
Program Verification: Lecture 26

José Meseguer
University of Illinois at Urbana-Champaign

Meseguer Lecture 24 1 / 13

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E∪ B, R)
when E∪ B is FVP by narrowing search with R/(E∪B) from a symbolic
initial state u.

Can this be generalized to narrowing-based symbolic LTL
model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if R is deadlock-free, and the equations D defining the
satisfaction relation u |= p between terms of top sort State and state
predicates Π are such that E∪D∪ B is FVP modulo B, LTL symbolic
model checking of R from a symbolic initial state u becomes possible in
a symbolic Kripke structure NK(R, State)Π(u), whose symbolic
transitions are performed by a Π-aware narrowing relation Π explained
in what follows.

Meseguer Lecture 24 2 / 13

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E∪ B, R)
when E∪ B is FVP by narrowing search with R/(E∪B) from a symbolic
initial state u. Can this be generalized to narrowing-based symbolic LTL
model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if R is deadlock-free, and the equations D defining the
satisfaction relation u |= p between terms of top sort State and state
predicates Π are such that E∪D∪ B is FVP modulo B, LTL symbolic
model checking of R from a symbolic initial state u becomes possible in
a symbolic Kripke structure NK(R, State)Π(u), whose symbolic
transitions are performed by a Π-aware narrowing relation Π explained
in what follows.

Meseguer Lecture 24 2 / 13

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E∪ B, R)
when E∪ B is FVP by narrowing search with R/(E∪B) from a symbolic
initial state u. Can this be generalized to narrowing-based symbolic LTL
model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if R is deadlock-free, and the equations D defining the
satisfaction relation u |= p between terms of top sort State and state
predicates Π are such that E∪D∪ B is FVP modulo B, LTL symbolic
model checking of R from a symbolic initial state u becomes possible in
a symbolic Kripke structure NK(R, State)Π(u), whose symbolic
transitions are performed by a Π-aware narrowing relation Π explained
in what follows.

Meseguer Lecture 24 2 / 13

Narrowing-Based Symbolic LTL Model Checking

Narrowing-Based Symbolic LTL Model Checking

We can verify invariants of a topmost rewrite theory R = (Σ, E∪ B, R)
when E∪ B is FVP by narrowing search with R/(E∪B) from a symbolic
initial state u. Can this be generalized to narrowing-based symbolic LTL
model checking for such an R?

The main problem is that, in general, it is meaningless to say which state
predicates p ∈ Π are satisfied in a symbolic state u, since some ground
instance uρ may satisfy some predicates in Π, and another ground
instance uτ may satisfy a different set of predicates in Π.

However, if R is deadlock-free, and the equations D defining the
satisfaction relation u |= p between terms of top sort State and state
predicates Π are such that E∪D∪ B is FVP modulo B, LTL symbolic
model checking of R from a symbolic initial state u becomes possible in
a symbolic Kripke structure NK(R, State)Π(u), whose symbolic
transitions are performed by a Π-aware narrowing relation Π explained
in what follows.

Meseguer Lecture 24 2 / 13

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation Π

Given a deadlock-free topmost rewrite theory R = (Σ, E∪ B, R) with
rules (l→ r) ∈ R s.t. l, r ∈ TΣ(X) \X, topmost sort State, and a set
Π = {p1, . . . , pk} of state predicates whose satisfaction in R is defined by
equations D such that E∪D∪ B is FVP modulo axioms B, the Π-aware
narrowing relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ Π w

holds iff (by definition)

• ∃v s.t. u α R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 24 3 / 13

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation Π

Given a deadlock-free topmost rewrite theory R = (Σ, E∪ B, R) with
rules (l→ r) ∈ R s.t. l, r ∈ TΣ(X) \X, topmost sort State, and a set
Π = {p1, . . . , pk} of state predicates whose satisfaction in R is defined by
equations D such that E∪D∪ B is FVP modulo axioms B, the Π-aware
narrowing relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ Π w

holds iff (by definition)

• ∃v s.t. u α R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 24 3 / 13

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation Π

Given a deadlock-free topmost rewrite theory R = (Σ, E∪ B, R) with
rules (l→ r) ∈ R s.t. l, r ∈ TΣ(X) \X, topmost sort State, and a set
Π = {p1, . . . , pk} of state predicates whose satisfaction in R is defined by
equations D such that E∪D∪ B is FVP modulo axioms B, the Π-aware
narrowing relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ Π w

holds iff (by definition)

• ∃v s.t. u α R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 24 3 / 13

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation Π

Given a deadlock-free topmost rewrite theory R = (Σ, E∪ B, R) with
rules (l→ r) ∈ R s.t. l, r ∈ TΣ(X) \X, topmost sort State, and a set
Π = {p1, . . . , pk} of state predicates whose satisfaction in R is defined by
equations D such that E∪D∪ B is FVP modulo axioms B, the Π-aware
narrowing relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ Π w

holds iff (by definition)

• ∃v s.t. u α R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 24 3 / 13

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation Π

Given a deadlock-free topmost rewrite theory R = (Σ, E∪ B, R) with
rules (l→ r) ∈ R s.t. l, r ∈ TΣ(X) \X, topmost sort State, and a set
Π = {p1, . . . , pk} of state predicates whose satisfaction in R is defined by
equations D such that E∪D∪ B is FVP modulo axioms B, the Π-aware
narrowing relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ Π w

holds iff (by definition)

• ∃v s.t. u α R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 24 3 / 13

Narrowing-Based Symbolic LTL Model Checking

The Narrowing Relation Π

Given a deadlock-free topmost rewrite theory R = (Σ, E∪ B, R) with
rules (l→ r) ∈ R s.t. l, r ∈ TΣ(X) \X, topmost sort State, and a set
Π = {p1, . . . , pk} of state predicates whose satisfaction in R is defined by
equations D such that E∪D∪ B is FVP modulo axioms B, the Π-aware
narrowing relation between terms u, w ∈ TΣ,State(X) is defined as follows:

u
αγ Π w

holds iff (by definition)

• ∃v s.t. u α R/(E∪B) v

• ∃(b1, . . . , bk) ∈ {true, false}k

• ∃γ ∈ Unif E∪D∪B(v |= p1 = b1 ∧ . . . ∧ v |= pk = bk)

such that w = vγ.

