Program Verification: Lecture 26

José Meseguer University of Illinois at Urbana-Champaign

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state u.

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state u. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state u. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

The main problem is that, in general, it is meaningless to say which state predicates $p \in \Pi$ are satisfied in a symbolic state u, since some ground instance $u\rho$ may satisfy some predicates in Π , and another ground instance $u\tau$ may satisfy a different set of predicates in Π .

We can verify invariants of a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ when $E \cup B$ is FVP by narrowing search with $\rightsquigarrow_{R/(E \cup B)}$ from a symbolic initial state u. Can this be generalized to narrowing-based symbolic LTL model checking for such an \mathcal{R} ?

The main problem is that, in general, it is meaningless to say which state predicates $p \in \Pi$ are satisfied in a symbolic state u, since some ground instance $u\rho$ may satisfy some predicates in Π , and another ground instance $u\tau$ may satisfy a different set of predicates in Π .

However, if \mathcal{R} is deadlock-free, and the equations D defining the satisfaction relation $u \models p$ between terms of top sort *State* and state predicates Π are such that $E \cup D \cup B$ is FVP modulo B, LTL symbolic model checking of \mathcal{R} from a symbolic initial state u becomes possible in a symbolic Kripke structure $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$, whose symbolic transitions are performed by a Π -aware narrowing relation \rightsquigarrow_{Π} explained in what follows.

Given a deadlock-free topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations D such that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

Given a deadlock-free topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations D such that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

Given a deadlock-free topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations D such that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

•
$$\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$$

Given a deadlock-free topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations D such that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

•
$$\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$$

•
$$\exists (b_1, \ldots, b_k) \in \{true, false\}^k$$

Given a deadlock-free topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations D such that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

- $\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$
- $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$
- $\exists \gamma \in Unif_{E \cup D \cup B}(v \models p_1 = b_1 \land \ldots \land v \models p_k = b_k)$

Given a deadlock-free topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ with rules $(l \to r) \in R$ s.t. $l, r \in T_{\Sigma}(X) \setminus X$, topmost sort *State*, and a set $\Pi = \{p_1, \ldots, p_k\}$ of state predicates whose satisfaction in \mathcal{R} is defined by equations D such that $E \cup D \cup B$ is FVP modulo axioms B, the Π -aware narrowing relation between terms $u, w \in T_{\Sigma,State}(X)$ is defined as follows:

$$u \stackrel{\alpha\gamma}{\leadsto_{\Pi}} w$$

holds iff (by definition)

•
$$\exists v \ s.t. \ u \rightsquigarrow_{R/(E \cup B)}^{\alpha} v$$

•
$$\exists (b_1, \ldots, b_k) \in \{true, false\}^k$$

•
$$\exists \gamma \in Unif_{E \cup D \cup B}(v \models p_1 = b_1 \land \ldots \land v \models p_k = b_k)$$

such that $w = v\gamma$.

For a symbolic state $u \in T_{\Sigma,State}(X)$ s.t. $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$ with $(u \models p_i)!_{E \cup D, B} = b_i$, $1 \le i \le k$, $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is a Kripke structure with set of states

For a symbolic state $u \in T_{\Sigma,State}(X)$ s.t. $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$ with $(u \models p_i)!_{E \cup D, B} = b_i, 1 \le i \le k, \mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is a Kripke structure with set of states $NK(u) = \{w \in T_{\Sigma,State}(X) \mid u \rightsquigarrow_{\Pi}^* w\},\$

For a symbolic state $u \in T_{\Sigma,State}(X)$ s.t. $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$ with $(u \models p_i)!_{E \cup D, B} = b_i$, $1 \le i \le k$, $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is a Kripke structure with set of states $NK(u) = \{w \in T_{\Sigma,State}(X) \mid u \rightsquigarrow_{\Pi}^* w\}$, transition relation \rightsquigarrow_{Π} ,

For a symbolic state $u \in T_{\Sigma,State}(X)$ s.t. $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$ with $(u \models p_i)!_{E \cup D, B} = b_i$, $1 \le i \le k$, $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is a Kripke structure with set of states $NK(u) = \{w \in T_{\Sigma,State}(X) \mid u \rightsquigarrow_{\Pi}^* w\}$, transition relation \rightsquigarrow_{Π} , and satisfaction relation $w \models_{\mathcal{NK}(\mathcal{R},State)_{\Pi}(u)} p_i$ defined for each $w \in NK(u)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E \cup D, B} = b'_i$, $1 \le i \le k$.

