1-conjunction of literals
∧

1�i�n ui =
vi ^ ∧

1� j�m wj �= w′
j. But we already know how to decide the satisfiability of the

positive part by variant unification. Therefore, the problem reduces to solving
the satisfiability of:

ł

α∈Unif E1∪B1
(
∧

1�i�n ui=vi)

(
∧

1� j�m

wj �= w′
j)α

That is, it is enough to decide the satisfiability of a Σ1-conjunction of disequal-
ities

∧
1� j�m wj �= w′

j. But, as sketched out in Footnote 4, we can view such a
conjunction of disequalities as a term in the FVP theory (Σ=?

1 , E1 ∪ B1), which
has (Ω=?, BΩ) as its subspecification of constructors [i.e., Ω=? contains true, ^
and �= as added constructors]. But, if we now recall the notion of constructor
variants, this reduces to the equivalent problem of deciding the satisfiability of
the disjunction of conjunctions of Ω-disequalities:

Symbolic Computation in Maude: Some Tapas 19

ł

1�i�n

(
∧

1� j�m

qij �= rij)

in TΩ/BΩ , where the {∧1� j�m qij �= rij | 1 � i � n} are the constructor variants of
the Σ=?

1 -term:
∧

1� j�m wj �= w′
j. So, we have reduced the problem to one of QF

satisfiability in TΩ/BΩ and we are done!
To be really done, we just need to know how satisfiability of a conjunction

of Ω-disequalities
∧

1� j�m qj �= r j is decided in TΩ/BΩ . But this is really easy
[56]. First of all, we can reduce to the case where each variable xi : si in the
conjunction ranges over a sort si such that TΩ/BΩ,si is an infinite set: since if
any x j : s j ranges over a finite set TΩ/BΩ,s j , we can replace our conjunction by a
disjunction of conjunctions where x j : s j has been instantiated in all possible ways
by one of the values in the finite set TΩ/BΩ,s j . Under this infinite-sorts assumption,
the conjunction

∧
1� j�m qj �= r j is satisfiable in TΩ/BΩ iff q j �=BΩ r j, 1 � j � m,

which is a trivial check in Maude.

Presburger Arithmetic on a Paper Napkin. There are entire book chap-
ters on Presburger arithmetic decision procedures. But to give you a feeling for
the general applicability of variant satisfiability, the good news is that by now
you already know everything you need to know to realize that satisfiability of
QF formulas in Presburger arithmetic is decidable, and to decide any such QF
formula by yourself in Maude. The theory of Presburger arithmetic does indeed
fit on a paper napkin, as the functional module:

fmod PRESBURGER is protecting TRUTH-VALUE .

sort Nat .

ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op _>_ : Nat Nat -> Bool .

vars N M K : Nat .

eq N + 1 + M > N = true [variant] .

eq N > N + M = false [variant] .

endfm

which imports TRUTH-VALUE, with just two constants true, false of sort Bool.
Note that in PRESBURGER we have just specified natural number addition as the
free commutative monoid generated by 1 with 0 as the identity element. This
module is FVP, as one can easily check by computing the three variants of the
term N > M for its only defined symbol _>_. Furthermore, all its other operators
define a subsignature Ω of constructor symbols, so that it has a constructor sub-
specification of the form (Ω, ACU). Therefore, satisfiability of QF Ω-formulas in
TΩ/ACU is decidable. And so is also the satisfiability of QF formulas in Presburger
arithmetic by our theory-generic variant satisfiability procedure. For example,
the transitivity law N > M = true ^ M > K = true ñ N > K = true is
valid, because its negation N > M = true ^ M > K = true ^ N > K �= true is
unsatisfiable, since we get a single solution for the variant unification problem:

20 J. Meseguer

Maude> filtered variant unify in PRESBURGER : N > M =? true /\ M > K =? true .

Unifier 1

N --> 1 + 1 + %1:Nat + %2:Nat + %3:Nat

M --> 1 + %1:Nat + %2:Nat

K --> %2:Nat

No more unifiers.

and when we compute the instantiation (N > K)θ for this unifier θ and reduce
it to its normal form we get:

Maude> reduce 1 + 1 + %1:Nat + %2:Nat + %3:Nat > %2:Nat .

result Bool: true

making the disequality true �= true unsatisfiable. q.e.d. Of course, since variant
satisfiability is a very general theory-generic procedure, there is no fair com-
petition possible with a highly optimized domain-specific algorithm for Pres-
burger arithmetic. But this is OK for three reasons: (i) as already mentioned,
Maude has interfaces to both the CVC4 and Yices SMT solvers, so optimized
implementations of Presburger arithmetic are available that way; (ii) variant
satisfiability’s sweetspot is not in competing with already existing, optimized
domain-specific decision procedures, but rather in complementing such proce-
dures by making SMT solving extensible to an infinite class of user-definable
algebraic data types; and (iii) nevertheless, a variant satisfiability procedure
for Presburger arithmetic is not entirely useless: other colleagues and I have
used it in various automated deduction applications, and—as we shall see in a
moment—it enjoys the non-negligible advantage of having a seamless integration
with other variant satisfiability decision procedures.

A Decision Procedure for S-Expressions. This might seem like a bad exam-
ple to pick in order to show the usefulness of variant satisfiability; but it isn’t.
After all, domain-specific decision procedures for LISP’s S-Expressions go back,
at least, to the one by the late Derek Oppen [62]; and similar procedures are
a dime a dozen in the SMT solving literature. So, why beating a dead horse?
Because it isn’t dead. The dirty little secret is that all the procedures of this
kind I am aware of are problematic. Why so? They are problematic in their cor-
ner cases, namely, in cases when an S-Expression can be undefined. For example,
according to the LISP 1.5 Programmer’s Manual [45], expressions such as car[A]
or cdr[A] for A an atom are undefined. The problem is that all the S-Expression
decision procedures I am aware of are based on either unsorted or many-sorted
first-order logic. But, as my late friend Joseph Goguen and I showed in [58], the
problem of faithfully specifying data types involving partial functions such as
those for the data selectors car and cdr in LISP, cannot be solved in unsorted

Symbolic Computation in Maude: Some Tapas 21

or many-sorted first-order logic.5 But, as we showed in [58], it is solved by spec-
ifying such data types in order-sorted equational logic; or in the even more
general membership equational logic [53] used by Maude’s functional modules.
The upshot of all this is that the existing decision procedures are forced to cut
some corners: the answers you will get in such corner cases are anybody’s guess
or, if documented, they will depend on some arbitrary choices about how to
make such partial functions total in the undefined cases.