Meseguer Lecture 24 3 / 13

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NK(R, State)Π(u)
For a symbolic state u ∈ TΣ,State(X) s.t. ∃(b1, . . . , bk) ∈ {true, false}k

with (u |= pi)! ~E∪D,B = bi, 1 ≤ i ≤ k, NK(R, State)Π(u) is a Kripke

structure with set of states

NK(u) = {w ∈ TΣ,State(X) | u ∗Π w},
transition relation Π, and satisfaction relation w |=NK(R,State)Π(u) pi

defined for each w ∈ NK(u) and pi ∈ Π by the unique b′i ∈ {true, false}k

such that (w |= pi)! ~E∪D,B = b′i, 1 ≤ i ≤ k.

The following theorem about NK(R, State)Π(u) (whose proof is given
in the Appendix 1) shows that any LTL formula ϕ which holds for a
symbolic initial state u also holds for all its ground instance states.

Theorem

For each ϕ ∈ LTL(Π) and u as above, if NK(R, State)Π(u), u |= ϕ,
then ∀ρ ∈ [vars(u)→ TΣ], K(R, State)Π, [uρ] |= ϕ.

Note that we can always split any v ∈ TΣ,State(X) \X into a finite set of
instances by unifiers that satisfy Π. In this way, the assumption that the
satisfaction of Π-predicates is defined in u can be weakened.

Meseguer Lecture 24 4 / 13

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NK(R, State)Π(u)
For a symbolic state u ∈ TΣ,State(X) s.t. ∃(b1, . . . , bk) ∈ {true, false}k

with (u |= pi)! ~E∪D,B = bi, 1 ≤ i ≤ k, NK(R, State)Π(u) is a Kripke

structure with set of states NK(u) = {w ∈ TΣ,State(X) | u ∗Π w},

transition relation Π, and satisfaction relation w |=NK(R,State)Π(u) pi

defined for each w ∈ NK(u) and pi ∈ Π by the unique b′i ∈ {true, false}k

such that (w |= pi)! ~E∪D,B = b′i, 1 ≤ i ≤ k.

The following theorem about NK(R, State)Π(u) (whose proof is given
in the Appendix 1) shows that any LTL formula ϕ which holds for a
symbolic initial state u also holds for all its ground instance states.

Theorem

For each ϕ ∈ LTL(Π) and u as above, if NK(R, State)Π(u), u |= ϕ,
then ∀ρ ∈ [vars(u)→ TΣ], K(R, State)Π, [uρ] |= ϕ.

Note that we can always split any v ∈ TΣ,State(X) \X into a finite set of
instances by unifiers that satisfy Π. In this way, the assumption that the
satisfaction of Π-predicates is defined in u can be weakened.

Meseguer Lecture 24 4 / 13

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NK(R, State)Π(u)
For a symbolic state u ∈ TΣ,State(X) s.t. ∃(b1, . . . , bk) ∈ {true, false}k

with (u |= pi)! ~E∪D,B = bi, 1 ≤ i ≤ k, NK(R, State)Π(u) is a Kripke

structure with set of states NK(u) = {w ∈ TΣ,State(X) | u ∗Π w},
transition relation Π,

and satisfaction relation w |=NK(R,State)Π(u) pi

defined for each w ∈ NK(u) and pi ∈ Π by the unique b′i ∈ {true, false}k

such that (w |= pi)! ~E∪D,B = b′i, 1 ≤ i ≤ k.

The following theorem about NK(R, State)Π(u) (whose proof is given
in the Appendix 1) shows that any LTL formula ϕ which holds for a
symbolic initial state u also holds for all its ground instance states.

Theorem

For each ϕ ∈ LTL(Π) and u as above, if NK(R, State)Π(u), u |= ϕ,
then ∀ρ ∈ [vars(u)→ TΣ], K(R, State)Π, [uρ] |= ϕ.

Note that we can always split any v ∈ TΣ,State(X) \X into a finite set of
instances by unifiers that satisfy Π. In this way, the assumption that the
satisfaction of Π-predicates is defined in u can be weakened.

Meseguer Lecture 24 4 / 13

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NK(R, State)Π(u)
For a symbolic state u ∈ TΣ,State(X) s.t. ∃(b1, . . . , bk) ∈ {true, false}k

with (u |= pi)! ~E∪D,B = bi, 1 ≤ i ≤ k, NK(R, State)Π(u) is a Kripke

structure with set of states NK(u) = {w ∈ TΣ,State(X) | u ∗Π w},
transition relation Π, and satisfaction relation w |=NK(R,State)Π(u) pi

defined for each w ∈ NK(u) and pi ∈ Π by the unique b′i ∈ {true, false}k

such that (w |= pi)! ~E∪D,B = b′i, 1 ≤ i ≤ k.

The following theorem about NK(R, State)Π(u) (whose proof is given
in the Appendix 1) shows that any LTL formula ϕ which holds for a
symbolic initial state u also holds for all its ground instance states.

Theorem

For each ϕ ∈ LTL(Π) and u as above, if NK(R, State)Π(u), u |= ϕ,
then ∀ρ ∈ [vars(u)→ TΣ], K(R, State)Π, [uρ] |= ϕ.

Note that we can always split any v ∈ TΣ,State(X) \X into a finite set of
instances by unifiers that satisfy Π. In this way, the assumption that the
satisfaction of Π-predicates is defined in u can be weakened.

Meseguer Lecture 24 4 / 13

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NK(R, State)Π(u)
For a symbolic state u ∈ TΣ,State(X) s.t. ∃(b1, . . . , bk) ∈ {true, false}k

with (u |= pi)! ~E∪D,B = bi, 1 ≤ i ≤ k, NK(R, State)Π(u) is a Kripke

structure with set of states NK(u) = {w ∈ TΣ,State(X) | u ∗Π w},
transition relation Π, and satisfaction relation w |=NK(R,State)Π(u) pi

defined for each w ∈ NK(u) and pi ∈ Π by the unique b′i ∈ {true, false}k

such that (w |= pi)! ~E∪D,B = b′i, 1 ≤ i ≤ k.

The following theorem about NK(R, State)Π(u) (whose proof is given
in the Appendix 1) shows that any LTL formula ϕ which holds for a
symbolic initial state u also holds for all its ground instance states.

Theorem

For each ϕ ∈ LTL(Π) and u as above, if NK(R, State)Π(u), u |= ϕ,
then ∀ρ ∈ [vars(u)→ TΣ], K(R, State)Π, [uρ] |= ϕ.

Note that we can always split any v ∈ TΣ,State(X) \X into a finite set of
instances by unifiers that satisfy Π. In this way, the assumption that the
satisfaction of Π-predicates is defined in u can be weakened.

