Program Verification: Lecture 25

José Meseguer University of Illinois at Urbana-Champaign

Given two transition systems $\mathcal{A} = (A, \rightarrow_{\mathcal{A}})$ and $\mathcal{B} = (B, \rightarrow_{\mathcal{B}})$, a simulation map f from \mathcal{A} to \mathcal{B} , denoted $f : \mathcal{A} \rightarrow \mathcal{B}$, is a function $f : A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_{\mathcal{A}} a'$ in \mathcal{A} is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

Given two transition systems $\mathcal{A} = (A, \rightarrow_{\mathcal{A}})$ and $\mathcal{B} = (B, \rightarrow_{\mathcal{B}})$, a simulation map f from \mathcal{A} to \mathcal{B} , denoted $f : \mathcal{A} \rightarrow \mathcal{B}$, is a function $f : A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_{\mathcal{A}} a'$ in \mathcal{A} is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

A simulation map $f : A \to B$ is called a bisimulation iff, in addition, for any state of the form $f(a) \in B$ and any transition $f(a) \to_B b$ there exists and $a' \in A$ and transition $a \to_A a'$ such that f(a') = b.

Given two transition systems $\mathcal{A} = (A, \rightarrow_{\mathcal{A}})$ and $\mathcal{B} = (B, \rightarrow_{\mathcal{B}})$, a simulation map f from \mathcal{A} to \mathcal{B} , denoted $f : \mathcal{A} \rightarrow \mathcal{B}$, is a function $f : A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_{\mathcal{A}} a'$ in \mathcal{A} is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

A simulation map $f : \mathcal{A} \to \mathcal{B}$ is called a bisimulation iff, in addition, for any state of the form $f(a) \in B$ and any transition $f(a) \to_{\mathcal{B}} b$ there exists and $a' \in A$ and transition $a \to_{\mathcal{A}} a'$ such that f(a') = b.

Given a transition system $\mathcal{A} = (A, \rightarrow_{\mathcal{A}})$ and subsets $U, V \subseteq A$, we are interested in the reachability property:

$$\exists x \in U, \ \exists y \in V, \ x \to^*_{\mathcal{A}} y$$

which we abbreviate to $\exists U \to^* V$. If this property holds for specific $U, V \subseteq A$ we write: $\mathcal{A} \models \exists U \to^* V$.

Given two transition systems $\mathcal{A} = (A, \rightarrow_{\mathcal{A}})$ and $\mathcal{B} = (B, \rightarrow_{\mathcal{B}})$, a simulation map f from \mathcal{A} to \mathcal{B} , denoted $f : \mathcal{A} \rightarrow \mathcal{B}$, is a function $f : A \rightarrow B$ that is "transition preserving" in the sense that any transition $a \rightarrow_{\mathcal{A}} a'$ in \mathcal{A} is mapped by f to a corresponding transition $f(a) \rightarrow_{\mathcal{B}} f(a')$ in \mathcal{B} .

A simulation map $f : \mathcal{A} \to \mathcal{B}$ is called a bisimulation iff, in addition, for any state of the form $f(a) \in B$ and any transition $f(a) \to_{\mathcal{B}} b$ there exists and $a' \in A$ and transition $a \to_{\mathcal{A}} a'$ such that f(a') = b.

Given a transition system $\mathcal{A} = (A, \rightarrow_{\mathcal{A}})$ and subsets $U, V \subseteq A$, we are interested in the reachability property:

$$\exists x \in U, \ \exists y \in V, \ x \to^*_{\mathcal{A}} y$$

which we abbreviate to $\exists U \to^* V$. If this property holds for specific $U, V \subseteq A$ we write: $\mathcal{A} \models \exists U \to^* V$. Note that $\mathcal{A} \not\models \exists U \to^* V$ iff $\forall x \in U, \forall y \in V, x \not\rightarrow^*_{\mathcal{A}} y$ holds in \mathcal{A} , abbreviated $\mathcal{A} \models \forall U \not\rightarrow^* V$.

The proofs of these two theorems are given in the Appendix.

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f : A \to B$ be a simulation map, then for any $U, V \subseteq A$, $A \models \exists U \to^* V$ implies $B \models \exists f(U) \to^* f(V)$. Equivalently, $B \models \forall f(U) \not\to^* f(V)$ implies $A \models \forall U \not\to^* V$.