So, the horse is not really dead yet. And there is something to be gained
by revisiting this venerable topic of decision procedures for S-Expressions as
a representative instance of the much more general problem of having faithful
decision procedures for algebraic data types with constructors and selectors.
Furthermore, it gives me a good opportunity to introduce you, dear reader, to
the expressive power of order-sorted specifications in Maude, which is actually
crucial for many variant satisfiability procedures.

LISP is of course an untyped language. However, what might be called LISP’s
ontology of S-Expressions, which is part of the lore and essential to know what
you are doing when programming in LISP, is captured by the following struc-
ture of subsorts of the main sort SExp. Since S-Expressions are parametric on
the type of Atoms, which are basic data values, like numbers, Booleans, iden-
tifiers, etc., this can be specified in Maude as a parameterized module with the
TRIV parameter theory, which just has an Elt parameter sort/type that can be
instantiated to any chosen sort/type of basic values, i.e., of atoms.

fmod S-EXP{A :: TRIV} is protecting TRUTH-VALUE .

sorts List NeList NLExp NLPair SExp .

subsorts NeList < List < SExp .

subsorts A$Elt NLPair < NLExp < SExp .

op nil : -> List [ctor] .

op [_._] : SExp SExp -> SExp [ctor] .

op [_._] : SExp List -> NeList [ctor] .

op [_._] : SExp NLExp -> NLPair [ctor] .

op car_ : NeList -> SExp . *** left selector

op car_ : NLPair -> SExp . *** left selector

op cdr_ : NeList -> List . *** right selector

op cdr_ : NLPair -> NLExp . *** right selector

ops atom? nelist? list? nlpair? nlexp? : SExp -> Bool . *** sort preds

var A : A$Elt . var NeL : NeList . var L : List .

var NLE : NLExp . var NLP : NLPair . var SE : SExp .

eq car[SE . L] = SE [variant] . eq cdr[SE . L] = L [variant] .

eq car[SE . NLE] = SE [variant] . eq cdr[SE . NLE] = NLE [variant] .

eq atom?(A) = true [variant] . eq nelist?(NeL) = true [variant] .

5 Unless of course such partial functions are represented as binary relations, or the
specification itself is changed by introducing coercion functions in the way Goguen
and I showed in [29].

22 J. Meseguer

eq atom?(NLP) = false [variant] . eq nelist?(nil) = false [variant] .

eq atom?(L) = false [variant] . eq nelist?(NLE) = false [variant] .

eq list?(L) = true [variant] . eq nlpair?(NLP) = true [variant] .

eq list?(NLE) = false [variant] . eq nlpair?(A) = false [variant] .

eq nlexp?(NLE) = true [variant] . eq nlpair?(L) = false [variant] .

eq nlexp?(L) = false [variant] .

endfm

This is the only example in this paper that may not fit on a cocktail paper
napkin: we may have to unfold one, or to ask our waiter for a dinner paper
napkin. The main ideas about the ontology carved out by the above subsort
structure can be summarized by the following remarks about LISP lore: (1) An
SExp is either an Atom (of the parameter sort A$Elt), or nil, or a binary tree
having either atoms or nil in its leaves. (2) A List is either nil, or a binary
tree whose rightmost leaf is nil. (3) A NeList is a non-nil List. (4) A NLExp

is any non-list SExp. (5) A NLPair is any non-atom NLExp. Of course, car and
cdr select the left, resp. right, subtrees of any S-Expression that is a binary
tree. They make no sense otherwise. The sort predicates have lower case names
for their respective sorts: they are true for elements of that sort, and false

otherwise. Thanks to order-sortedness, some operators are overloaded.
This module is FVP. Termination is trivial, since all the equations decrease

term size; confluence follows from the absence of order-sorted critical pairs; full
definition of functions can be easily checked by the method in [47]; and FVP itself
can be easily checked by computing variants for each of the defined functions. For
example, car and cdr have two variants each (for either of their typings), and the
list? predicate has three variants. As already pointed out, it would have been
impossible to faithfully model LISP S-Expressions in unsorted or many-sorted
first-order logic. But there is more behind the module’s deceptive simplicity:
Even if we had not specified the car and cdr selectors that push this data
type outside the pale of many-sorted first-order logic, it would still have been
impossible to specify predicates like list? or nlexp? as FVP functions in an
unsorted or many-sorted way. The reason for this impossibility is that in such
settings these predicates would have to recurse down the binary tree to check
whether the rightmost element is either nil or an atom; and this would have
pushed those predicate definitions out of the FVP fold. The moral of this story is
that order-sorted first-order logic silently and kindly absorbs into its syntax a lot
of reasoning that would otherwise require quite complex first-order reasoning,
in the form of deducing implications between unary predicates modeling the
non-existent subsorts.