Meseguer Lecture 24 4 / 13

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NK(R, State)Π(u)
For a symbolic state u ∈ TΣ,State(X) s.t. ∃(b1, . . . , bk) ∈ {true, false}k

with (u |= pi)! ~E∪D,B = bi, 1 ≤ i ≤ k, NK(R, State)Π(u) is a Kripke

structure with set of states NK(u) = {w ∈ TΣ,State(X) | u ∗Π w},
transition relation Π, and satisfaction relation w |=NK(R,State)Π(u) pi

defined for each w ∈ NK(u) and pi ∈ Π by the unique b′i ∈ {true, false}k

such that (w |= pi)! ~E∪D,B = b′i, 1 ≤ i ≤ k.

The following theorem about NK(R, State)Π(u) (whose proof is given
in the Appendix 1) shows that any LTL formula ϕ which holds for a
symbolic initial state u also holds for all its ground instance states.

Theorem

For each ϕ ∈ LTL(Π) and u as above, if NK(R, State)Π(u), u |= ϕ,
then ∀ρ ∈ [vars(u)→ TΣ], K(R, State)Π, [uρ] |= ϕ.

Note that we can always split any v ∈ TΣ,State(X) \X into a finite set of
instances by unifiers that satisfy Π. In this way, the assumption that the
satisfaction of Π-predicates is defined in u can be weakened.

Meseguer Lecture 24 4 / 13

Narrowing-Based Symbolic LTL Model Checking

The Kripke Structure NK(R, State)Π(u)
For a symbolic state u ∈ TΣ,State(X) s.t. ∃(b1, . . . , bk) ∈ {true, false}k

with (u |= pi)! ~E∪D,B = bi, 1 ≤ i ≤ k, NK(R, State)Π(u) is a Kripke

structure with set of states NK(u) = {w ∈ TΣ,State(X) | u ∗Π w},
transition relation Π, and satisfaction relation w |=NK(R,State)Π(u) pi

defined for each w ∈ NK(u) and pi ∈ Π by the unique b′i ∈ {true, false}k

such that (w |= pi)! ~E∪D,B = b′i, 1 ≤ i ≤ k.

The following theorem about NK(R, State)Π(u) (whose proof is given
in the Appendix 1) shows that any LTL formula ϕ which holds for a
symbolic initial state u also holds for all its ground instance states.

Theorem

For each ϕ ∈ LTL(Π) and u as above, if NK(R, State)Π(u), u |= ϕ,
then ∀ρ ∈ [vars(u)→ TΣ], K(R, State)Π, [uρ] |= ϕ.

Note that we can always split any v ∈ TΣ,State(X) \X into a finite set of
instances by unifiers that satisfy Π. In this way, the assumption that the
satisfaction of Π-predicates is defined in u can be weakened.

Meseguer Lecture 24 4 / 13

State Space Reduction in NK(R, State)Π (u)

State Space Reduction in NK(R, State)Π(u)
By the above Theorem, the Kripke structure NK(R, State)Π(u)
supports LTL model checking for all ground instances of u using the
decision procedure for LTL model checking described in Appendix 1 to
Lecture 22.

However, this requires that the set NK(u) is finite. When
NK(u) is infinite, we can try one of the following four possibilities to
reduce the state space of NK(R, State)Π(u) to a finite state space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding Π-narrowing graph from u is finite.

2 Define an equational abstraction R/G such that: (i) E∪D∪G∪ B
is FVP and protects the Booleans, and (ii) the folding
 Π-narrowing graph from u is finite for R/G.

3 Define a bisimilar equational abstraction R/G such that: (i)
E∪D∪G∪ B is FVP and protects the Booleans, and (ii) the
folding Π-narrowing graph from u is finite for R/G.

4 Perform bounded LTL symbolic model checking.

Let us explore these possibilities in more detail.

Meseguer Lecture 24 5 / 13

State Space Reduction in NK(R, State)Π (u)

State Space Reduction in NK(R, State)Π(u)
By the above Theorem, the Kripke structure NK(R, State)Π(u)
supports LTL model checking for all ground instances of u using the
decision procedure for LTL model checking described in Appendix 1 to
Lecture 22. However, this requires that the set NK(u) is finite. When
NK(u) is infinite, we can try one of the following four possibilities to
reduce the state space of NK(R, State)Π(u) to a finite state space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding Π-narrowing graph from u is finite.

2 Define an equational abstraction R/G such that: (i) E∪D∪G∪ B
is FVP and protects the Booleans, and (ii) the folding
 Π-narrowing graph from u is finite for R/G.

3 Define a bisimilar equational abstraction R/G such that: (i)
E∪D∪G∪ B is FVP and protects the Booleans, and (ii) the
folding Π-narrowing graph from u is finite for R/G.

4 Perform bounded LTL symbolic model checking.

Let us explore these possibilities in more detail.

Meseguer Lecture 24 5 / 13

State Space Reduction in NK(R, State)Π (u)

State Space Reduction in NK(R, State)Π(u)
By the above Theorem, the Kripke structure NK(R, State)Π(u)
supports LTL model checking for all ground instances of u using the
decision procedure for LTL model checking described in Appendix 1 to
Lecture 22. However, this requires that the set NK(u) is finite. When
NK(u) is infinite, we can try one of the following four possibilities to
reduce the state space of NK(R, State)Π(u) to a finite state space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding Π-narrowing graph from u is finite.

2 Define an equational abstraction R/G such that: (i) E∪D∪G∪ B
is FVP and protects the Booleans, and (ii) the folding
 Π-narrowing graph from u is finite for R/G.

3 Define a bisimilar equational abstraction R/G such that: (i)
E∪D∪G∪ B is FVP and protects the Booleans, and (ii) the
folding Π-narrowing graph from u is finite for R/G.

4 Perform bounded LTL symbolic model checking.

Let us explore these possibilities in more detail.

Meseguer Lecture 24 5 / 13

State Space Reduction in NK(R, State)Π (u)

State Space Reduction in NK(R, State)Π(u)
By the above Theorem, the Kripke structure NK(R, State)Π(u)
supports LTL model checking for all ground instances of u using the
decision procedure for LTL model checking described in Appendix 1 to
Lecture 22. However, this requires that the set NK(u) is finite. When
NK(u) is infinite, we can try one of the following four possibilities to
reduce the state space of NK(R, State)Π(u) to a finite state space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding Π-narrowing graph from u is finite.

2 Define an equational abstraction R/G such that: (i) E∪D∪G∪ B
is FVP and protects the Booleans, and (ii) the folding
 Π-narrowing graph from u is finite for R/G.

