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Theorem 1. For each ϕ P LTLpΠq and pattern term u such that satisfaction of Π-predicates is
defined in u, if NKpR,StateqΠpuq, u |ù ϕ, then @ρ P rvarspuq Ñ TΣs, KpR,StateqΠ, ruρs |ù ϕ.

Proof: Since R is deadlock-free, all paths from each ground instance ruρs are non-terminating
paths. Likewise, by the assumption that if pl Ñ rq P R, then l, r P TΣpXqzX, the deadlock
freedom of R, and the Lifting Lemma for R,pEYBq, there are no finite, terminating narrowing
paths from u in the narrowing tree of u, and, likewise, no such paths in NKpR,StateqΠpuq.
We will be done if we prove that the set of traces associated to  Π-narrowing paths from u
in NKpR,StateqΠpuq contains the set of all traces from ruρs in R for all ρ P rvarspuq Ñ TΣs.
This follows from the following Lifting Lemma for  Π.

Lemma (Lifting Lemma for  Π). For any v P NKpR,StateqΠpuq and ground substitution ρ

such that rvρs ÑR{EYB rws, there is a  Π-narrowing step v
αγ
 Π w1 and a ground substitution

τ such that rws “ rw1τ s. Furthermore, v and rvρs (resp. w1 and rw1τ s) satisfy the exact same
predicates in Π.

Proof: By the Lifting Lemma for  R,pEYBq, there is a narrowing step v
α

 R,pEYBq w
1
0 and

a ground substitution τ0 such that rw10τ0s “ rws. Let bi be such that rws |ù pi “ bi for each
pi P Π. Then, τ0 is a E YD YB-unifier of the system of equations

Ź

piPΠ
w10 |ù bi. Therefore,

there must be a E Y D Y B-unifier γ and a ground substitution τ such that, γτ “EYB τ0,
so that for w1 “def w

1
0γ, we have v

αγ
 Π w1, and rw10γτ s “ rw

1τ s “ rws, as desired. And, by
construction, v and rvρs (resp. w1 and rw1τ s) satisfy the exact same predicates in Π. l

Since we may assume without any loss of generality that in an infinite Π-narrowing path

p:q u Π u1  Π u2 . . . un  Π un`1 . . .

the variables of ui and uj with i “ j are disjoint (including u0 “def u), it follows easily from
the Lifting Lemma for  Π that for any ground infinite path

p;q ruτ s ÑR{EYB rv1s ÑR{EYB rv2s . . . rvns ÑR{EYB rvn`1s . . .

having a Π-narrowing path of the form p:q as its lifting, there is a ground substitution τ e

extending τ such that runτ
es “ rvns for each n ě 1. Therefore, all traces from ground

instances of u are also traces of infinite Π-narrowing paths from u. This finishes the proof of
the theorem. l

Theorem 2. If f : AÑ B is a Π-simulation (resp. Π-bisimulation) map of Kripke structures
over Π, then, for any a P A and ϕ P LTLpΠq,

B, fpaq |ù ϕ ñ presp. ôq A, a |ù ϕ.
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Proof: Let us prove the pñq implication when f : A Ñ B is a Π-simulation map. Each π P
PathpAqa yields a path π; f P PathpBqfpaq having the exact same trace. Therefore, B, fpaq |ù ϕ
forces A, a |ù ϕ, as desired. Let us now prove the pðq implication when f : A Ñ B is a Π-
bisimulation map. Suppose this implication fails, so that A, a |ù ϕ but B, fpaq |ù ϕ. This
means that there is a path π1 P PathpBqfpaq such that π1 |ù ϕ. But, since f is a bisimulation
map, there exists a path π P PathpAqa with exact same trace as π1 such that π; f “ π1. But
since A, a |ù ϕ we must have π1 |ù ϕ, contradicting π1 |ù ϕ. l

Theorem 3.

1. If r sEYGYB is a Π-simulation map, for each u and ϕ P LTLpΠq,

FNGΠ
R{Gpuq, u |ù ϕ ñ NKpR{G,StateqΠpuq, u |ù ϕ ñ NKpR,StateqΠpuq, u |ù ϕ.

2. If r sEYGYB is a Π-bisimulation map, for each u and ϕ P LTLpΠq,

FNGΠ
R{Gpuq, u |ù ϕ ñ NKpR{G,StateqΠpuq, u |ù ϕ ô NKpR,StateqΠpuq, u |ù ϕ.

Furthermore, if ϕ a safety formula, the leftmost implication in (1) and (2) becomes an equiv-
alence.

Proof: In both (1) and (2), the leftmost implication follows from Theorem 8 in Appendix 2;
and for ϕ a safety formula, the leftmost equivalence follows from Theorem 12 in Appendix 2.
The rightmost implication in (1) (resp. rightmost equivalence in (2)) follows form the fist part
(resp. second part) of Theorem 2. l

2


