Program Verification: Lecture 24

José Meseguer
University of Illinois at Urbana-Champaign

Symbolic Model Checking Modulo an FVP Theory $E \cup B$

- In Lecture 23, narrowing-based symbolic model checking was extended from topmost rewrite theories $\mathcal{R}=(\Sigma, B, R)$ to topmost theories $\mathcal{R}=(\Sigma, E \cup B, R)$, with $E \cup B$ FVP.
- The extension was very smooth:
- Instead or narrowing with R modulo axioms B by performing B-unification, one narrows with R modulo axioms $E \cup B$ by performing $E \cup B$-variant unification.
- To try to make the narrowing symbolic search space finite, instead of folding symbolic states that are instances modulo axioms B of more general states, we fold them into more general states symbolic states of which they are instances modulo $E \cup B$.
- In both cases, the fvu-narrow command in Maude supports symbolic model checking with narrowing.
In this lecture I will: (1) illustrate this kind of symbolic reachability analysis with folding modulo an FVP theory $E \cup B$ with two infinite-state system examples, and (2) will show how the folding narrowing graph $F G_{\mathcal{R}}(u)$ from a symbolic initial state u faithfully characterizes the satisfaction (resp. violation) of invariants in \mathcal{R}.

VENDING-MACHINE

The following vending machine allows buying cakes or cookies with either dollars or quarters thanks to the FVP equation: $q q q q=\$$.

```
mod VENDING-MACHINE is
    sorts Coin Item Marking Money State .
    subsort Coin < Money
    op empty : -> Money
    op __ : Money Money -> Money [assoc comm id: empty] .
    subsort Money Item < Marking .
    op __ : Marking Marking -> Marking [assoc comm id: empty] .
    op <_> : Marking -> State .
    ops $ q : -> Coin .
    ops cookie cake : -> Item .
    var M : Marking .
    rl [add-$] : < M > => < M $ > .
    rl [add-q] : < M > => < M q > .
    rl [buy-ca] : < M $ > => < M cake > .
    rl [buy-co] : < M $ > => < M cookie q > .
    eq [change]: q q q q = $ [variant].
endm
```


VENDING-MACHINE

The following vending machine allows buying cakes or cookies with either dollars or quarters thanks to the FVP equation: $q q q q=\$$.

```
mod VENDING-MACHINE is
    sorts Coin Item Marking Money State .
    subsort Coin < Money
    op empty : -> Money
    op _- : Money Money -> Money [assoc comm id: empty] .
    subsort Money Item < Marking .
    op _- : Marking Marking -> Marking [assoc comm id: empty] .
    op <_> : Marking -> State .
    ops $ q : -> Coin .
    ops cookie cake : -> Item .
    var M : Marking .
    rl [add-$] : < M > => < M $ > .
    rl [add-q] : < M > => < M q > .
    rl [buy-ca] : < M $ > => < M cake > .
    rl [buy-co] : < M $ > => < M cookie q > .
    eq [change]: q q q q = $ [variant].
```

endm

(one initial state - infinite space)

Narrowing-Based Symbolic Model Checking

- We can consider, for example, the most general symbolic initial state possible in VENDING-MACHINE, namely, < M > and its symbolic transitions by the [buy-ca] rule.
- The vertical lines in the figure below describe the narrowing steps and unifiers for the narrowing path:

$$
\langle M\rangle \rightsquigarrow\left\langle\text { cake } M^{\prime}\right\rangle \rightsquigarrow\left\langle\text { cake cake } M^{\prime \prime}\right\rangle \rightsquigarrow \ldots
$$

> (Infinite Symbolic Search Space)

Narrowing-Based Symbolic Model Checking

- We can consider, for example, the most general symbolic initial state possible in VENDING-MACHINE, namely, < M > and its symbolic transitions by the [buy-ca] rule.
- The vertical lines in the figure below describe the narrowing steps and unifiers for the narrowing path:

$$
\langle M\rangle \rightsquigarrow\left\langle\text { cake } M^{\prime}\right\rangle \rightsquigarrow\left\langle\text { cake cake } M^{\prime \prime}\right\rangle \rightsquigarrow \ldots
$$

> (Infinite Symbolic Search Space)

Folding Infinite Symbolic State Spaces into a Finite Graph

- Narrowing-Based Symbolic Model Checking can model check infinite state systems by representing infinite sets of states by terms with variables.
- The symbolic state space (narrowing tree) can still be infinite; but its states can be over-approximated by folding in the folding graph, which sometimes can be finite.
- The transition system of the folding graph is an abstraction (it identifies many symbolic states) that over-approximates the states and transitions of the narrowing tree.

Folding Infinite Symbolic State Spaces into a Finite Graph

- Narrowing-Based Symbolic Model Checking can model check infinite state systems by representing infinite sets of states by terms with variables.
- The symbolic state space (narrowing tree) can still be infinite; but its states can be over-approximated by folding in the folding graph, which sometimes can be finite.
- The transition system of the folding graph is an abstraction (it identifies many symbolic states) that over-approximates the states and transitions of the narrowing tree.