Since the constructors of S-EXP do not satisfy any axioms and no equa-
tions apply to constructor terms, we are again under the conditions ensuring
decidable satisfiability. That is, we have a variant satisfiability procedure for
S-Expressions in a parametric way, in the same sense as for similar paramet-
ric variant satisfiability procedures for lists, compact lists, multisets, sets, and
hereditarily finite sets in [56]. What this means in practice is that if we instanti-
ate S-EXP{A :: TRIV} by choosing a sort of atoms in any FVP data type that
also satisfies the variant satisfiability conditions, then, any such instantiation

Symbolic Computation in Maude: Some Tapas 23

(after checking termination of the equations in the instantiation) is also FVP
and does also have decidable satisfiability for its QF formulas. For example, we
can instantiate the parameter sort Elt in TRIV to the Nat sort in PRESBURGER by
defining in Maude a view and then instantiating S-EXP{A :: TRIV} with this
view as follows:

view Nat from TRIV to PRESBURGER is

sort Elt to Nat .

endv

fmod NAT-SEXP is

protecting S-EXP{Nat} .

endfm

In this instantiated module—whose termination proof is trivial, since all its
equations are term-size decreasing—we can decide the validity of both parametric
theorems like: NeL = [(car NeL) . (cdr NeL)], which hold for any instance of the
module and could likewise have been defined directly for S-EXP{A :: TRIV}, and
that of theorems that only make sense for this instantiation, like the implication:

atom?(carNLP) = true atom?(cdrNLP) = true (car NLP)+ (cdr NLP) > (car NLP) �= false ∨ (cdr NLP) = 0

Let us prove both of these theorems by showing that their corresponding nega-
tions are unsatisfiable. In the first example, the only constructor variant of the
disequality NeL �= [(car NeL) . (cdr NeL)] is the clearly unsatisfiable disequal-
ity [SE . L] �= [SE . L]. q.e.d. In the second example we have to verify that the
conjunction

atom?(carNLP) = true atom?(cdrNLP) = true (car NLP) + (cdr NLP) > (car NLP) = false (cdr NLP) �= 0

is unsatisfiable. But the positive part of this conjunction has the single unifier
θ = {NLP �Ñ [N . 0]}; and then the canonical form of (cdr NLP)θ �= 0 is
the unsatisfiable disequality 0 �= 0. q.e.d.

Something interesting about this example is the seamless integration of the
two variant satisfiability decision procedures: the one for PRESBURGER and that
for S-EXP{A :: TRIV}. This is in contrast to the usual Nelson-Oppen (NO)
combination procedure [60] required to reason in a combination of theories. No
such NO-combination procedure is needed at all for variant satisfiability: we
just form the appropriate union of theories (in this case by instantiating the
S-EXP{A :: TRIV} with the Nat view), and that’s it!

6 Dessert: Narrowing-Based Symbolic Reachability
Analysis

By now we have had a fairly substantial sampling of tapas: we should not push
this too hard. Let me end on a light, yet interesting, note by explaining to you
what symbolic reachability analysis in Maude is about, and some cool things you

24 J. Meseguer

can do with it. It will be our dessert: a little divertimento. We have remained
all the time within Maude’s sublanguage of functional modules. But, of course,
Maude’s most unique capability is its declarative programming of concurrent
systems by means of rewrite theories in system modules of the form mod FOO is

(Σ, E ∪ B,R) endm, where the system’s local concurrent transitions are specified
by the rules R using the rl keyword, as opposed to the eq keyword used for equa-
tions. Such rules need not be terminating, and can be highly non-deterministic.
Maude’s rewrite command can simulate one possible execution sequence for
such rules in a fair fashion; but there can be many, many more possible execu-
tions. For many reasoning purposes, such as, for example, to check that a cryp-
tographic protocol is secure, one can perform reachability analysis in Maude to
explore all states reachable from a given one using Maude’s breadth first search
command.

However, this may not be powerful enough in some cases: for example, if
either the set of reachable states or that of initial states is infinite. In such cases
one can perform symbolic reachability analysis using narrowing with Maude’s
vu-narrow command. Thanks to our previous Maude tapas this command is
now quite easy to explain. Given a symbolic initial state specified by a term
u(x1, . . . , xn) describing a, typically infinite, set of initial state instances, what
this command does is to build a narrowing search graph rooted at u(x1, . . . , xn).
But there are three main differences with equational narrowing: (1) now
we narrow symbolic expressions, not with equations E, but with transition
rules in R; (2) for each narrowing step, instead of performing B-unification
as before, we now perform E∪B-unification with all the equations in the rewrite
theory; and (3) we check if we have reached a goal term v(y1, . . . , yn) using E∪B-
unification. There are just two restrictions: (i) to be practical, we want to remain
finitely branching, so we require the equations E ∪ B to be FVP to make
sure the number of E ∪ B-unifiers is finite; and (ii) we also assume that the
rules in R are topmost—i.e., that they rewrite the entire state—, which is easy
to achieve in practice by a theory transformation and ensures completeness of
the analysis. The command has the form:

vu-narrow [n] in FOO : u(x1,...,xn) =>* v(y1,...,ym) .

where n is the number of desired solutions, u(x1, . . . , xn) is the pattern for
initial states, and v(y1, . . . , yn) is the pattern describing the set of states that
we wish to reach—or to show that we cannot reach, if they are “bad” states.
The meaning of this query is then to seek an answer to the following question:

Is there an instance of the set of initial states symbolically specified by
u(x1, ..., xn) from which we can reach an instance of the set of target states
symbolically specified by v(y1, . . . , yn) by a sequence of transitions from R in
the FOO module? [u(x1, ..., xn) and v(y1, . . . , yn) can share some variables]

What Maude’s vu-narrow command provides is a complete method to get
answers for such a question: if an answer exists, we are guaranteed—except for
the usual memory and time limitations—to find it. The most common examples

Symbolic Computation in Maude: Some Tapas 25

of this method involve analyzing the reachability properties of some concurrent
system. For example, the Maude-NPA tool [26] uses this kind of narrowing-
based symbolic reachability analysis (with some additional optimizations), to
symbolically analyze security properties of cryptographic protocols. But I wish
to present a completely different kind of example, namely, a Logic Programming
(LP) interpreter, because it shows that rewriting logic and Maude have good
properties not only as a semantic framework to naturally specify and program
concurrent systems, but also as a logical framework [43] in which a logic’s infer-
ence rules can be naturally represented as rewrite rules. In this case, the inference
system in question is that of Horn Logic; and we get for free an LP interpreter
whose core is the following LP module importing the quoted identifiers module
QID with sort Qid:

fmod LP is protecting QID .

sorts U UList Query .

subsorts Qid < U < UList .

op true : -> UList . *** true as "nil"

op _,_ : UList UList -> UList [assoc id: true] .