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f : A \to B$ be a simulation map, then for any $U, V \subseteq A$, $A \models \exists U \to^* V$ implies $B \models \exists f(U) \to^* f(V)$. Equivalently, $B \models \forall f(U) \not\to^* f(V)$ implies $A \models \forall U \not\to^* V$.

Theorem

Let $f : \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ iff $\mathcal{B} \models \forall f(U) \not\to^* f(V)$.

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f : A \to B$ be a simulation map, then for any $U, V \subseteq A$, $A \models \exists U \to^* V$ implies $B \models \exists f(U) \to^* f(V)$. Equivalently, $B \models \forall f(U) \not\to^* f(V)$ implies $A \models \forall U \not\to^* V$.

Theorem

Let $f : \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ iff $\mathcal{B} \models \forall f(U) \not\to^* f(V)$.

Note the for $U, I \subseteq A$, I is an invariant from U iff $A \models \forall U \not\rightarrow^* A \setminus I$. Thus, we can verify the invariant by proving $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(A \setminus I)$.

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f : A \to B$ be a simulation map, then for any $U, V \subseteq A$, $A \models \exists U \to^* V$ implies $B \models \exists f(U) \to^* f(V)$. Equivalently, $B \models \forall f(U) \not\to^* f(V)$ implies $A \models \forall U \not\to^* V$.

Theorem

Let $f : \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ iff $\mathcal{B} \models \forall f(U) \not\to^* f(V)$.

Note the for $U, I \subseteq A$, I is an invariant from U iff $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$. Thus, we can verify the invariant by proving $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(A \setminus I)$. But we could have $\mathcal{B} \models \exists f(U) \rightarrow^* f(A \setminus I)$, while $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$ (spurious counterexample).

The proofs of these two theorems are given in the Appendix.

Theorem

Let $f : A \to B$ be a simulation map, then for any $U, V \subseteq A$, $A \models \exists U \to^* V$ implies $B \models \exists f(U) \to^* f(V)$. Equivalently, $B \models \forall f(U) \not\to^* f(V)$ implies $A \models \forall U \not\to^* V$.

Theorem

Let $f : \mathcal{A} \to \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A$, $\mathcal{A} \models \exists U \to^* V$ iff $\mathcal{B} \models \exists f(U) \to^* f(V)$. Equivalently, $\mathcal{A} \models \forall U \not\to^* V$ iff $\mathcal{B} \models \forall f(U) \not\to^* f(V)$.

Note the for $U, I \subseteq A$, I is an invariant from U iff $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$. Thus, we can verify the invariant by proving $\mathcal{B} \models \forall f(U) \not\rightarrow^* f(A \setminus I)$. But we could have $\mathcal{B} \models \exists f(U) \rightarrow^* f(A \setminus I)$, while $\mathcal{A} \models \forall U \not\rightarrow^* A \setminus I$ (spurious counterexample). However, if f is a bisimulation no spurious counterexamples can exist.

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} .

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} . Specifically, we can add more equations, say $G = E' \cup B'$ to \mathcal{R} to identify more states.

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} . Specifically, we can add more equations, say $G = E' \cup B'$ to \mathcal{R} to identify more states. We then call the resulting rewrite theory $(\Sigma, E \cup B \cup G, R)$ an equational abstraction of \mathcal{R} , denoted \mathcal{R}/G .

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} . Specifically, we can add more equations, say $G = E' \cup B'$ to \mathcal{R} to identify more states. We then call the resulting rewrite theory $(\Sigma, E \cup B \cup G, R)$ an equational abstraction of \mathcal{R} , denoted \mathcal{R}/G .

The following theorem follows trivially from the fact that if $t \rightarrow_{R/E \cup B} t'$, then, a fortiori, $t \rightarrow_{R/E \cup B \cup G} t'$.

Simulation and bisimulation maps can be very useful to verify properties of concurrent systems specified as (not necessarily topmost) rewrite theories $\mathcal{R} = (\Sigma, E \cup B, R)$, not by reasoning directly on \mathcal{R} , but by shifting our ground and reasoning on a quotient of \mathcal{R} . Specifically, we can add more equations, say $G = E' \cup B'$ to \mathcal{R} to identify more states. We then call the resulting rewrite theory $(\Sigma, E \cup B \cup G, R)$ an equational abstraction of \mathcal{R} , denoted \mathcal{R}/G .