For a symbolic state $u \in T_{\Sigma,State}(X)$ s.t. $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$ with $(u \models p_i)!_{E \cup D, B} = b_i$, $1 \le i \le k$, $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is a Kripke structure with set of states $NK(u) = \{w \in T_{\Sigma,State}(X) \mid u \rightsquigarrow_{\Pi}^* w\}$, transition relation \rightsquigarrow_{Π} , and satisfaction relation $w \models_{\mathcal{NK}(\mathcal{R},State)_{\Pi}(u)} p_i$ defined for each $w \in NK(u)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E \cup D, B} = b'_i$, $1 \le i \le k$.

The following theorem about $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ (whose proof is given in the Appendix 1) shows that any LTL formula φ which holds for a symbolic initial state u also holds for all its ground instance states.

For a symbolic state $u \in T_{\Sigma,State}(X)$ s.t. $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$ with $(u \models p_i)!_{E \cup D,B} = b_i$, $1 \le i \le k$, $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is a Kripke structure with set of states $NK(u) = \{w \in T_{\Sigma,State}(X) \mid u \rightsquigarrow_{\Pi}^* w\}$, transition relation \rightsquigarrow_{Π} , and satisfaction relation $w \models_{\mathcal{NK}(\mathcal{R},State)_{\Pi}(u)} p_i$ defined for each $w \in NK(u)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E \cup D,B} = b'_i$, $1 \le i \le k$.

The following theorem about $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ (whose proof is given in the Appendix 1) shows that any LTL formula φ which holds for a symbolic initial state u also holds for all its ground instance states.

Theorem

For each $\varphi \in LTL(\Pi)$ and u as above, if $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi$, then $\forall \rho \in [vars(u) \rightarrow T_{\Sigma}], \ \mathcal{K}(\mathcal{R}, State)_{\Pi}, [u\rho] \models \varphi$.

For a symbolic state $u \in T_{\Sigma,State}(X)$ s.t. $\exists (b_1, \ldots, b_k) \in \{true, false\}^k$ with $(u \models p_i)!_{E \cup D, B} = b_i$, $1 \le i \le k$, $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is a Kripke structure with set of states $NK(u) = \{w \in T_{\Sigma,State}(X) \mid u \rightsquigarrow_{\Pi}^* w\}$, transition relation \rightsquigarrow_{Π} , and satisfaction relation $w \models_{\mathcal{NK}(\mathcal{R},State)_{\Pi}(u)} p_i$ defined for each $w \in NK(u)$ and $p_i \in \Pi$ by the unique $b'_i \in \{true, false\}^k$ such that $(w \models p_i)!_{E \cup D, B} = b'_i$, $1 \le i \le k$.

The following theorem about $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ (whose proof is given in the Appendix 1) shows that any LTL formula φ which holds for a symbolic initial state u also holds for all its ground instance states.

Theorem

For each $\varphi \in LTL(\Pi)$ and u as above, if $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi$, then $\forall \rho \in [vars(u) \to T_{\Sigma}], \ \mathcal{K}(\mathcal{R}, State)_{\Pi}, [u\rho] \models \varphi$.

Note that we can always split any $v \in T_{\Sigma,State}(X) \setminus X$ into a finite set of instances by unifiers that satisfy Π . In this way, the assumption that the satisfaction of Π -predicates is defined in u can be weakened.