op _[_] : Qid UList -> U . *** term constructor

op {_} : UList -> Query .

endfm

This tiny functional module is all we need to define an interpreter for Logic Pro-
gramming (LP) [without negation as failure]; i.e., for computing with Horn Logic
programs. Terms of sort U provide a universal language for atomic predicates.
For example, the binary atomic predicate s(s(0)) > s(0) will be here represented
as the term ’>[’s[’s[’0]],’s[’0]]. The sort Query is used for users of the LP
interpreter to enter queries. Such queries ask for a witness proving an existential
formula of the form:

(∃x1, . . . , xn) B1 ^ . . .^ Bk

which is here represented by a term {B1,...,Bk} of sort Query. Prolog’s depth
first search makes it incomplete. But this interpreter will be complete, i.e., if
an answer to a query exists, it will be found. Let me explain how we execute
a Horn Logic program, i.e., a collection of Horn clauses, either of the form A,
some atomic predicate, or implications of the form: A1 ^ . . . ^ An Ñ A,
with A1, . . . , An, A atomic predicates. If we think of true as the empty
conjunction, we can view all such Horn clauses as implications, since A is
equivalent to true Ñ A. In LP, and also in proof theory, the conjunction
symbol is often represented just by a comma: , and therefore a Horn
clause looks either like true Ñ A or like A1, . . . , An Ñ A. But in logic we
often take the goal we want to prove as our starting point and apply the inference
rules in reverse to search for a proof of the goal. Therefore, to compute with a
set of Horn clauses, i.e., with an LP program, we will use the clauses in reverse
as rewrite rules: A Ñ true and A Ñ A1, . . . , An. This representation would be
just fine for us to get an LP interpreter: we could make , associative-
commutative with identity true and perform symbolic reachability analysis

26 J. Meseguer

from our goal B1, . . . , Bk —which we want to existentially prove by finding a
witness using the reversed rewrite rules of type A Ñ true and A Ñ A1, . . . , An—
by trying to reach the term true, and thus a proof. This would work and would be
complete; but it would be quite inefficient, because the interpreter would waste
a lot of time performing redundant symbolic searches. We can achieve a much
more efficient interpreter by introducing two seemingly small optimizations: (1)
Make , just AU, instead of ACU. This is harmless, since all lefthand sides of
the reverse rules are single atoms. So, they can be applied anywhere, i.e., the C
axiom is unnecessary. (2) By using the operator { } in the above LP module, we
can further impose a left to right order in searching for proofs of each of our atom
goals one at a time. This will provide great efficiency. This suggests representing
a clause in reverse of the form A Ñ true as the “clause in context” rewrite rule
{A, L} Ñ {L}, taking advantage of the AU axioms, with L a variable of
sort ULIst. Likewise, we will represent a clause in reverse A Ñ A1, . . . , An as the
“clause in context” {A, L} Ñ {A1, . . . , An, L}. This is just what we will do. For
example, the following Horn clauses define the reverse [mirror image] of a binary
tree and a palindrome predicate on binary trees, where ^ is the binary
tree constructor and with the elements on tree leaves quoted identifiers; so
Q ranges over quoted identifiers:

– rev(Q,Q)
– rev(T1,T4), rev(T2,T3) Ñ rev((T1 ^ T2), (T3 ^ T4))
– rev(T,T) Ñ pal(T)

Using our “reversed clauses in context” transformation to compute with these
clauses in search for a proof of an existential query, we get the rewrite theory in
the following Maude system module, where the [narrowing] attribute instructs
Maude that the so-marked rules will be used in narrowing search:

mod TREE-REVERSE&PALINDROME is protecting LP .

var Q : Qid . vars T T’ T1 T2 T3 T4 : U . var L : UList .

rl {(’rev[Q,Q]),L} => {L} [narrowing] .

rl {(’rev[(’ˆ[T1,T2]),(’ˆ[T3,T4])]),L}

=> {(’rev[T1,T4]),(’rev[T2,T3]),L} [narrowing] .

rl {(’pal[T]),L} => {(’rev[T,T]),L} [narrowing] .

endm

Solving queries for this logic program is just narrowing with the program’s rules!
(in this case modulo AU). And, thanks to the completeness of narrowing, such
query solving is complete. For example:

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :

{’rev[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’c,’d])]),T]} =>* {true} .

Solution 1

state: {true}

accumulated substitution:

Symbolic Computation in Maude: Some Tapas 27

T --> ’ˆ[(’ˆ[’d,’c]),(’ˆ[’b,’a])]

Maude> vu-narrow [2] in TREE-REVERSE&PALINDROME :

{’rev[(’ˆ[(’ˆ[’a,’b]),T’]),T]} =>* {true} .

Solution 1

state: {true}

accumulated substitution:

T’ --> @1:Qid

T --> ’ˆ[@1:Qid,(’ˆ[’b,’a])]

variant unifier:

Solution 2

state: {true}

accumulated substitution:

T’ --> ’ˆ[@2:Qid,@1:Qid]

T --> ’ˆ[(’ˆ[@1:Qid,@2:Qid]),(’ˆ[’b,’a])]

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :

{’pal[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’c,’d])])]} =>* {true} .

No solution.

Maude> vu-narrow [1] in TREE-REVERSE&PALINDROME :

{’pal[(’ˆ[(’ˆ[’a,’b]),(’ˆ[’b,’a])])]} =>* {true} .

Solution 1

state: {true}

7 Further Reading

These tapas have been a way of introducing you, dear reader, in an informal,
high-bandwith way to some symbolic aspects of Maude that you might find
useful. As agreed, I have tried to kept technical details to a bare minimum: just
sufficient for an intelligent conversation with someone having a CS background to
be meaningful. Now is the time to explain to you how a few gaps we had to skirt
can be filled in. I focus on Maude in Sect. 7.1, and discuss broader mathematical
background readings in Sect. 7.2.

