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Background

Symbolic Model Checking Modulo an FVP Theory E∪ B
• In Lecture 23, narrowing-based symbolic model checking was

extended from topmost rewrite theories R = (Σ, B, R) to topmost
theories R = (Σ, E∪ B, R), with E∪ B FVP.

• The extension was very smooth:
• Instead or narrowing with R modulo axioms B by performing

B-unification, one narrows with R modulo axioms E∪ B by
performing E∪ B-variant unification.

• To try to make the narrowing symbolic search space finite, instead of
folding symbolic states that are instances modulo axioms B of more
general states, we fold them into more general states symbolic states
of which they are instances modulo E∪ B.

• In both cases, the fvu-narrow command in Maude supports
symbolic model checking with narrowing.

In this lecture I will: (1) illustrate this kind of symbolic reachability
analysis with folding modulo an FVP theory E∪ B with two
infinite-state system examples, and (2) will show how the folding
narrowing graph FGR(u) from a symbolic initial state u faithfully
characterizes the satisfaction (resp. violation) of invariants in R.
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Symbolic Reachability Analysis Modulo FVP

VENDING-MACHINE
The following vending machine allows buying cakes or cookies with either
dollars or quarters thanks to the FVP equation: q q q q = $.
mod VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money .
op : Money Money -> Money [assoc comm id: empty] .
subsort Money Item < Marking .
op : Marking Marking -> Marking [assoc comm id: empty] .
op < > : Marking -> State .
ops $ q : -> Coin .
ops cookie cake : -> Item .
var M : Marking .
rl [add-$] : < M > => < M $ > .
rl [add-q] : < M > => < M q > .
rl [buy-ca] : < M $ > => < M cake > .
rl [buy-co] : < M $ > => < M cookie q > .
eq [change]: q q q q = $ [variant] .

endm

< $ $ > //

((

< $ $ $ > // < $ $ $ $ > // ∞

< $ $ q > // < $ $ q q > // ∞

(one initial state - infinite space)
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Symbolic Reachability Analysis Modulo FVP

Narrowing-Based Symbolic Model Checking

• We can consider, for example, the most general symbolic initial state
possible in VENDING-MACHINE, namely, < M > and its symbolic
transitions by the [buy-ca] rule.

• The vertical lines in the figure below describe the narrowing steps
and unifiers for the narrowing path:

〈M〉 〈cake M′〉 〈cake cake M′′〉 . . .

< M >

{M 7→$ M’}
��

< cake M’ >

{M’ 7→$ M’’}
��

< cake cake M’’ >

��
< cake M’ >

00

< cake cake M’’ >

11

∞

(Infinite Symbolic Search Space)
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Symbolic Reachability Analysis Modulo FVP

Folding Infinite Symbolic State Spaces into a Finite Graph
• Narrowing-Based Symbolic Model Checking can model check infinite

state systems by representing infinite sets of states by terms with
variables.

• The symbolic state space (narrowing tree) can still be infinite; but
its states can be over-approximated by folding in the folding graph,
which sometimes can be finite.

• The transition system of the folding graph is an abstraction (it
identifies many symbolic states) that over-approximates the states
and transitions of the narrowing tree.

< M >
{M 7→$ M’}

ww
{M 7→$ M’}

&&
< cookie q M’ >

4E∪B

""

< cake M’ >

4E∪B

{{

Narrowing + folding relation ⇒ (symbolic initial states and (hopefully) finite state space)

(instantiation relation 4E∪B)
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Equational Unification

E∪ B-Unification Command in Maude

Maude provides a (E∪ B)-unification command for any equational theory
(Σ, E∪ B) that is convergent modulo B. The complete set of
(E∪ B)-unifiers will always be finite if E∪ B is FVP.

14 CHAPTER 1. NARROWING

(mod RIGHTID-UNIFICATION-EXAMPLE is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (e E) right id: e] .

ops a b c d e : -> Elem .

endm)

The command remove id attributes returns the following module.

(mod RIGHTID-UNIFICATION-EXAMPLE is

sorts Magma Elem .

subsorts Elem < Magma .

op __ : Magma Magma -> Magma [gather (e E)] .

ops a b c d e : -> Elem . var X : [Magma] .

eq X e = X .

endm)

A corresponding function removeIds is available at the metalevel of Maude.

op removeIds : Module -> Module .