3 Define a bisimilar equational abstraction R/G such that: (i)
E∪D∪G∪ B is FVP and protects the Booleans, and (ii) the
folding Π-narrowing graph from u is finite for R/G.

4 Perform bounded LTL symbolic model checking.

Let us explore these possibilities in more detail.

Meseguer Lecture 24 5 / 13

State Space Reduction in NK(R, State)Π (u)

State Space Reduction in NK(R, State)Π(u)
By the above Theorem, the Kripke structure NK(R, State)Π(u)
supports LTL model checking for all ground instances of u using the
decision procedure for LTL model checking described in Appendix 1 to
Lecture 22. However, this requires that the set NK(u) is finite. When
NK(u) is infinite, we can try one of the following four possibilities to
reduce the state space of NK(R, State)Π(u) to a finite state space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding Π-narrowing graph from u is finite.

2 Define an equational abstraction R/G such that: (i) E∪D∪G∪ B
is FVP and protects the Booleans, and (ii) the folding
 Π-narrowing graph from u is finite for R/G.

3 Define a bisimilar equational abstraction R/G such that: (i)
E∪D∪G∪ B is FVP and protects the Booleans, and (ii) the
folding Π-narrowing graph from u is finite for R/G.

4 Perform bounded LTL symbolic model checking.

Let us explore these possibilities in more detail.

Meseguer Lecture 24 5 / 13

State Space Reduction in NK(R, State)Π (u)

State Space Reduction in NK(R, State)Π(u)
By the above Theorem, the Kripke structure NK(R, State)Π(u)
supports LTL model checking for all ground instances of u using the
decision procedure for LTL model checking described in Appendix 1 to
Lecture 22. However, this requires that the set NK(u) is finite. When
NK(u) is infinite, we can try one of the following four possibilities to
reduce the state space of NK(R, State)Π(u) to a finite state space:

1 Perform LTL model checking by folding variant narrowing, provided
the folding Π-narrowing graph from u is finite.

2 Define an equational abstraction R/G such that: (i) E∪D∪G∪ B
is FVP and protects the Booleans, and (ii) the folding
 Π-narrowing graph from u is finite for R/G.

3 Define a bisimilar equational abstraction R/G such that: (i)
E∪D∪G∪ B is FVP and protects the Booleans, and (ii) the
folding Π-narrowing graph from u is finite for R/G.

4 Perform bounded LTL symbolic model checking.

Let us explore these possibilities in more detail.

Meseguer Lecture 24 5 / 13

State Space Reduction in NK(R, State)Π (u)

The Folding Π-narrowing graph from u
Replacing R/(E∪B) by Π, NK(R, State)Π(u) is entirely similar to the
narrowing tree from u.

Just as we have a folding narrowing graph
FNGR(u) for the R/(E∪B)-narrowing tree, we also have a folding

narrowing graph (a Kripke structure!) FNGΠ
R(u) for NK(R, State)Π(u).

The construction of FNGΠ
R(u) is entirely similar to that of FNGR(u) in

Lecture 24, just replacing the folding relation v 4E∪B w by the folding
relation v 4Π

E∪D∪B w defined by the equivalence:

v 4Π
E∪D∪B w ⇔def v 4E∪B w∧∀p ∈ Π, (v |= p)! ~E∪D,B = (w |= p)! ~E∪D,B.

The Faithfulness Theorem for FNGR(u) in Lecture 24, pg. 13,
generalizes to (see Theorems 8 and 12 in Appendix 2):

Theorem

For ϕ ∈ LTL(Π) (resp. ϕ a safety formula) we have:

FNGΠ
R(u), u |= ϕ ⇒ (resp. ⇔) NK(R, State)Π(u), u |= ϕ.

Meseguer Lecture 24 6 / 13

State Space Reduction in NK(R, State)Π (u)

The Folding Π-narrowing graph from u
Replacing R/(E∪B) by Π, NK(R, State)Π(u) is entirely similar to the
narrowing tree from u. Just as we have a folding narrowing graph
FNGR(u) for the R/(E∪B)-narrowing tree, we also have a folding

narrowing graph (a Kripke structure!) FNGΠ
R(u) for NK(R, State)Π(u).

The construction of FNGΠ
R(u) is entirely similar to that of FNGR(u) in

Lecture 24, just replacing the folding relation v 4E∪B w by the folding
relation v 4Π

E∪D∪B w defined by the equivalence:

v 4Π
E∪D∪B w ⇔def v 4E∪B w∧∀p ∈ Π, (v |= p)! ~E∪D,B = (w |= p)! ~E∪D,B.

The Faithfulness Theorem for FNGR(u) in Lecture 24, pg. 13,
generalizes to (see Theorems 8 and 12 in Appendix 2):

Theorem

For ϕ ∈ LTL(Π) (resp. ϕ a safety formula) we have:

FNGΠ
R(u), u |= ϕ ⇒ (resp. ⇔) NK(R, State)Π(u), u |= ϕ.

Meseguer Lecture 24 6 / 13

State Space Reduction in NK(R, State)Π (u)

The Folding Π-narrowing graph from u
Replacing R/(E∪B) by Π, NK(R, State)Π(u) is entirely similar to the
narrowing tree from u. Just as we have a folding narrowing graph
FNGR(u) for the R/(E∪B)-narrowing tree, we also have a folding

narrowing graph (a Kripke structure!) FNGΠ
R(u) for NK(R, State)Π(u).

The construction of FNGΠ
R(u) is entirely similar to that of FNGR(u) in

Lecture 24, just replacing the folding relation v 4E∪B w by the folding
relation v 4Π

E∪D∪B w defined by the equivalence:

v 4Π
E∪D∪B w ⇔def v 4E∪B w∧∀p ∈ Π, (v |= p)! ~E∪D,B = (w |= p)! ~E∪D,B.

The Faithfulness Theorem for FNGR(u) in Lecture 24, pg. 13,
generalizes to (see Theorems 8 and 12 in Appendix 2):

Theorem

For ϕ ∈ LTL(Π) (resp. ϕ a safety formula) we have:

FNGΠ
R(u), u |= ϕ ⇒ (resp. ⇔) NK(R, State)Π(u), u |= ϕ.

Meseguer Lecture 24 6 / 13

State Space Reduction in NK(R, State)Π (u)

The Folding Π-narrowing graph from u
Replacing R/(E∪B) by Π, NK(R, State)Π(u) is entirely similar to the
narrowing tree from u. Just as we have a folding narrowing graph
FNGR(u) for the R/(E∪B)-narrowing tree, we also have a folding

narrowing graph (a Kripke structure!) FNGΠ
R(u) for NK(R, State)Π(u).