7.1 Further Reading on Maude

The most up-to-date Maude journal paper—also emphasizing symbolic aspects—
and covering other aspects such as Maude’s strategy language and Maude’s
approach to concurrent object-oriented programming and various Maude
external objects—that allow Maude programs to be executed in a distributed
manner and interact with external entities—is [20]. The Maude book [14] is
dated—since important new features were added later—but is still useful for

28 J. Meseguer

those parts it covers and its tutorial examples. For teaching formal methods
using Maude, Peter Ölvecky’s book [61] is an excellent textbook emphasiz-
ing distributed system applications. In particular, [20], [14] and [61] provide
more precise definitions of rewriting modulo B and a wealth of examples of
both functional and system modules, including parameterized ones such as the
S-EXP{A :: TRIV} one we already encountered, and the use of the reduce and
rewrite commands. For executability conditions and how to check them, for
both functional and system modules, see [22,24,32]. References [14] and [61]
also provide good explanations and examples to understand the use of Maude’s
breadth first search command, and how search supports a basic, yet very use-
ful, form of model checking verification. They also explain and illustrate well
the more sophisticated LTL temporal logic model checking also supported
directly by Maude.

Something important that did no come up in our conversation over tapas
is reflection. It did come up subliminally in theory transformations like
(Σ, E∪B) �Ñ (Σ=?, E=? ∪B), or in transforming a Horn theory into a Maude sys-
tem module. The point about reflection is that any such transformations can be
performed inside Maude, because Maude’s META-LEVEL module supports meta-
programming, i.e., writing programs that manipulate other programs. This is not
some kind of useful hack, but a piece of mathematics: the efficient exploitation
inside Maude of the fact that both rewriting logic and its underlying equational
logic are reflective [16], i.e., have universal theories that can faithfully repre-
sent any theories [including themselves] as data, as well as faithfully simulating
deduction in them. The reason why this may be of interest to you is because—
combined with the symbolic features I have explained—reflection makes it very
easy to build many formal tools, not just for Maude itself, but for many other log-
ics. Of course, in the Maude team we aggressively practice dogfooding, so all the
Maude formal verification tools have been built this way; but other researchers
use Maude in the same way for many other logics and languages. The Maude
book [14], and [20], are good sources to learn more about reflection in Maude.

To learn more about how to use unification, variants, and narrowing-
based reachability analysis in Maude, the best sources at present are the
journal paper [20], the conference paper [21], and the Maude 3.1 Manual [15]. I
discuss theoretical foundations for these and other topics in Sect. 7.2.

There are many other aspects of Maude and rewriting logic, and many other
applications that I could not discuss here. A somewhat dated but still useful sur-
vey of rewriting logic, including also references to many applications developed
in Maude, is the 2012 paper [54].

7.2 Further Background Reading

I focus here on answering the question: Where can I learn more about the mathe-
matical foundations of the topics we have discussed over tapas? This is different
from questions about Maude itself, which, hopefully, were answered in Sect. 7.1.

Symbolic Computation in Maude: Some Tapas 29

Logics. The three main logics involved are: (i) equational logic; (ii) its extension
to first-order logic; and (iii) rewriting logic. Both (ii) and (iii) are parametric on
the equational logic chosen. Since Maude functional modules specify algebraic
data types, the million-dollar question is: What is a good logic to specify algebraic
data types? This question is highly non-trivial, due to the presence of partial
functions in many data types. Joseph Goguen and I proposed order-sorted equa-
tional logic in [29], further developed in [53]. I later proposed the extension of
order-sorted equational logic to membership equational logic in [53], and devel-
oped its computational logic aspects and its rewriting techniques jointly with
Adel Bouhoula and Jean-Pierre Jouannaud in [9]. Maude’s functional modules
are based on membership equational logic; but many examples can be specified
as order-sorted theories. Any equational logic is just a fragment of a correspond-
ing first-order logic. For order-sorted logic this is explained in detail in, e.g., [69].
For simplicity of exposition, rewriting logic was first presented in [52] as having
unsorted equational logic as its sublogic. But from the beginning the intention
was to base it on order-sorted equational logic; and it was further extended, based
on membership equational logic, in [10]. A latest extension allowing quantifier-
free formulas in the conditions of conditional rules is presented in [57].

Rewriting Modulo B, and Rewriting in Rewrite Theories. I have not
touched upon conditional rewriting, which generalizes the unconditional case
and is supported by Maude. For the semantics of conditional rewriting modulo
B in convergent order-sorted equational theories, a quite comprehensive reference
is [41]. I have cheated a little by saying that convergent means Church-Rosser
and terminating: in the modulo B case the additional requirement of B-
coherence [37,55] is needed; but this is automatically enforced by the Maude
implementation. Furthermore, in the order-sorted case sort-decreasingness (see,
e.g., [41]), i.e., that the sorts of terms remain the same or go down by rewriting,
is also needed for convergence. The key theorem for equational rewriting is that
if (Σ, E ∪ B) is convergent, then we have the Church-Rosser Equivalence:

u =E∪B v ⇔ u!E,B =B v!E,B

A very general formulation of this equivalence for the conditional order-sorted
case can be found in [41]. As already mentioned, rewriting in conditional theories
in membership equational logics has been studied in [9].

For a rewrite theory, R = (Σ, E ∪ B,R), rewriting with transition rules R
should happen modulo E∪B. But this is of course very hard to implement,
since E∪B-equality may even be undecidable. Furthermore, both the equations
E and the rules R can be conditional. However, under the natural assumption
that (Σ, E ∪ B) is convergent, a simple requirement called coherence of R with
E modulo B [24,73] ensures that the unmanageable relation ÑR/(E∪B) can be
faithfully simulated by the much simpler relations ÑR,B and ÑE,B. This
is what the Maude implementation supports, requiring system modules to be
coherent.