By the above Theorem, the Kripke structure $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ supports LTL model checking for all ground instances of u using the decision procedure for LTL model checking described in Appendix 1 to Lecture 22.

By the above Theorem, the Kripke structure $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ supports LTL model checking for all ground instances of u using the decision procedure for LTL model checking described in Appendix 1 to Lecture 22. However, this requires that the set NK(u) is finite. When NK(u) is infinite, we can try one of the following four possibilities to reduce the state space of $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ to a finite state space:

By the above Theorem, the Kripke structure $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ supports LTL model checking for all ground instances of u using the decision procedure for LTL model checking described in Appendix 1 to Lecture 22. However, this requires that the set NK(u) is finite. When NK(u) is infinite, we can try one of the following four possibilities to reduce the state space of $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ to a finite state space:

• Perform LTL model checking by folding variant narrowing, provided the folding \rightsquigarrow_{Π} -narrowing graph from u is finite.

By the above Theorem, the Kripke structure $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ supports LTL model checking for all ground instances of u using the decision procedure for LTL model checking described in Appendix 1 to Lecture 22. However, this requires that the set NK(u) is finite. When NK(u) is infinite, we can try one of the following four possibilities to reduce the state space of $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ to a finite state space:

- Perform LTL model checking by folding variant narrowing, provided the folding ~→_Π-narrowing graph from u is finite.
- ② Define an equational abstraction R/G such that: (i) E ∪ D ∪ G ∪ B is FVP and protects the Booleans, and (ii) the folding →_Π-narrowing graph from u is finite for R/G.

By the above Theorem, the Kripke structure $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ supports LTL model checking for all ground instances of u using the decision procedure for LTL model checking described in Appendix 1 to Lecture 22. However, this requires that the set NK(u) is finite. When NK(u) is infinite, we can try one of the following four possibilities to reduce the state space of $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ to a finite state space:

- Perform LTL model checking by folding variant narrowing, provided the folding ~→_Π-narrowing graph from u is finite.
- 2 Define an equational abstraction *R*/*G* such that: (i) *E* ∪ *D* ∪ *G* ∪ *B* is FVP and protects the Booleans, and (ii) the folding ~_Π-narrowing graph from *u* is finite for *R*/*G*.
- 3 Define a bisimilar equational abstraction R/G such that: (i) E∪D∪G∪B is FVP and protects the Booleans, and (ii) the folding ~_Π-narrowing graph from u is finite for R/G.

By the above Theorem, the Kripke structure $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ supports LTL model checking for all ground instances of u using the decision procedure for LTL model checking described in Appendix 1 to Lecture 22. However, this requires that the set NK(u) is finite. When NK(u) is infinite, we can try one of the following four possibilities to reduce the state space of $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ to a finite state space:

- Perform LTL model checking by folding variant narrowing, provided the folding ~→_Π-narrowing graph from u is finite.
- 2 Define an equational abstraction R/G such that: (i) E ∪ D ∪ G ∪ B is FVP and protects the Booleans, and (ii) the folding ~··Π-narrowing graph from u is finite for R/G.
- 3 Define a bisimilar equational abstraction *R*/*G* such that: (i) *E* ∪ *D* ∪ *G* ∪ *B* is FVP and protects the Booleans, and (ii) the folding ~₁-narrowing graph from *u* is finite for *R*/*G*.
- **4** Perform **bounded** LTL symbolic model checking.

Let us explore these possibilities in more detail.

Replacing $\rightsquigarrow_{R/(E \cup B)}$ by \rightsquigarrow_{Π} , $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is entirely similar to the narrowing tree from u.

Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is entirely similar to the narrowing tree from u. Just as we have a folding narrowing graph $FNG_{\mathcal{R}}(u)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing graph (a Kripke structure!) $FNG_{\mathcal{R}}^{\Pi}(u)$ for $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$.

Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is entirely similar to the narrowing tree from u. Just as we have a folding narrowing graph $FNG_{\mathcal{R}}(u)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing graph (a Kripke structure!) $FNG_{\mathcal{R}}^{\Pi}(u)$ for $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$.