The construction of FNGΠ
R(u) is entirely similar to that of FNGR(u) in

Lecture 24, just replacing the folding relation v 4E∪B w by the folding
relation v 4Π

E∪D∪B w defined by the equivalence:

v 4Π
E∪D∪B w ⇔def v 4E∪B w∧∀p ∈ Π, (v |= p)! ~E∪D,B = (w |= p)! ~E∪D,B.

The Faithfulness Theorem for FNGR(u) in Lecture 24, pg. 13,
generalizes to (see Theorems 8 and 12 in Appendix 2):

Theorem

For ϕ ∈ LTL(Π) (resp. ϕ a safety formula) we have:

FNGΠ
R(u), u |= ϕ ⇒ (resp. ⇔) NK(R, State)Π(u), u |= ϕ.

Meseguer Lecture 24 6 / 13

State Space Reduction in NK(R, State)Π (u)

The Folding Π-narrowing graph from u
Replacing R/(E∪B) by Π, NK(R, State)Π(u) is entirely similar to the
narrowing tree from u. Just as we have a folding narrowing graph
FNGR(u) for the R/(E∪B)-narrowing tree, we also have a folding

narrowing graph (a Kripke structure!) FNGΠ
R(u) for NK(R, State)Π(u).

The construction of FNGΠ
R(u) is entirely similar to that of FNGR(u) in

Lecture 24, just replacing the folding relation v 4E∪B w by the folding
relation v 4Π

E∪D∪B w defined by the equivalence:

v 4Π
E∪D∪B w ⇔def v 4E∪B w∧∀p ∈ Π, (v |= p)! ~E∪D,B = (w |= p)! ~E∪D,B.

The Faithfulness Theorem for FNGR(u) in Lecture 24, pg. 13,
generalizes to (see Theorems 8 and 12 in Appendix 2):

Theorem

For ϕ ∈ LTL(Π) (resp. ϕ a safety formula) we have:

FNGΠ
R(u), u |= ϕ ⇒ (resp. ⇔) NK(R, State)Π(u), u |= ϕ.

Meseguer Lecture 24 6 / 13

State Space Reduction in NK(R, State)Π (u)

Π-(Bi)Simulation maps of Kripke Structures
A (Π-)simulation (resp. (Π-)bisimulation) map f : A → B of Kripke
structures over Π is, by definition, a simulation (resp. bisimulation) map
of the underlying transition systems (see Lecture 25) s.t. for each p ∈ Π,
and a ∈ A we have a |=A p⇔ f (a) |=B p.

The following theorem holds
for a Π-(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If f : A → B is a Π-simulation (resp. Π-bisimulation) map of Kripke
structures over Π, then, for any a ∈ A and ϕ ∈ LTL(Π),

B, f (a) |= ϕ ⇒ (resp. ⇔) A, a |= ϕ.

If the satisfaction of state predicates Π in a topmost R = (Σ, E∪ B, R)
is defined by equations D s.t. E∪D∪ B is FVP, then an equational
abstraction (resp. bisimilar equational abstraction) R/G such that
E∪D∪G∪ B is FVP will define a Π-simulation (resp. Π-bisimulation)
map []E∪G∪B between the Kripke structures K(R, State)Π and
K(R/G, State)Π, provided E∪D∪G∪ B protects the Booleans.

Meseguer Lecture 24 7 / 13

State Space Reduction in NK(R, State)Π (u)

Π-(Bi)Simulation maps of Kripke Structures
A (Π-)simulation (resp. (Π-)bisimulation) map f : A → B of Kripke
structures over Π is, by definition, a simulation (resp. bisimulation) map
of the underlying transition systems (see Lecture 25) s.t. for each p ∈ Π,
and a ∈ A we have a |=A p⇔ f (a) |=B p. The following theorem holds
for a Π-(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If f : A → B is a Π-simulation (resp. Π-bisimulation) map of Kripke
structures over Π, then, for any a ∈ A and ϕ ∈ LTL(Π),

B, f (a) |= ϕ ⇒ (resp. ⇔) A, a |= ϕ.

If the satisfaction of state predicates Π in a topmost R = (Σ, E∪ B, R)
is defined by equations D s.t. E∪D∪ B is FVP, then an equational
abstraction (resp. bisimilar equational abstraction) R/G such that
E∪D∪G∪ B is FVP will define a Π-simulation (resp. Π-bisimulation)
map []E∪G∪B between the Kripke structures K(R, State)Π and
K(R/G, State)Π, provided E∪D∪G∪ B protects the Booleans.

Meseguer Lecture 24 7 / 13

State Space Reduction in NK(R, State)Π (u)

Π-(Bi)Simulation maps of Kripke Structures
A (Π-)simulation (resp. (Π-)bisimulation) map f : A → B of Kripke
structures over Π is, by definition, a simulation (resp. bisimulation) map
of the underlying transition systems (see Lecture 25) s.t. for each p ∈ Π,
and a ∈ A we have a |=A p⇔ f (a) |=B p. The following theorem holds
for a Π-(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If f : A → B is a Π-simulation (resp. Π-bisimulation) map of Kripke
structures over Π, then, for any a ∈ A and ϕ ∈ LTL(Π),

B, f (a) |= ϕ ⇒ (resp. ⇔) A, a |= ϕ.

If the satisfaction of state predicates Π in a topmost R = (Σ, E∪ B, R)
is defined by equations D s.t. E∪D∪ B is FVP, then an equational
abstraction (resp. bisimilar equational abstraction) R/G such that
E∪D∪G∪ B is FVP will define a Π-simulation (resp. Π-bisimulation)
map []E∪G∪B between the Kripke structures K(R, State)Π and
K(R/G, State)Π, provided E∪D∪G∪ B protects the Booleans.

Meseguer Lecture 24 7 / 13

State Space Reduction in NK(R, State)Π (u)

Π-(Bi)Simulation maps of Kripke Structures
A (Π-)simulation (resp. (Π-)bisimulation) map f : A → B of Kripke
structures over Π is, by definition, a simulation (resp. bisimulation) map
of the underlying transition systems (see Lecture 25) s.t. for each p ∈ Π,
and a ∈ A we have a |=A p⇔ f (a) |=B p. The following theorem holds
for a Π-(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If f : A → B is a Π-simulation (resp. Π-bisimulation) map of Kripke
structures over Π, then, for any a ∈ A and ϕ ∈ LTL(Π),

B, f (a) |= ϕ ⇒ (resp. ⇔) A, a |= ϕ.