30 J. Meseguer

Unification, Narrowing, Variants, and Variant Unification. Unification
is technical jargon for solving equations in an algebra. For algebras whose ele-
ments are numbers, this goes back to Classical Greece, where many of these
problems arose in conjunction with geometrical constructions, e.g., measuring
the diagonal of a unit square. It was advanced by the Arabs, who coined the
word “Algebra” for this business, and further developed by the Italians, Newton,
Galois, Gauss, the Emmy Noether school, and so on. Two fundamental prob-
lems about solving equations in numerical domains were settled in the 20th Cen-
tury: (i) the effective solvability of polynomial equations and inequalities in any
real-closed field, and in particular in the reals, thanks to the Tarski-Seidenberg
Theorem [67,72] —which actually decides the satisfiability of any first-order
formula in this language—, and (ii) the inexistence of a general algorithm to
solve polynomial equations in the integers—the so-called diophantine equations,
after Diophantus—, thanks to Matiyasevich’s negative answer to Hilbert’s 10th
Problem [44]. But with the rise of symbolic logic in the 20th Century, the need
naturally arose to solve equations in term algebras, i.e., in TΣ or TΣ(X) for
variables X: it amounts to the same if Σ has constants. This problem was
solved by Jacques Herbrand in his thesis (see [33], pg. 148). In Computer Science,
Herbrand’s algorithm was rediscovered independently by Alan Robinson, who
called it “unification,” as the main workhorse for resolution: his breakthrough
in automated theorem proving [65]. Since resolution was based on first-order
logic without equality, the issue of how to “build in” equational theories in res-
olution provers so as to avoid falling into the Turing tarpits was recognized as
a pressing one by Gordon Plotkin [64], who proceeded to give an A-unification
algorithm for this purpose in [64]. Independently, Makanin in Russia provided a
different A-unification algorithm in [42]. Likewise, Peterson and Stickel gave an
AC-unification algorithm in [63]. This raised the general E-unification problem,
that is, how to solve equations in the data type TΣ/E , or equivalently in TΣ/E(X),
for various E: see [5,6,36] for three surveys. The treatment of E-unification was
unsorted. But this is too restrictive for the reasons already mentioned above.
Therefore, the need for more general order-sorted E-unification algorithms arose
naturally and was answered in [59,66,71]. Additional advances were made in
[31] and—crucially for the efficiency of Maude’s implementation of order-sorted
B-unification—in [25].
Narrowing also emerged from efforts to make resolution theorem provers reason
efficiently about equality. Specifically, it was introduced by Slagle [70] as an
efficient kind of paramodulation, and was further elaborated by Lankford as a
component of a resolution-with-equality strategy assuming convergent equations
[39]. Hullot further advanced the narrowing ideas, proposed his basic narrowing
strategy, and explored under some restrictions the notion of narrowing modulo
axioms B for a convergent theory (Σ, E ∪ B) in [34]. A more systematic
generalization to this case was carried out by J.-P. Jouannaud, C. Kirchner and
H. Kirchner in [35], assuming a B-unification algorithm. The generalization to
narrowing with convergent order-sorted conditional equational theories modulo
B has been carried out in [11].

Symbolic Computation in Maude: Some Tapas 31

Both Fay [28] and Hullot [34] realized that narrowing could be used to com-
pute E-unifiers of the convergent equations E used as rules in the narrowing.
Furthermore, Hullot discussed in [34] how E ∪ B-unification algorithms could be
obtained via narrowing modulo B for (Σ, E∪B) convergent in some cases. Again,
a more systematic extension of narrowing-based E ∪ B-unification was carried
out by J.-P. Jouannaud, C. Kirchner and H. Kirchner in [35], and was later
extended to E ∪ B-unification for convergent order-sorted conditional equational
theories in [11]. However, narrowing-based E ∪ B-unification suffers from two
main drawbacks: (i) since the conditions for termination of narrowing are very
restrictive, what narrowing-based E ∪ B-unification generally provides is only a
semi-algorithm: if a E ∪ B-unifier exists, it will be found in a finite number of
steps—up to pragmatic time and space limitations; but if it does not exist, we
may never find out, making E ∪ B-unifiability undecidable in general by this
method; and (ii) since some axioms B can give rise to huge numbers of
B-unifiers, these algorithms can suffer serious combinatorial explosions. Here is
where variants, discussed next, can make a big difference.
Comon and Delaune proposed the notion of variant and studied its properties in
[18]. Folding variant narrowing and variant unification were defined and devel-
oped in [27]. Several alternative notions of variant, their relationships, and ways
of checking FVP are discussed in [12]. The extension of the properties and meth-
ods of variants modulo axioms B when B-unification can have an infinite set
of B-unifiers has been initiated in [49]. As already explained in Sect. 4, E ∪ B-
unification with the folding variant narrowing strategy has two key advantages:
(i) it terminates with a complete finite set of E ∪ B-unifiers iff (Σ,R ∪ B) is
FVP, and (ii) its search space and its efficiency are much better than standard
narrowing-based E ∪ B-unification. There are many applications of variants and
variant unification to, e.g., cryptographic protocol analysis, e.g., [13,18,26,46],
program termination [23], SMT solving, e.g., [56,68], partial evaluation, e.g., [3],
program transformation and symbolic model checking, e.g., [7,57], and theorem
proving, e.g., [50,69].

Variant Satisfiability. The foundations and many examples can be found in
[56]. Decidable QF satisfiability in TΣ/B whenever any A symbol f ∈ Σ is
also C, generalizes that of TΣ/AC in [17]. Variant satisfiability algorithms
are studied in [68]. An extension to specifications with predicates, plus variant
satisfiability of data types with constructors and selectors can be found in [30].
For variant satisfiability examples with B = A see [48]. For theorem proving
applications see [50,69].

Narrowing-Based Reachability Analysis. Narrowing was developed as an
automated deduction method for equational reasoning. The idea that narrowing
based E∪B-unification could be used to perform symbolic reachability analysis in
a rewrite theory R = (Σ, E ∪ B,R) by narrowing symbolic states with transition
rules R modulo E∪B was proposed in [51], with cryptographic protocol analysis as
an application in mind. In fact, the most impressive application of this technique

32 J. Meseguer

is the Maude-NPA tool for analysis of cryptographic protocols (see [26] for a
tutorial, and more recent references in DBLP). The extension of this technique
from reachability analysis to symbolic LTL model checking —with a Maude-
based tool supporting it—can be found in [7]. Symbolic reachability analysis
with very general conditional rules is studied in [57].