The following theorem follows trivially from the fact that if $t \rightarrow_{R/E \cup B} t'$, then, a fortiori, $t \rightarrow_{R/E \cup B \cup G} t'$.

Theorem

Given a rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$, Σ -equations $G = E' \cup B'$, and a top sort State, the unique surjective Σ -homomorphism $[_]_{E \cup B \cup G} : \mathbb{T}_{\Sigma/E \cup B} \to \mathbb{T}_{\Sigma/E \cup B \cup G}$ induces a simulation map $[_]_{E \cup B \cup G} : (T_{\Sigma/E \cup B, State}, \rightarrow_{R/E \cup B}) \to (T_{\Sigma/E \cup B \cup G, State}, \rightarrow_{R/E \cup B \cup G}).$

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction \mathcal{R}/G .

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction \mathcal{R}/G .

I refer to §12.4 and §13.4 of *All About Maude* for further details on the use of equational abstraction for explicit-state model checking of (respectively) invariants and LTL properties.

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction \mathcal{R}/G .

I refer to §12.4 and §13.4 of *All About Maude* for further details on the use of equational abstraction for explicit-state model checking of (respectively) invariants and LTL properties.

In what follows we shall focus on the use of equational abstractions for symbolic model checking. Therefore, I will assume a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ such that $E \cup B$ is FVP. We shall then be interested in equational abstractions of the form \mathcal{R}/G , where $G = E' \cup B'$ is such that $E \cup E' \cup B \cap B'$ is also FVP modulo $B \cap B'$.

Equational abstractions can make the set of reachable states from an initial state *init* finite. In this way, invariants and, more generally, LTL properties that cannot be verified by explicit-state model checking can be verified using an equational abstraction \mathcal{R}/G .

I refer to §12.4 and §13.4 of *All About Maude* for further details on the use of equational abstraction for explicit-state model checking of (respectively) invariants and LTL properties.

In what follows we shall focus on the use of equational abstractions for symbolic model checking. Therefore, I will assume a topmost rewrite theory $\mathcal{R} = (\Sigma, E \cup B, R)$ such that $E \cup B$ is FVP. We shall then be interested in equational abstractions of the form \mathcal{R}/G , where $G = E' \cup B'$ is such that $E \cup E' \cup B \cap B'$ is also FVP modulo $B \cap B'$.

Since for each pattern term with variables p, the quotient homomorphism $[_]_{E\cup B\cup G} : \mathbb{T}_{\Sigma/E\cup B}(X) \to \mathbb{T}_{\Sigma/E\cup B\cup G}(X)$ maps each $[p]_{E\cup B}$ to $[p]_{E\cup B\cup G}$, p in \mathcal{R}/G just describes the image under $[_]_{E\cup B\cup G}$ of p in \mathcal{R} as the symbolic description of the set $[\![p]\!]_{\mathcal{R}}$ of all $E \cup B$ -equivalence classes of ground instances of p, which is just $[\![p]\!]_{\mathcal{R}/G}$.

In particular, if the complement of an invariant I in \mathcal{R} is symbolically described by a finite set of pattern terms p_1, \ldots, p_k , in case the symbolic state space to reach an instance of some p_i from a symbolic initial state u is infinite, we can use a topmost equational abstraction \mathcal{R}/G whose equations are FVP to try to make the symbolic search space finite.

In particular, if the complement of an invariant I in \mathcal{R} is symbolically described by a finite set of pattern terms p_1, \ldots, p_k , in case the symbolic state space to reach an instance of some p_i from a symbolic initial state u is infinite, we can use a topmost equational abstraction \mathcal{R}/G whose equations are FVP to try to make the symbolic search space finite.

Then, by the first Theorem in pg. 3 of this 3 of this lecture, we can use symbolic model checking from a symbolic initial state u to show in \mathcal{R}/G that $\forall u \not\to^* p_i$, $1 \le i \le k$. However, in some cases we might get some spurious counterexample.

In particular, if the complement of an invariant I in \mathcal{R} is symbolically described by a finite set of pattern terms p_1, \ldots, p_k , in case the symbolic state space to reach an instance of some p_i from a symbolic initial state u is infinite, we can use a topmost equational abstraction \mathcal{R}/G whose equations are FVP to try to make the symbolic search space finite.