The construction of $FNG_{\mathcal{R}}^{\Pi}(u)$ is entirely similar to that of $FNG_{\mathcal{R}}(u)$ in Lecture 24, just replacing the folding relation $v \preccurlyeq_{E \cup B} w$ by the folding relation $v \preccurlyeq_{E \cup D \cup B} w$ defined by the equivalence:

Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is entirely similar to the narrowing tree from u. Just as we have a folding narrowing graph $FNG_{\mathcal{R}}(u)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing graph (a Kripke structure!) $FNG_{\mathcal{R}}^{\Pi}(u)$ for $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$.

The construction of $FNG_{\mathcal{R}}^{\Pi}(u)$ is entirely similar to that of $FNG_{\mathcal{R}}(u)$ in Lecture 24, just replacing the folding relation $v \preccurlyeq_{E \cup B} w$ by the folding relation $v \preccurlyeq_{E \cup D \cup B} w$ defined by the equivalence:

 $v \preccurlyeq^{\Pi}_{E \cup D \cup B} w \iff_{def} v \preccurlyeq_{E \cup B} w \land \forall p \in \Pi, \ (v \models p)!_{E \cup D, B} = (w \models p)!_{E \cup D, B}.$

Replacing $\rightsquigarrow_{R/(E\cup B)}$ by \rightsquigarrow_{Π} , $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$ is entirely similar to the narrowing tree from u. Just as we have a folding narrowing graph $FNG_{\mathcal{R}}(u)$ for the $\rightsquigarrow_{R/(E\cup B)}$ -narrowing tree, we also have a folding narrowing graph (a Kripke structure!) $FNG_{\mathcal{R}}^{\Pi}(u)$ for $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$.

The construction of $FNG_{\mathcal{R}}^{\Pi}(u)$ is entirely similar to that of $FNG_{\mathcal{R}}(u)$ in Lecture 24, just replacing the folding relation $v \preccurlyeq_{E \cup B} w$ by the folding relation $v \preccurlyeq_{E \cup D \cup B} w$ defined by the equivalence:

 $v \preccurlyeq^{\Pi}_{E \cup D \cup B} w \; \Leftrightarrow_{def} \; v \preccurlyeq_{E \cup B} w \land \forall p \in \Pi, \; (v \models p)!_{E \cup D, B} = (w \models p)!_{E \cup D, B}.$

The Faithfulness Theorem for $FNG_{\mathcal{R}}(u)$ in Lecture 24, pg. 13, generalizes to (see Theorems 8 and 12 in Appendix 2):

Theorem

For $\varphi \in LTL(\Pi)$ (resp. φ a safety formula) we have:

 $FNG_{\mathcal{R}}^{\Pi}(u), u \models \varphi \; \Rightarrow \; (resp. \Leftrightarrow) \; \mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi.$

A (Π -)simulation (resp. (Π -)bisimulation) map $f : \mathcal{A} \to \mathcal{B}$ of Kripke structures over Π is, by definition, a simulation (resp. bisimulation) map of the underlying transition systems (see Lecture 25) s.t. for each $p \in \Pi$, and $a \in A$ we have $a \models_{\mathcal{A}} p \Leftrightarrow f(a) \models_{\mathcal{B}} p$.

A (Π -)simulation (resp. (Π -)bisimulation) map $f : \mathcal{A} \to \mathcal{B}$ of Kripke structures over Π is, by definition, a simulation (resp. bisimulation) map of the underlying transition systems (see Lecture 25) s.t. for each $p \in \Pi$, and $a \in A$ we have $a \models_{\mathcal{A}} p \Leftrightarrow f(a) \models_{\mathcal{B}} p$. The following theorem holds for a Π -(bi)simulation map between Kripke structures (see Appendix 1):