If the satisfaction of state predicates Π in a topmost R = (Σ, E∪ B, R)
is defined by equations D s.t. E∪D∪ B is FVP, then an equational
abstraction (resp. bisimilar equational abstraction) R/G such that
E∪D∪G∪ B is FVP will define a Π-simulation (resp. Π-bisimulation)
map []E∪G∪B between the Kripke structures K(R, State)Π and
K(R/G, State)Π, provided E∪D∪G∪ B protects the Booleans.

Meseguer Lecture 24 7 / 13

State Space Reduction in NK(R, State)Π (u)

Π-(Bi)Simulation maps of Kripke Structures
A (Π-)simulation (resp. (Π-)bisimulation) map f : A → B of Kripke
structures over Π is, by definition, a simulation (resp. bisimulation) map
of the underlying transition systems (see Lecture 25) s.t. for each p ∈ Π,
and a ∈ A we have a |=A p⇔ f (a) |=B p. The following theorem holds
for a Π-(bi)simulation map between Kripke structures (see Appendix 1):

Theorem

If f : A → B is a Π-simulation (resp. Π-bisimulation) map of Kripke
structures over Π, then, for any a ∈ A and ϕ ∈ LTL(Π),

B, f (a) |= ϕ ⇒ (resp. ⇔) A, a |= ϕ.

If the satisfaction of state predicates Π in a topmost R = (Σ, E∪ B, R)
is defined by equations D s.t. E∪D∪ B is FVP, then an equational
abstraction (resp. bisimilar equational abstraction) R/G such that
E∪D∪G∪ B is FVP will define a Π-simulation (resp. Π-bisimulation)
map []E∪G∪B between the Kripke structures K(R, State)Π and
K(R/G, State)Π, provided E∪D∪G∪ B protects the Booleans.

Meseguer Lecture 24 7 / 13

State Space Reduction in NK(R, State)Π (u)

Symbolic State Space Reduction Theorem

Under the assumptions in pg. 7, let R/G be an equational abstraction
(resp. bisimilar equational abstraction) defining a Π-simulation (resp.
Π-bisimulation) map []E∪G∪B between K(R, State)Π and
K(R/G, State)Π. Then we have (see proof in Appendix 1):

Theorem

1 If []E∪G∪B is a Π-simulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇒ NK(R, State)Π(u), u |= ϕ.

2 If []E∪G∪B is a Π-bisimulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇔ NK(R, State)Π(u), u |= ϕ.

Furthermore, if ϕ a safety formula, the leftmost implication in (1) and
(2) becomes an equivalence.

Meseguer Lecture 24 8 / 13

State Space Reduction in NK(R, State)Π (u)

Symbolic State Space Reduction Theorem

Under the assumptions in pg. 7, let R/G be an equational abstraction
(resp. bisimilar equational abstraction) defining a Π-simulation (resp.
Π-bisimulation) map []E∪G∪B between K(R, State)Π and
K(R/G, State)Π. Then we have (see proof in Appendix 1):

Theorem

1 If []E∪G∪B is a Π-simulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇒ NK(R, State)Π(u), u |= ϕ.

2 If []E∪G∪B is a Π-bisimulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇔ NK(R, State)Π(u), u |= ϕ.

Furthermore, if ϕ a safety formula, the leftmost implication in (1) and
(2) becomes an equivalence.

Meseguer Lecture 24 8 / 13

State Space Reduction in NK(R, State)Π (u)

Symbolic State Space Reduction Theorem

Under the assumptions in pg. 7, let R/G be an equational abstraction
(resp. bisimilar equational abstraction) defining a Π-simulation (resp.
Π-bisimulation) map []E∪G∪B between K(R, State)Π and
K(R/G, State)Π. Then we have (see proof in Appendix 1):

Theorem

1 If []E∪G∪B is a Π-simulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇒ NK(R, State)Π(u), u |= ϕ.

2 If []E∪G∪B is a Π-bisimulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇔ NK(R, State)Π(u), u |= ϕ.

Furthermore, if ϕ a safety formula, the leftmost implication in (1) and
(2) becomes an equivalence.

Meseguer Lecture 24 8 / 13

State Space Reduction in NK(R, State)Π (u)

Symbolic State Space Reduction Theorem

Under the assumptions in pg. 7, let R/G be an equational abstraction
(resp. bisimilar equational abstraction) defining a Π-simulation (resp.
Π-bisimulation) map []E∪G∪B between K(R, State)Π and
K(R/G, State)Π. Then we have (see proof in Appendix 1):

Theorem

1 If []E∪G∪B is a Π-simulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇒ NK(R, State)Π(u), u |= ϕ.

2 If []E∪G∪B is a Π-bisimulation map, for each u and ϕ ∈ LTL(Π),

FNGΠ
R/G (u), u |= ϕ⇒ NK(R/G, State)Π(u), u |= ϕ⇔ NK(R, State)Π(u), u |= ϕ.

Furthermore, if ϕ a safety formula, the leftmost implication in (1) and
(2) becomes an equivalence.

Meseguer Lecture 24 8 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u)

(a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)

1 If no new nodes are added to the ≤ k under-approximation, FNGΠ
R(u)

has been actually generated! Then return true;
2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation

of FNGΠ
R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Bounded Narrowing-Based LTL Model Checking

• Construct a depth ≤ k under-approximation of the folding narrowing
graph (and Kripke structure) FNGΠ

R(u) (a more expensive, but more
accurate, version under-approximates NK(R, State)Π(u)).

Algorithm: Given a bound n, incrementally build a depth ≤ k
under-approximation of FNGΠ

R(u), increasing k ≤ n iteratively.

1 Apply a standard explicit-state LTL model checking algorithm to
verify ϕ in the depth ≤ k under-approximation of FNGΠ

R(u).
If a counterexample is found, stop and return the counterexample.

2 Suppose that there is no counterexample at depth ≤ k.

1 If k = n, stop and report that the model does not violate ϕ up to the
current bound n.

2 Otherwise, generate the depth ≤ k + 1 under-approximation of
FNGΠ

R(u)
1 If no new nodes are added to the ≤ k under-approximation, FNGΠ

R(u)
has been actually generated! Then return true;

2 Otherwise, go to Step 1 with the depth ≤ k + 1 under-approximation
of FNGΠ

R(u).