Then, by the first Theorem in pg. 3 of this 3 of this lecture, we can use symbolic model checking from a symbolic initial state u to show in \mathcal{R}/G that $\forall u \not\to^* p_i$, $1 \le i \le k$. However, in some cases we might get some spurious counterexample.

But by the second Theorem in page 3 of this lecture, no spurious counterexamples will exist if the homomorphism $[_]_{E\cup B\cup G} : \mathbb{T}_{\Sigma/E\cup B} \to \mathbb{T}_{\Sigma/E\cup B\cup G}$ actually defines a bisimulation. I shall focus on bisimulations in what follows.

Bisimilar Equational Abstractions

We say that an equational abstraction \mathcal{R}/G defines an bisimilar equational abstraction of \mathcal{R} iff the simulation map

$$[-]_{E\cup B\cup G}: (T_{\Sigma/E\cup B,State}, \rightarrow_{R/E\cup B}) \rightarrow (T_{\Sigma/E\cup B\cup G,State}, \rightarrow_{R/E\cup B\cup G})$$

is actually a bisimulation.

Bisimilar Equational Abstractions

We say that an equational abstraction \mathcal{R}/G defines an bisimilar equational abstraction of \mathcal{R} iff the simulation map

$$[_]_{E\cup B\cup G}: (T_{\Sigma/E\cup B,State}, \rightarrow_{R/E\cup B}) \rightarrow (T_{\Sigma/E\cup B\cup G,State}, \rightarrow_{R/E\cup B\cup G})$$

is actually a bisimulation. We are interested in finding checkable conditions ensuring that G defines a bisimilar equational abstraction. See the Appendix for a proof of the following theorem:

Bisimilar Equational Abstractions

We say that an equational abstraction \mathcal{R}/G defines an bisimilar equational abstraction of \mathcal{R} iff the simulation map

$$[_]_{E\cup B\cup G}: (T_{\Sigma/E\cup B,State}, \rightarrow_{R/E\cup B}) \rightarrow (T_{\Sigma/E\cup B\cup G,State}, \rightarrow_{R/E\cup B\cup G})$$

is actually a bisimulation. We are interested in finding checkable conditions ensuring that G defines a bisimilar equational abstraction. See the Appendix for a proof of the following theorem:

Theorem

Let $\mathcal{R} = (\Sigma, E \cup B, R)$ be a topmost rewrite theory such that $G = E \cup B$ is FVP, and $G' = E' \cup B'$ is such that $E \cup E' \cup B \cup B'$ is FVP modulo $B \cup B'$. \mathcal{R}/G' defines a bisimilar equational abstraction of \mathcal{R} if for each $(u_0^i = u_1^i) \in G', 1 \le i \le p$, and $(t_0^j \to t_1^j) \in R, 1 \le j \le q$, and each $\sigma \in Unif_G(t_{b'}^j = u_b^i), 0 \le b \le 1, 0 \le b' \le 1$, there exists a θ such that $u_{b'\oplus 1}^i \sigma =_G t_b^j \theta \land t_{b\oplus 1}^j \theta =_G t_{b\oplus 1}^j \sigma$, where \oplus denotes exclusive or.

Bakery Algorithm: Infinite-State for some Initial States

(Infinite Folding Logical Transition System : infinite initial state - infinite state space)

Bakery Algorithm: Infinite-State for some Initial States

(Infinite Folding Logical Transition System : infinite initial state - infinite state space)

- Many verification problems for infinite-state systems are due to unbounded number of processes
- All approaches use a symbolic finite representation of an infinite number of processes
- Bisimulation proofs written by hand or hard to reuse

An Equational Abstraction of the Bakery Algorithm

• For our bakery protocol we can obtain a bisimilar equational abstraction by restricting the abstraction only to the following equation G', which intuitively collapses extra waiting processes that does not introduce any new behaviors:

An Equational Abstraction of the Bakery Algorithm

• For our bakery protocol we can obtain a bisimilar equational abstraction by restricting the abstraction only to the following equation G', which intuitively collapses extra waiting processes that does not introduce any new behaviors:

• G': eq (sssLM) ; M ; PS₀ [wait(sLM)] [wait(ssLM)] = (ssLM) ; M ; PS₀ [wait(sLM)] .