1.8 Variant-based Equational Order-Sorted Unification

The intimate connection between E,Ax-variants and E ⇤Ax-unification is as follows. Suppose
that we extend the equational theory (�, E ⇤ Ax) to (b�, bE ⇤ Ax) by adding to � a new sort
Truth, not related to any sort in �, with constant tt, and for each top sort of a connected
component [s], an operator eq : [s] � [s] ⇥ Truth; and where bE is the result of adding for each
top sort [s] and x of sort [s] an extra rule eq(x, x) ⇥ tt to E. Then, given any two terms t, t�, if
� is a (E,Ax)-unifier of t and t�, then the E,Ax-canonical forms of t� and t�� must be Ax-equal
and therefore the pair (tt , �) must be a variant of the term eq(t, t�). Furthermore, if the term
eq(t, t�) has a finite set of most general variants, then we are guaranteed that the set of most
general (E,Ax)-unifiers of t and t� is finite.

Given a module ModId of the general form mod (�, Ax⇤E ⇤G, R) endm where (�, Ax⇤E)
satisfies the requirements of Section 1.4, Full Maude provides a command for E⇤Ax-equational
unification based on variant generation of the form:

(variant unify [ in hModId i : ] hTerm1 i =? hTerm2 i .)

Consider again the theory NARROWING-VENDING-MACHINE. We can ask whether there is an
E ⇤ Ax-equational unifier of two configurations, one containing a dollar and two quarters and
another containing two quarters:

Maude> (variant unify in NARROWING-VENDING-MACHINE :

< q q X:Marking > =? < $ Y:Marking > .)

Solution 1

X:Marking --> q q Y:Marking

Solution 2

X:Marking --> $ #12:Marking ; Y:Marking --> q q #12:Marking

There are no more general unifiers. For instance, the unifier X:Marking --> q q,

Y:Marking --> empty is an instance of the first solution by using the identity property of the
operator for markings.

The procedure for variant-based equational unification is also available at the metalevel
thanks to the metaVariantUnify function.

op metaVariantUnify : Module Term Term -> SubstitutionSet .

• ModId is the name of the module

• A complete set of E∪ B-unifiers are returned.

• Folding variant narrowing is used internally to compute
E∪ B-unifiers.
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Equational Unification

(E∪ B)-Unification Command in Maude (II)

14 CHAPTER 1. NARROWING
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Lamport’s Bakery Algorithm (another version)

Bakery Algorithm: Transition System

Token to give ; Token serving ; Set of Processes
Nat Nat [{ idle, wait(Nat), crit(Nat) }]

rl N ; M ; [idle] PS ⇒ (s N) ; M ; [wait(N)] PS .
rl N ; M ; [wait(M)] PS ⇒ N ; M ; [crit(M)] PS .
rl N ; M ; [crit(M)] PS ⇒ N ; (s M) ; [idle] PS .

0 ; 0 ; [idle]

��

s ; s ; [idle]

��

s s ; s s ; [idle]

��
s ; 0 ; [wait(0)]

��

s ; s ; [wait(s)]

��

s s s ; s s ; [wait(s s)]

��
s ; 0 ; [crit(s)]

88

s s ; s ; [crit(s)]

77

∞

(Transition System: one initial state - infinite space)
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Lamport’s Bakery Algorithm (another version)

Bakery Algorithm: Symbolic Transition System

0 ; 0 ; [idle]

��

s ; s ; [idle]

��

s s ; s s ; [idle]

��
s ; 0 ; [wait(0)]

��

s ; s ; [wait(s)]

��

s s s ; s s ; [wait(s s)]

��
s ; 0 ; [crit(s)]

88

s s ; s ; [crit(s)]

77

∞

(Transition System: one initial state - infinite state space)

N ; N ; [idle]

��
s N ; s N ; [idle]

��
s s N ; s s N ; [idle]

��
s N ; N ; [wait(N)]

��
s s N ; s N ; [wait(s N)]

��
s s s N ; s s N ; [wait(s s N)]

��
s N ; N ; [crit(N)]

66

s s N ; s N ; [crit(s N)]

55

· · ·

(Symbolic Transition System: infinite initial state set - infinite state space)
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Lamport’s Bakery Algorithm (another version)

