Appendix to Lecture 25

J. Meseguer

Theorem. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a simulation map, then for any $U, V \subseteq A, \mathcal{A} \models \exists U \rightarrow{ }^{*} V$ implies $\mathcal{B} \models \exists f(U) \rightarrow{ }^{*} f(V)$. Equivalently, $\mathcal{B} \models \forall f(U) \rightarrow{ }^{*} f(V)$ implies $\mathcal{A} \models \forall U \rightarrow{ }^{*} V$.

Proof: $\mathcal{A} \models \exists U \rightarrow^{*} V$ just means that $\exists a \in U, \exists a^{\prime} \in V, a \rightarrow_{\mathcal{A}}^{*} a^{\prime}$. But, since f is a simulation, this forces $f(a) \rightarrow_{\mathcal{B}}^{*} f\left(a^{\prime}\right)$, i.e., $\mathcal{B} \models \exists f(U) \rightarrow^{*} f(V)$.

Theorem. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a bisimulation map, then for any $U, V \subseteq A, \mathcal{A} \models \exists U \rightarrow{ }^{*} V$ iff $\mathcal{B} \models \exists f(U) \rightarrow^{*} f(V)$. Equivalently, $\mathcal{A} \models \forall U \rightarrow^{*} V$ iff $\mathcal{B} \models \forall f(U) \rightarrow^{*} f(V)$.

Proof: Taking into account the previous theorem, we just need to prove that $\mathcal{B} \models \exists f(U) \rightarrow^{*}$ $f(V)$ implies $\mathcal{A} \models \exists U \rightarrow^{*} V$. But $\mathcal{B} \models \exists f(U) \rightarrow^{*} f(V)$ means that $\exists a \in U, \exists a^{\prime} \in V, f(a) \rightarrow_{\mathcal{B}}^{*}$ $f\left(a^{\prime}\right)$, and f being a bisimulation then forces $a \rightarrow_{\mathcal{A}}^{*} a^{\prime}$, giving us $\mathcal{A} \models \exists U \rightarrow^{*} V$, as desired.

Theorem. Let $\mathcal{R}=(\Sigma, E \cup B, R)$ be a topmost rewrite theory such that $G=E \cup B$ is FVP, and $G^{\prime}=E^{\prime} \cup B^{\prime}$ is such that $E \cup E^{\prime} \cup B \cup B^{\prime}$ is FVP modulo $B \cup B^{\prime}$. \mathcal{R} / G^{\prime} defines a bisimilar equational abstraction of \mathcal{R} if for each $\left(u_{0}^{i}=u_{1}^{i}\right) \in G^{\prime}, 1 \leqslant i \leqslant p$, and $\left(t_{0}^{j} \rightarrow t_{1}^{j}\right) \in R$, $1 \leqslant j \leqslant q$, and each $\sigma \in \operatorname{Unif}_{G}\left(t_{b^{\prime}}^{j}=u_{b}^{i}\right), 0 \leqslant b \leqslant 1,0 \leqslant b^{\prime} \leqslant 1$, there exists a θ such that $u_{b^{\prime} \oplus 1}^{i} \sigma={ }_{G} t_{b}^{j} \theta \wedge t_{b \oplus 1}^{j} \theta={ }_{G} t_{b \oplus 1}^{j} \sigma$, where \oplus denotes exclusive or .

Proof: It will be enough to show that for all $j, 1 \leqslant j \leqslant q$, and for any $R / G \cup G^{\prime}$ rewrite of the form $w={ }_{G \cup G^{\prime}} t_{0}^{j} \rho \rightarrow t_{1}^{j} \rho={ }_{G \cup G^{\prime}} w^{\prime}$ there is a R / G rewrite of the form $w={ }_{G} t_{0}^{j} \rho^{\prime} \rightarrow t_{1}^{j} \rho^{\prime}={ }_{G} w^{\prime}$. The proof is by contradiction. Suppose not. Then, we can choose a specific $k, 1 \leqslant k \leqslant q$, and an $R / G \cup G^{\prime}$ rewrite $w={ }_{G \cup G^{\prime}} t_{0}^{k} \rho \rightarrow t_{1}^{k} \rho={ }_{G \cup G^{\prime}} w^{\prime}$ for which no R / G rewrite of the form $w={ }_{G} t_{0}^{k} \rho^{\prime} \rightarrow t_{i}^{k} \rho^{\prime}={ }_{G} w^{\prime}$ exists and, furthermore, if n_{l} are the G^{\prime} equality steps in $w={ }_{G \cup G^{\prime}} t_{0}^{k} \rho$ and n_{r} are the G^{\prime} equality steps in $t_{1}^{k} \rho={ }_{G \cup G^{\prime}} w^{\prime}$, then $n_{l}+n_{r}$ is smallest possible so that no R / G rewrite of the form $w={ }_{G} t_{0}^{k} \rho^{\prime} \rightarrow t_{1}^{k} \rho^{\prime}={ }_{G} w^{\prime}$ exists. Without loss of generality we may assume that $\operatorname{vars}\left(G^{\prime}\right) \cap \operatorname{vars}(R)=\varnothing$ and that $n_{l}>0$ (the case $n_{r}>0$ is entirely analogous). Therefore, the proof $w=_{G \cup G^{\prime}} t_{0}^{k}$ can be decomposed as a proof of the form $w={ }_{G \cup G^{\prime}} u_{b \oplus 1}^{k^{\prime}} \tau=u_{b}^{k^{\prime}} \tau={ }_{G} t_{0}^{k} \rho$ for some $k^{\prime}, 1 \leqslant k^{\prime} \leqslant p$, and τ, with $w={ }_{G \cup G^{\prime}} u_{b \oplus 1}^{k^{\prime}} \tau$ involving $n_{l}-1 G^{\prime}$ equality steps. But then $\tau \uplus \rho$ is a G-unifier of the equation $u_{b}^{k^{\prime}}=t_{0}^{k}$. Therefore, there exists a $\sigma \in \operatorname{Unif}_{G}\left(t_{0}^{k}=u_{b}^{k^{\prime}}\right)$ and a γ such that $\sigma \gamma=_{G}(\tau \uplus \rho)$, and by the theorem's assumptions there exist a θ such that $u_{b^{\prime} \oplus 1}^{k_{1}^{\prime}} \sigma={ }_{G} t_{0}^{k} \theta \wedge t_{1}^{k} \theta={ }_{G} t_{1}^{k} \sigma$. But this gives as a $R / G \cup G^{\prime}$ rewrite of the form:

$$
w={ }_{G \cup G^{\prime}} u_{b \oplus 1}^{k^{\prime}} \tau={ }_{G} u_{b \oplus 1}^{k^{\prime}} \sigma \gamma={ }_{G} t_{0}^{k} \theta \gamma \rightarrow t_{1}^{k} \theta \gamma={ }_{G} t_{1}^{k} \sigma \gamma={ }_{G} t_{1}^{k} \rho={ }_{G \cup G^{\prime}} w^{\prime}
$$

with $\left(n_{l}+n_{r}\right)-1 G^{\prime}$ equality steps, contradicting the minimality of $n_{l}+n_{r}$ for which no R / G rewrite of the form $w={ }_{G} t_{0}^{k} \rho^{\prime} \rightarrow t_{1}^{k} \rho^{\prime}={ }_{G} w^{\prime}$ exists.