A (Π -)simulation (resp. (Π -)bisimulation) map $f : \mathcal{A} \to \mathcal{B}$ of Kripke structures over Π is, by definition, a simulation (resp. bisimulation) map of the underlying transition systems (see Lecture 25) s.t. for each $p \in \Pi$, and $a \in A$ we have $a \models_{\mathcal{A}} p \Leftrightarrow f(a) \models_{\mathcal{B}} p$. The following theorem holds for a Π -(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If $f : A \to B$ is a Π -simulation (resp. Π -bisimulation) map of Kripke structures over Π , then, for any $a \in A$ and $\varphi \in LTL(\Pi)$,

$$\mathcal{B}, f(a) \models \varphi \Rightarrow (resp. \Leftrightarrow) \mathcal{A}, a \models \varphi.$$

A (Π -)simulation (resp. (Π -)bisimulation) map $f : \mathcal{A} \to \mathcal{B}$ of Kripke structures over Π is, by definition, a simulation (resp. bisimulation) map of the underlying transition systems (see Lecture 25) s.t. for each $p \in \Pi$, and $a \in A$ we have $a \models_{\mathcal{A}} p \Leftrightarrow f(a) \models_{\mathcal{B}} p$. The following theorem holds for a Π -(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If $f : A \to B$ is a Π -simulation (resp. Π -bisimulation) map of Kripke structures over Π , then, for any $a \in A$ and $\varphi \in LTL(\Pi)$,

$$\mathcal{B}, f(a) \models \varphi \Rightarrow (resp. \Leftrightarrow) \mathcal{A}, a \models \varphi.$$

If the satisfaction of state predicates Π in a topmost $\mathcal{R} = (\Sigma, E \cup B, R)$ is defined by equations D s.t. $E \cup D \cup B$ is FVP, then an equational abstraction (resp. bisimilar equational abstraction) \mathcal{R}/G such that $E \cup D \cup G \cup B$ is FVP will define a Π -simulation (resp. Π -bisimulation) map $[_{-}]_{E \cup G \cup B}$ between the Kripke structures $\mathcal{K}(\mathcal{R}, State)_{\Pi}$ and $\mathcal{K}(\mathcal{R}/\mathcal{G}, State)_{\Pi}$, provided $E \cup D \cup G \cup B$ protects the Booleans.

A (Π -)simulation (resp. (Π -)bisimulation) map $f : \mathcal{A} \to \mathcal{B}$ of Kripke structures over Π is, by definition, a simulation (resp. bisimulation) map of the underlying transition systems (see Lecture 25) s.t. for each $p \in \Pi$, and $a \in A$ we have $a \models_{\mathcal{A}} p \Leftrightarrow f(a) \models_{\mathcal{B}} p$. The following theorem holds for a Π -(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If $f : A \to B$ is a Π -simulation (resp. Π -bisimulation) map of Kripke structures over Π , then, for any $a \in A$ and $\varphi \in LTL(\Pi)$,

$$\mathcal{B}, f(a) \models \varphi \Rightarrow (resp. \Leftrightarrow) \mathcal{A}, a \models \varphi.$$

If the satisfaction of state predicates Π in a topmost $\mathcal{R} = (\Sigma, E \cup B, R)$ is defined by equations D s.t. $E \cup D \cup B$ is FVP, then an equational abstraction (resp. bisimilar equational abstraction) \mathcal{R}/G such that $E \cup D \cup G \cup B$ is FVP will define a Π -simulation (resp. Π -bisimulation) map $[_{-}]_{E \cup G \cup B}$ between the Kripke structures $\mathcal{K}(\mathcal{R}, State)_{\Pi}$ and $\mathcal{K}(\mathcal{R}/\mathcal{G}, State)_{\Pi}$, provided $E \cup D \cup G \cup B$ protects the Booleans.