Bakery Algorithm: Folding the Symbolic Transition System

N ; N ; [idle] [idle]

�� ,,
s N ; N ; [wait(N)] [idle]

��

��

s N ; N ; [idle] [wait(N)]

��

ww

s N ; N ; [crit(N)] [idle]

4E
:: ::

s N ; N ; [idle] [crit(N)]

4E

gggg

s(s N) ; N ; [wait(N)] [wait(s N)] // s(s N) ; N ; [crit(N)] [wait(s N)]

4E

AA AA

s(s N) ; N ; [wait(s N)] [crit(N)]

4E
77 77

s(s N) ; N ; [wait(s N)] [wait(N)]oo

(Folding Symbolic Transition System : infinite initial state set - finite state space)
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Faithfulness of the Folding Transition System

The Faithfulness of Folding Symbolic Transition Systems

Suppose that we wish to verify an invariant I for a topmost R using the
folding graph FGR(u) generated by a symbolic initial state u. Since
FGR(u) over-approximates the narrowing tree from u, if no violation of
invariant I (i.e., an instance of u reaching its complement) is found
exploring FGR(u), a fortiori no such violation can be found in the
narrowing tree. But by the Completeness of Narrowing Search Theorem
(Lecture 23, pg. 8), this means that I holds for all ground instances of u.

But what happens if we find a counterexample, that is, a path from u in
FGR(u) violating I? Does it mean that invariant I is violated for some
ground instance of u? Or could such a path be a spurious
counterexample not corresponding to any real violation of I?

We shall call FGR(u) a faithful abstraction of R from the set of initial
states symbolically specified by u iff FGR(u) has no spurious
counterexamples for any pattern-specified invariant I. To show that
FGR(u) is faithful, we need to look at it more carefully.
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Faithfulness of the Folding Transition System

The Folding Narrowing Graph FNGR(u)
Given a topmost R = (Σ, E∪ B, R) with E∪ B FVP, and a symbolic
initial state u, the folding narrowing graph FNGR(u) is generated in a
breadth first manner by paths of increasing length from u as follows:

• u R,(E∪B) u is the only path at depth 0.
• The paths of lenght n + 1 (and the depth of their ending nodes) are:

• either narrowing paths u n
R,(E∪B) vn  R,(E∪B) v such that (i)

u n
R,(E∪B) vn in FNGR(u), (so v has narrowing depth n+1 in u’s

narrowing tree), and it is not the case that (ii): either exists a
narrowing path u k

R,(E∪B) w, k ≤ n, in FNGR(u), or a different

narrowing path u n
R,(E∪B) wn  R,(E∪B) w with u n

R,(E∪B) wn in

FNGR(u), such that v 4E∪B w (read, v is an instance modulo E∪ B
of w), where,

v 4E∪B w ⇔def ∃γ s.t. wγ =E∪B v;

• otherwise, they are paths of the form u n
R,(E∪B) vn 4E∪B w

associated to a narrowing path u n
R,(E∪B) vn  R,(E∪B) v s.t. (i)–(ii)

above hold with v 4E∪B w. Therefore, w has narrowing depth
d ≤ n + 1 in u’s narrowing tree.
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Faithfulness of the Folding Transition System

Faithfulness of FNGR(u) (proofs in Appendix)

Theorem

(Over-Approximation Theorem). Given a topmost R = (Σ, E∪ B, R)
with E∪ B FVP and a symbolic initial state u, for every narrowing path
from u, u ∗R,(E∪B) v there is a node w in the folding narrowing path of

u FNGR(u) such that v 4E∪B w.

Theorem

(Faithfulness Theorem). For R = (Σ, E∪ B, R) and u as above,
FNGR(u) is a faithful over-approximation of the narrowing tree of u in
the sense that for any set of states of R described by a pattern term p,
an instance of p can be reached by a narrowing path u ∗R,(E∪B) v such

that Unif E∪B(v = p) 6= ∅ iff there is a node w in FNGR(u) such that
Unif E∪B(w = p) 6= ∅.

In particular, if p is the negation of an invariant, any counterexample
found in FNGR(u) is a true counterexample and therefore proves the
invariant’s violation (i.e., FNGR(u) has no spurious counterexamples).
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