Acknowledgements. I thank the BOPL organizers for giving me the opportunity of
presenting these ideas as a BOPL joint invited speaker. I chose the talk’s topic having
in mind the interests of the various BOPL participants and, in spite of the pandemic,
found the online discussions very helpful and stimulating. The ideas I have presented
are based on joint work with various colleagues. The symbolic aspects of Maude are
part of a long and extremely active effort by the members of the Maude Team; they
owe much to Steven Eker’s high-performance implementation of its features. Folding
variant narrowing is joint work with Santiago Escobar and Ralf Sasse. Variant-based
satisfiability has been advanced in joint work with Stephen Skeirik and Raúl Gutiérrez.
The Maude-NPA has been developed in joint work with Catherine Meadows, Santiago
Escobar, and Ph.D. students at Illinois, Valencia, and Oslo. Maude’s Symbolic LTL
Model Checker is joint work with Kyungmin Bae and Santiago Escobar. Last but not
least, the work on generalization, homeomorphic embedding and variant-based partial
evaluation of Maude programs is joint research with Maŕıa Alpuente, Angel Cuenca-
Ortega, Santiago Escobar and Julia Sapiña at TU Valencia, and Demis Ballis at the
University of Udine. Given the long list, I hope I have not missed anybody, and apol-
ogize in advance if that were inadvertently the case. I warmly thank Maŕıa Alpuente,
Francisco Durán, Santiago Escobar, Maribel Fernádez, Salvador Lucas, Narciso Mart́ı-
Oliet, Rubén Rubio and Carolyn Talcott for their very helpful suggestions to improve
the manuscript. The research reported herein has been partially supported by NRL
under contract N00173-17-1-G002.

References

1. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Order-sorted home-
omorphic embedding modulo combinations of associativity and/or commutativity
axioms. Fundamenta Informaticae 177, 297–329 (2020)

2. Alpuente, M., Ballis, D., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: ACUOS 2:
a high-performance system for modular ACU generalization with subtyping and
inheritance. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS
(LNAI), vol. 11468, pp. 171–181. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19570-0 11

3. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: A partial evaluation
framework for order-sorted equational programs modulo axioms. J. Log. Algebraic
Methods Program. 110, 100501 (2020)

4. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equa-
tional generalization algorithm. Inf. Comput. 235, 98–136 (2014)

5. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning.
Elsevier (1999)

6. Baader, F., Siekmann, J.H.: Unification theory. In: Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 2, pp. 41–126. Oxford University Press
(1994)

https://doi.org/10.1007/978-3-030-19570-0_11
https://doi.org/10.1007/978-3-030-19570-0_11

Symbolic Computation in Maude: Some Tapas 33

7. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: Rewriting Techniques and Applications (RTA
2013). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2013)

8. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the
finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Fro-
CoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40885-4 23

9. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theor. Comput. Sci. 236, 35–132 (2000)

10. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

11. Cholewa, A., Escobar, S., Meseguer, J.: Constrained narrowing for conditional
equational theories modulo axioms. Sci. Comput. Program. 112, 24–57 (2015)

12. Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite vari-
ant property. Technical report, CS Department University of Illinois at Urbana-
Champaign, February 2014. http://hdl.handle.net/2142/47117

13. Ciobaca., S.: Verification of composition of security protocols with applications to
electronic voting. Ph.D. thesis, ENS Cachan (2011)

14. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

15. Clavel, M., et al.: Maude Manual (Version 3.1), October 2020. http://maude.cs.
uiuc.edu

16. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, horn logic with equality, and rewriting logic. Theor.
Comput. Sci. 373, 70–91 (2007)

17. Comon, H.: Unification et disunification: Théorie et applications. Ph.D. thesis,
Institute National Polytechnique de Grenoble, France (1988)

18. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3 22

19. CVC4: https://cvc4.github.io
20. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log.

Algebr. Meth. Program. 110 (2020). https://doi.org/10.1016/j.jlamp.2019.100497
21. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.: Associa-

tive unification and symbolic reasoning modulo associativity in Maude. In: Rusu, V.
(ed.) WRLA 2018. LNCS, vol. 11152, pp. 98–114. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99840-4 6

22. Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system
description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71070-7 27

23. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational
theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04222-5 15

24. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of condi-
tional order-sorted rewrite theories. J. Algebraic Log. Program. 81, 816–850 (2012)

https://doi.org/10.1007/978-3-642-40885-4_23
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
https://doi.org/10.1007/978-3-540-32033-3_22
https://cvc4.github.io
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1007/978-3-319-99840-4_6
https://doi.org/10.1007/978-3-319-99840-4_6
https://doi.org/10.1007/978-3-540-71070-7_27
https://doi.org/10.1007/978-3-540-71070-7_27
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-04222-5_15

34 J. Meseguer

25. Eker, S.: Fast sort computations for order-sorted matching and unification. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 299–314. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 15

26. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

27. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebraic Log. Program. 81, 898–928 (2012)

28. Fay, M.: First-order unification in an equational theory. In: Proceedings of the
Fourth Workshop on Automated Deduction, Austin, Texas, pp. 161–167 (1979)

29. Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci.
105, 217–273 (1992)

30. Gutiérrez, R., Meseguer, J.: Variant-based decidable satisfiability in initial algebras
with predicates. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS,
vol. 10855, pp. 306–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94460-9 18

31. Hendrix, J., Meseguer, J.: Order-sorted equational unification revisited. Electr.
Notes Theor. Comput. Sci. 290, 37–50 (2012)

32. Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear
order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11814771 14

33. Herbrand, J.: Logical Writings. Reidel (1971)
34. Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)

CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980). https://doi.
org/10.1007/3-540-10009-1 25

35. Jouannaud, J.-P., Kirchner, C., Kirchner, H.: Incremental construction of unifi-
cation algorithms in equational theories. In: Diaz, J. (ed.) ICALP 1983. LNCS,
vol. 154, pp. 361–373. Springer, Heidelberg (1983). https://doi.org/10.1007/
BFb0036921