Under the assumptions in pg. 7, let \mathcal{R}/G be an equational abstraction (resp. bisimilar equational abstraction) defining a Π -simulation (resp. Π -bisimulation) map $[_]_{E\cup G\cup B}$ between $\mathcal{K}(\mathcal{R}, State)_{\Pi}$ and $\mathcal{K}(\mathcal{R}/\mathcal{G}, State)_{\Pi}$. Then we have (see proof in Appendix 1):

Under the assumptions in pg. 7, let \mathcal{R}/G be an equational abstraction (resp. bisimilar equational abstraction) defining a Π -simulation (resp. Π -bisimulation) map $[_{-}]_{E\cup G\cup B}$ between $\mathcal{K}(\mathcal{R}, State)_{\Pi}$ and $\mathcal{K}(\mathcal{R}/\mathcal{G}, State)_{\Pi}$. Then we have (see proof in Appendix 1):

Theorem

• If $[-]_{E\cup G\cup B}$ is a Π -simulation map, for each u and $\varphi \in LTL(\Pi)$, $FNG_{\mathcal{R}/\mathcal{G}}^{\Pi}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}/\mathcal{G}, State)_{\Pi}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi$.

Under the assumptions in pg. 7, let \mathcal{R}/G be an equational abstraction (resp. bisimilar equational abstraction) defining a Π -simulation (resp. Π -bisimulation) map $[_{-}]_{E\cup G\cup B}$ between $\mathcal{K}(\mathcal{R}, State)_{\Pi}$ and $\mathcal{K}(\mathcal{R}/\mathcal{G}, State)_{\Pi}$. Then we have (see proof in Appendix 1):

Theorem

- If $[-]_{E\cup G\cup B}$ is a Π -simulation map, for each u and $\varphi \in LTL(\Pi)$, $FNG^{\Pi}_{\mathcal{R}/\mathcal{G}}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}/\mathcal{G}, State)_{\Pi}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi$.
- **2** If $[_{-}]_{E\cup G\cup B}$ is a Π -bisimulation map, for each u and $\varphi \in LTL(\Pi)$, $FNG^{\Pi}_{\mathcal{R}/\mathcal{G}}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}/\mathcal{G}, State)_{\Pi}(u), u \models \varphi \Leftrightarrow \mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi$.

Under the assumptions in pg. 7, let \mathcal{R}/G be an equational abstraction (resp. bisimilar equational abstraction) defining a Π -simulation (resp. Π -bisimulation) map $[_{-}]_{E\cup G\cup B}$ between $\mathcal{K}(\mathcal{R}, State)_{\Pi}$ and $\mathcal{K}(\mathcal{R}/\mathcal{G}, State)_{\Pi}$. Then we have (see proof in Appendix 1):

Theorem

• If $[-]_{E\cup G\cup B}$ is a Π -simulation map, for each u and $\varphi \in LTL(\Pi)$, $FNG^{\Pi}_{\mathcal{R}/\mathcal{G}}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}/\mathcal{G}, State)_{\Pi}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi$.

2 If $[_{-}]_{E\cup G\cup B}$ is a Π -bisimulation map, for each u and $\varphi \in LTL(\Pi)$, $FNG^{\Pi}_{\mathcal{R}/\mathcal{G}}(u), u \models \varphi \Rightarrow \mathcal{NK}(\mathcal{R}/\mathcal{G}, State)_{\Pi}(u), u \models \varphi \Leftrightarrow \mathcal{NK}(\mathcal{R}, State)_{\Pi}(u), u \models \varphi$.

Furthermore, if φ a safety formula, the leftmost implication in (1) and (2) becomes an equivalence.

 Construct a depth ≤ k under-approximation of the folding narrowing graph (and Kripke structure) FNG^{II}_R(u)

 Construct a depth ≤ k under-approximation of the folding narrowing graph (and Kripke structure) FNG^Π_R(u) (a more expensive, but more accurate, version under-approximates NK(R, State)_Π(u)).

• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(u)$ (a more expensive, but more accurate, version under-approximates $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$).

• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(u)$ (a more expensive, but more accurate, version under-approximates $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$).