Meseguer Lecture 24 9 / 13

State Space Reduction in NK(R, State)Π (u)

Maude’s Logical LTL Model Checker Tool

• Maude’s Logical LTL Model Checker supports narrowing-based LTL
model checking with the techniques discussed in this lecture

https://maude.cs.uiuc.edu/tools/lmc/

See also the CS 476 web page for details on how to use the tool and
the tool’s manual with examples.

• Various LTL properties verified for examples such as:

1 Lamport’s Bakery protocol
2 Readers-Writers problem
3 Readers-Writers problem (simplified)
4 Dijkstra’s mutual exclusion algorithm
5 Burns’s mutual exclusion algorithm
6 Token ring mutual exclusion
7 Vending Machine example
8 Plotter example

Meseguer Lecture 24 10 / 13

State Space Reduction in NK(R, State)Π (u)

Maude’s Logical LTL Model Checker Tool

• Maude’s Logical LTL Model Checker supports narrowing-based LTL
model checking with the techniques discussed in this lecture
https://maude.cs.uiuc.edu/tools/lmc/

See also the CS 476 web page for details on how to use the tool and
the tool’s manual with examples.

• Various LTL properties verified for examples such as:

1 Lamport’s Bakery protocol
2 Readers-Writers problem
3 Readers-Writers problem (simplified)
4 Dijkstra’s mutual exclusion algorithm
5 Burns’s mutual exclusion algorithm
6 Token ring mutual exclusion
7 Vending Machine example
8 Plotter example

Meseguer Lecture 24 10 / 13

State Space Reduction in NK(R, State)Π (u)

Maude’s Logical LTL Model Checker Tool

• Maude’s Logical LTL Model Checker supports narrowing-based LTL
model checking with the techniques discussed in this lecture
https://maude.cs.uiuc.edu/tools/lmc/

See also the CS 476 web page for details on how to use the tool and
the tool’s manual with examples.

• Various LTL properties verified for examples such as:

1 Lamport’s Bakery protocol
2 Readers-Writers problem
3 Readers-Writers problem (simplified)
4 Dijkstra’s mutual exclusion algorithm
5 Burns’s mutual exclusion algorithm
6 Token ring mutual exclusion
7 Vending Machine example
8 Plotter example

Meseguer Lecture 24 10 / 13

State Space Reduction in NK(R, State)Π (u)

Maude’s Logical LTL Model Checker Tool

• Maude’s Logical LTL Model Checker supports narrowing-based LTL
model checking with the techniques discussed in this lecture
https://maude.cs.uiuc.edu/tools/lmc/

See also the CS 476 web page for details on how to use the tool and
the tool’s manual with examples.

• Various LTL properties verified for examples such as:

1 Lamport’s Bakery protocol
2 Readers-Writers problem
3 Readers-Writers problem (simplified)
4 Dijkstra’s mutual exclusion algorithm
5 Burns’s mutual exclusion algorithm
6 Token ring mutual exclusion
7 Vending Machine example
8 Plotter example

Meseguer Lecture 24 10 / 13

State Space Reduction in NK(R, State)Π (u)

Maude’s Logical LTL Model Checker Tool

• Maude’s Logical LTL Model Checker supports narrowing-based LTL
model checking with the techniques discussed in this lecture
https://maude.cs.uiuc.edu/tools/lmc/

See also the CS 476 web page for details on how to use the tool and
the tool’s manual with examples.

• Various LTL properties verified for examples such as:

1 Lamport’s Bakery protocol
2 Readers-Writers problem
3 Readers-Writers problem (simplified)
4 Dijkstra’s mutual exclusion algorithm
5 Burns’s mutual exclusion algorithm
6 Token ring mutual exclusion
7 Vending Machine example
8 Plotter example

Meseguer Lecture 24 10 / 13

State Space Reduction in NK(R, State)Π (u)

Output 1/3: Bounded Model Checking without Folding

K. Bae, S. Escobar, and J. Meseguer 13

5 The Maude LTL Logical Model Checker and Examples

This section illustrates the Maude LTL logical model checker (LMC) tool with two examples.
This tool uses the existing narrowing framework in Full Maude to compute narrowing ;‡,R,E

[12]. However, for e�ciency reasons, the core algorithms for the folding graph construction
and the LTL model checking are implemented at the C++ level within the Maude system.
For the LBMC algorithm, we apply an on-the-fly technique to reuse the previously generated
states for the next step. The Maude LTL LMC tool and a number of other examples can be
found in http://formal.cs.illinois.edu/kbae/lmc.

Our tool provides the following two commands for logical model checking an LTL formula
Ï from an initial state t with the maximum bound n œ N:

(lmc [n] t |= Ï .) and (lfmc [n] t |= Ï .)

This bound n limits the depth of the k-step folding graph Reach4,k
NAP
R

([t]E) from an initial state
[t]E œ NAP

R . Each command uses a di�erent folding relation 4 : the renaming equivalence
¥E for the lmc command, and the subsumption 4E for the lfmc command. If a bound n is
not specified in the command, infinity is considered as the bound.

5.1 The Bakery Algorithm Revisited
The following command partially verifies that the mutual execution ⇤ex? is satisfied from
any initial state with the pattern N ; N ; IS:ProcIdleSet within the bound 10:
Maude > (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical model check in BAKERY -SATISFACTION :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

no counterexample found within bound 10

This model checking command does not terminate if the bound is not specified, since ¥E is
not strong enough to collapse the reachable transition system to a finite one. The bound
should be specified to ensure the termination even with 4E , since, as already shown in
Figure 4, for such a logical initial state the folding logical approximation is infinite:
Maude > (lfmc [50] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY -SATISFACTION :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

no counterexample found within bound 50

Instead, when the subsumption 4E is applied, with the bisimilar equational abstraction
shown in Section 3.3, the mutual exclusion property ⇤ex? can be verified from the initial
pattern N ; N ; IS:ProcIdleSet as follows,1 where, as shown in Figure 5, five logical states
are generated in less than one second on an Intel Core i5 2.4 GHz with 4GB RAM:
Maude > (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY -SATISFACTION -ABS :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

true

1 Note that the module BAKERY-SATISFACTION-ABS extends the previous module BAKERY-SATISFACTION
with the abstraction equation in Section 3.3.