36. Jouannaud, J.P., Kirchner, C.: Solving equations in abstract algebras: a rule-based
survey of unification. In: Computational Logic - Essays in Honor of Alan Robinson,
pp. 257–321. MIT Press (1991)

37. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15, 1155–1194 (1986)

38. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

39. Lankford, D.S.: Canonical inference. Technical report ATP-32, Southwestn Uni-
versity (1975)

40. Levi, G., Sirovich, F.: Proving program properties, symbolic evaluation and logical
procedural semantics. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 294–301.
Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07389-2 211

41. Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting.
J. Log. Algebr. Meth. Program. 85(1), 67–97 (2016)

42. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
USSR Sbornik 32(2), 129–198 (1977)

https://doi.org/10.1007/978-3-642-24933-4_15
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-319-94460-9_18
https://doi.org/10.1007/978-3-319-94460-9_18
https://doi.org/10.1007/11814771_14
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/BFb0036921
https://doi.org/10.1007/BFb0036921
https://doi.org/10.1007/3-540-07389-2_211

Symbolic Computation in Maude: Some Tapas 35

43. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn,
pp. 1–87. Kluwer Academic Publishers (2002). first published as SRI Technical
report SRI-CSL-93-05, August 1993

44. Matiyasevich, Y.V.: Hilbert’s 10th Problem. MIT Press, Cambridge (1993)
45. McCarthy, J., Abrahams, P., Edwards, D., Hart, T., Levin, M.: LISP 1.5 Program-

mer’s Manual. MIT Press, Cambridge (1985)
46. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the

symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

47. Meseguer, J.: Order-sorted parameterization and induction. In: Palsberg, J. (ed.)
Semantics and Algebraic Specification. LNCS, vol. 5700, pp. 43–80. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04164-8 4

48. Meseguer, J.: Variant satisfiability of parameterized strings. In: Escobar, S., Mart́ı-
Oliet, N. (eds.) WRLA 2020. LNCS, vol. 12328, pp. 96–113. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-63595-4 6

49. Meseguer, J.: Variants in the infinitary unification wonderland. In: Escobar, S.,
Mart́ı-Oliet, N. (eds.) WRLA 2020. LNCS, vol. 12328, pp. 75–95. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63595-4 5

50. Meseguer, J., Skeirik, S.: Inductive reasoning with equality predicates, contextual
rewriting and variant-based simplification. In: Escobar, S., Mart́ı-Oliet, N. (eds.)
WRLA 2020. LNCS, vol. 12328, pp. 114–135. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-63595-4 7

51. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to the verification of cryptographic protocols. J. Higher-Order Symbolic
Comput. 20(1–2), 123–160 (2007)

52. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

53. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

54. Meseguer, J.: Twenty years of rewriting logic. J. Algebraic Log. Program. 81, 721–
781 (2012)

55. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor.
Comput. Sci. 672, 1–35 (2017)

56. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program.
154, 3–41 (2018)

57. Meseguer, J.: Generalized rewrite theories, coherence completion and symbolic
methods. J. Log. Algebraic Methods Program. (2019)

58. Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, mul-
tiple representation and coercion problems. Inf. Comput. 103(1), 114–158 (1993)

59. Meseguer, J., Goguen, J., Smolka, G.: Order-sorted unification. J. Symbolic Com-
put. 8, 383–413 (1989)

60. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

61. Ölveczky, P.C.: Designing Reliable Distributed Systems. UTCS. Springer, London
(2017). https://doi.org/10.1007/978-1-4471-6687-0

62. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput.
Sci. 12, 291–302 (1980)

https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-04164-8_4
https://doi.org/10.1007/978-3-030-63595-4_6
https://doi.org/10.1007/978-3-030-63595-4_5
https://doi.org/10.1007/978-3-030-63595-4_7
https://doi.org/10.1007/978-3-030-63595-4_7
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/978-1-4471-6687-0

36 J. Meseguer

63. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational
theories. J. Assoc. Comput. Mach. 28(2), 233–264 (1981)

64. Plotkin, G.: Building-in equational theories. Mach. Intell. 7, 73–90 (1972)
65. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.

Assoc. Comput. Mach. 12, 23–41 (1965)
66. Schmidt-Schauß, M. (ed.): Computational Aspects of an Order-Sorted Logic with

Term Declarations. LNCS, vol. 395. Springer, Heidelberg (1989). https://doi.org/
10.1007/BFb0024065

67. Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60,
365–374 (1954)

68. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log.
Algebr. Meth. Program. 96, 81–110 (2018)

69. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. Fundam. Inform. 173(4), 315–382 (2020)

70. Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativ-
ity, and associativity. J. ACM 21(4), 622–642 (1974)

71. Smolka, G., Nutt, W., Goguen, J., Meseguer, J.: Order-sorted equational com-
putation. In: Nivat, M., Aı̈t-Kaci, H. (eds.) Resolution of Equations in Algebraic
Structures, vol. 2, pp. 297–367. Academic Press (1989)

72. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press (1951). prepared with the assistance of J.C.C. McKinsey

73. Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285, 487–517
(2002)

74. Yices: https://yices.csl.sri.com

https://doi.org/10.1007/BFb0024065
https://doi.org/10.1007/BFb0024065
https://yices.csl.sri.com

	Symbolic Computation in Maude: Some Tapas
	1 Introduction
	1.1 What is Maude?
	1.2 Symbolic Computation in Maude
	1.3 Tapas and Paper Napkins

	2 First Tapas Serving: Rewriting Modulo Axioms B
	3 Second Tapas Serving: Unification and Narrowing Modulo B
	4 Third Tapas Serving: Variants, and Unification Modulo E B
	5 Fourth Tapas Serving: Variant Satisfiability
	6 Dessert: Narrowing-Based Symbolic Reachability Analysis
	7 Further Reading
	7.1 Further Reading on Maude
	7.2 Further Background Reading

	References