Algorithm: Given a bound *n*, incrementally build a depth $\leq k$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(u)$, increasing $k \leq n$ iteratively.

• Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth $\leq k$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(u)$. If a counterexample is found, stop and return the counterexample.

• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(u)$ (a more expensive, but more accurate, version under-approximates $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNG^Π_R(u).
 If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is *no* counterexample at depth $\leq k$.

• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(u)$ (a more expensive, but more accurate, version under-approximates $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNG^Π_R(u).
 If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is *no* counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.

• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(u)$ (a more expensive, but more accurate, version under-approximates $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNG^Π_R(u).
 If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is *no* counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.
 - 2 Otherwise, generate the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(u)$

• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(u)$ (a more expensive, but more accurate, version under-approximates $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNG^Π_R(u).
 If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is *no* counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.
 - 2 Otherwise, generate the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(u)$
 - **1** If no new nodes are added to the $\leq k$ under-approximation, $FNG_{\mathcal{R}}^{\Pi}(u)$ has been actually generated! Then return *true*;

• Construct a depth $\leq k$ under-approximation of the folding narrowing graph (and Kripke structure) $FNG_{\mathcal{R}}^{\Pi}(u)$ (a more expensive, but more accurate, version under-approximates $\mathcal{NK}(\mathcal{R}, State)_{\Pi}(u)$).

- Apply a standard explicit-state LTL model checking algorithm to verify φ in the depth ≤ k under-approximation of FNG^Π_R(u).
 If a counterexample is found, stop and return the counterexample.
- **2** Suppose that there is *no* counterexample at depth $\leq k$.
 - **1** If k = n, stop and report that the model does not violate φ up to the current bound n.
 - 2 Otherwise, generate the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(u)$
 - **1** If no new nodes are added to the $\leq k$ under-approximation, $FNG_{\mathcal{R}}^{\Pi}(u)$ has been actually generated! Then return *true*;
 - **2** Otherwise, go to Step 1 with the depth $\leq k+1$ under-approximation of $FNG_{\mathcal{R}}^{\Pi}(u)$.

• Maude's Logical LTL Model Checker supports narrowing-based LTL model checking with the techniques discussed in this lecture

• Maude's Logical LTL Model Checker supports narrowing-based LTL model checking with the techniques discussed in this lecture https://maude.cs.uiuc.edu/tools/lmc/

• Maude's Logical LTL Model Checker supports narrowing-based LTL model checking with the techniques discussed in this lecture https://maude.cs.uiuc.edu/tools/lmc/ See also the CS 476 web page for details on how to use the tool and the tool's manual with examples.

- Maude's Logical LTL Model Checker supports narrowing-based LTL model checking with the techniques discussed in this lecture https://maude.cs.uiuc.edu/tools/lmc/ See also the CS 476 web page for details on how to use the tool and the tool's manual with examples.
- Various LTL properties verified for examples such as:

- Maude's Logical LTL Model Checker supports narrowing-based LTL model checking with the techniques discussed in this lecture https://maude.cs.uiuc.edu/tools/lmc/
 See also the CS 476 web page for details on how to use the tool and the tool's manual with examples.
- Various LTL properties verified for examples such as:
 - 1 Lamport's Bakery protocol
 - 2 Readers-Writers problem
 - **3** Readers-Writers problem (simplified)
 - ④ Dijkstra's mutual exclusion algorithm
 - **5** Burns's mutual exclusion algorithm
 - 6 Token ring mutual exclusion
 - Vending Machine example
 - 8 Plotter example

Output 1/3: Bounded Model Checking without Folding

```
Maude> (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical model check in BAKERY-SATISFACTION :
    N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:
    no counterexample found within bound 10
```


Output 2/3: Bounded Model Checking with Folding

```
Maude> (lfmc [50] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY-SATISFACTION :
    N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:
    no counterexample found within bound 50
```


Output 3/3: Unbounded Model Checking with a Bisimilar Equational Abstraction