N ; N ; IS

IS/IS1 [idle]

��

s s N ; N ; IS2 [wait(N)]
[wait(s N)]

IS2/IS3 [idle]

��

s s s s N ; N ; IS4 [wait(N)] [wait(s N]
[wait(s s N)] [wait(s s s N)]

IS4/IS5 [idle]

��
s N ; N ; IS1
[wait(N)]

IS1/IS2 [idle]

>>

s s s N ; N ; IS3 [wait(N)]
[wait(s N] [wait(s s N)]

IS3/IS4 [idle]

77

· · ·

Meseguer Lecture 24 11 / 13

State Space Reduction in NK(R, State)Π (u)

Output 2/3: Bounded Model Checking with Folding

K. Bae, S. Escobar, and J. Meseguer 13

5 The Maude LTL Logical Model Checker and Examples

This section illustrates the Maude LTL logical model checker (LMC) tool with two examples.
This tool uses the existing narrowing framework in Full Maude to compute narrowing ;‡,R,E

[12]. However, for e�ciency reasons, the core algorithms for the folding graph construction
and the LTL model checking are implemented at the C++ level within the Maude system.
For the LBMC algorithm, we apply an on-the-fly technique to reuse the previously generated
states for the next step. The Maude LTL LMC tool and a number of other examples can be
found in http://formal.cs.illinois.edu/kbae/lmc.

Our tool provides the following two commands for logical model checking an LTL formula
Ï from an initial state t with the maximum bound n œ N:

(lmc [n] t |= Ï .) and (lfmc [n] t |= Ï .)

This bound n limits the depth of the k-step folding graph Reach4,k
NAP
R

([t]E) from an initial state
[t]E œ NAP

R . Each command uses a di�erent folding relation 4 : the renaming equivalence
¥E for the lmc command, and the subsumption 4E for the lfmc command. If a bound n is
not specified in the command, infinity is considered as the bound.

5.1 The Bakery Algorithm Revisited
The following command partially verifies that the mutual execution ⇤ex? is satisfied from
any initial state with the pattern N ; N ; IS:ProcIdleSet within the bound 10:
Maude > (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical model check in BAKERY -SATISFACTION :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

no counterexample found within bound 10

This model checking command does not terminate if the bound is not specified, since ¥E is
not strong enough to collapse the reachable transition system to a finite one. The bound
should be specified to ensure the termination even with 4E , since, as already shown in
Figure 4, for such a logical initial state the folding logical approximation is infinite:
Maude > (lfmc [50] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY -SATISFACTION :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

no counterexample found within bound 50

Instead, when the subsumption 4E is applied, with the bisimilar equational abstraction
shown in Section 3.3, the mutual exclusion property ⇤ex? can be verified from the initial
pattern N ; N ; IS:ProcIdleSet as follows,1 where, as shown in Figure 5, five logical states
are generated in less than one second on an Intel Core i5 2.4 GHz with 4GB RAM:
Maude > (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY -SATISFACTION -ABS :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

true

1 Note that the module BAKERY-SATISFACTION-ABS extends the previous module BAKERY-SATISFACTION
with the abstraction equation in Section 3.3.

N ; N ; IS

IS/IS1 [idle]

��

s s N ; N ; IS2 [wait(N)]
[wait(s N)]

IS2/IS3 [idle]

��

s s s s N ; N ; IS4 [wait(N)] [wait(s N]
[wait(s s N)] [wait(s s s N)]

IS4/IS5 [idle]

��
s N ; N ; IS1
[wait(N)]

IS1/IS2 [idle]

>>

s s s N ; N ; IS3 [wait(N)]
[wait(s N] [wait(s s N)]

IS3/IS4 [idle]

77

· · ·

Meseguer Lecture 24 12 / 13

State Space Reduction in NK(R, State)Π (u)

Output 3/3: Unbounded Model Checking with a Bisimilar
Equational Abstraction

K. Bae, S. Escobar, and J. Meseguer 13

5 The Maude LTL Logical Model Checker and Examples

This section illustrates the Maude LTL logical model checker (LMC) tool with two examples.
This tool uses the existing narrowing framework in Full Maude to compute narrowing ;‡,R,E

[12]. However, for e�ciency reasons, the core algorithms for the folding graph construction
and the LTL model checking are implemented at the C++ level within the Maude system.
For the LBMC algorithm, we apply an on-the-fly technique to reuse the previously generated
states for the next step. The Maude LTL LMC tool and a number of other examples can be
found in http://formal.cs.illinois.edu/kbae/lmc.

Our tool provides the following two commands for logical model checking an LTL formula
Ï from an initial state t with the maximum bound n œ N:

(lmc [n] t |= Ï .) and (lfmc [n] t |= Ï .)

This bound n limits the depth of the k-step folding graph Reach4,k
NAP
R

([t]E) from an initial state
[t]E œ NAP

R . Each command uses a di�erent folding relation 4 : the renaming equivalence
¥E for the lmc command, and the subsumption 4E for the lfmc command. If a bound n is
not specified in the command, infinity is considered as the bound.

5.1 The Bakery Algorithm Revisited
The following command partially verifies that the mutual execution ⇤ex? is satisfied from
any initial state with the pattern N ; N ; IS:ProcIdleSet within the bound 10:
Maude > (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical model check in BAKERY -SATISFACTION :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

no counterexample found within bound 10

This model checking command does not terminate if the bound is not specified, since ¥E is
not strong enough to collapse the reachable transition system to a finite one. The bound
should be specified to ensure the termination even with 4E , since, as already shown in
Figure 4, for such a logical initial state the folding logical approximation is infinite:
Maude > (lfmc [50] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY -SATISFACTION :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

no counterexample found within bound 50

Instead, when the subsumption 4E is applied, with the bisimilar equational abstraction
shown in Section 3.3, the mutual exclusion property ⇤ex? can be verified from the initial
pattern N ; N ; IS:ProcIdleSet as follows,1 where, as shown in Figure 5, five logical states
are generated in less than one second on an Intel Core i5 2.4 GHz with 4GB RAM:
Maude > (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY -SATISFACTION -ABS :

N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?
result:

true

1 Note that the module BAKERY-SATISFACTION-ABS extends the previous module BAKERY-SATISFACTION
with the abstraction equation in Section 3.3.

N ; N ; IS
IS/IS1 [idle]

// s N; N ; IS1 [wait(N)]

IS1/IS2 [idle]

��

// s N; N ; IS1 [crit(N)]
ss

s s N; N ; IS2 [wait(N)] [wait(s N)]IS2/IS3 [idle]
%% // s s N; N ; IS2 [crit(N)] [wait(s N)]

jj

Meseguer Lecture 24 13 / 13

	Narrowing-Based Symbolic LTL Model Checking
	State Space Reduction in NK(R, State)(u)