Narrowing + folding relation \Rightarrow (symbolic initial states and (hopefully) finite state space) (instantiation relation $\preccurlyeq_{E \cup B}$)

$E \cup B$-Unification Command in Maude

Maude provides a $(E \cup B)$-unification command for any equational theory $(\Sigma, E \cup B)$ that is convergent modulo B. The complete set of ($E \cup B$)-unifiers will always be finite if $E \cup B$ is FVP.

```
variant unify [ in \langleModId\rangle : ] \langleTerm1\rangle=? \langleTerm2\rangle.
```

- Modld is the name of the module
- A complete set of $E \cup B$-unifiers are returned.
- Folding variant narrowing is used internally to compute $E \cup B$-unifiers.

$(E \cup B)$-Unification Command in Maude (II)

Maude> (variant unify in NARROWING-VENDING-MACHINE : < q q X:Marking > =? < \$ Y:Marking > .)
Solution 1
X:Marking --> q q Y:Marking
Solution 2
X:Marking --> \$ \#12:Marking ; Y:Marking --> q q \#12:Marking

Bakery Algorithm: Transition System

Token to give ; Token serving ; Set of Processes Nat Nat [\{ idle, wait(Nat), crit(Nat) \}] rl N ; M ; [idle] PS $\quad \Rightarrow(s N) ; M \quad$; wait(N)] PS rl N; M; [wait(M)] PS $\Rightarrow N$; M; [crit(M)] PS. rl N ; M ; [crit(M)] PS $\Rightarrow \mathrm{N}$; (s M) ; [idle] PS.

Bakery Algorithm: Transition System

Token to give ; Token serving ; Set of Processes Nat Nat [\{ idle, wait(Nat), crit(Nat) \}]

```
rl N ; M ; [idle] PS }\quad=>\mathrm{ (sN); M ; [wait(N)] PS
rl N ; M ; [wait(M)] PS = N ; M ; [crit(M)] PS .
rl N;M ; [crit(M)] PS => N ; (sM); [idle] PS .
```


(Transition System: one initial state - infinite space)

Bakery Algorithm: Symbolic Transition System

(Transition System: one initial state - infinite state space)

Bakery Algorithm: Symbolic Transition System

(Transition System: one initial state - infinite state space)

(Symbolic Transition System: infinite initial state set - infinite state space)

Bakery Algorithm: Folding the Symbolic Transition System

(Folding Symbolic Transition System : infinite initial state set - finite state space)

The Faithfulness of Folding Symbolic Transition Systems

Suppose that we wish to verify an invariant I for a topmost \mathcal{R} using the folding graph $F G_{\mathcal{R}}(u)$ generated by a symbolic initial state u. Since $F G_{\mathcal{R}}(u)$ over-approximates the narrowing tree from u, if no violation of invariant I (i.e., an instance of u reaching its complement) is found exploring $F G_{\mathcal{R}}(u)$, a fortiori no such violation can be found in the narrowing tree. But by the Completeness of Narrowing Search Theorem (Lecture 23, pg. 8), this means that I holds for all ground instances of u.

But what happens if we find a counterexample, that is, a path from u in $F G_{\mathcal{R}}(u)$ violating I ? Does it mean that invariant I is violated for some ground instance of u ? Or could such a path be a spurious counterexample not corresponding to any real violation of I ?

We shall call $F G_{\mathcal{R}}(u)$ a faithful abstraction of \mathcal{R} from the set of initial states symbolically specified by u iff $F G_{\mathcal{R}}(u)$ has no spurious counterexamples for any pattern-specified invariant I. To show that $F G_{\mathcal{R}}(u)$ is faithful, we need to look at it more carefully.

The Folding Narrowing Graph $F N G_{\mathcal{R}}(u)$

Given a topmost $\mathcal{R}=(\Sigma, E \cup B, R)$ with $E \cup B$ FVP, and a symbolic initial state u, the folding narrowing graph $F N G_{\mathcal{R}}(u)$ is generated in a breadth first manner by paths of increasing length from u as follows:

- $u \rightsquigarrow_{R,(E \cup B)} u$ is the only path at depth 0 .
- The paths of lenght $n+1$ (and the depth of their ending nodes) are:
- either narrowing paths $u \rightsquigarrow_{R,(E \cup B)}^{n} v_{n} \rightsquigarrow_{R,(E \cup B)} v$ such that (i) $u \rightsquigarrow_{R,(E \cup B)}^{n} v_{n}$ in $F N G_{\mathcal{R}}(u)$, (so v has narrowing depth $\mathrm{n}+1$ in u 's narrowing tree), and it is not the case that (ii): either exists a narrowing path $u \rightsquigarrow_{R,(E \cup B)}^{k} w, k \leq n$, in $F N G_{\mathcal{R}}(u)$, or a different narrowing path $u \rightsquigarrow_{R,(E \cup B)}^{n} w_{n} \rightsquigarrow_{R,(E \cup B)} w$ with $u \rightsquigarrow_{R,(E \cup B)}^{n} w_{n}$ in $F N G_{\mathcal{R}}(u)$, such that $v \preccurlyeq_{E \cup B} w$ (read, v is an instance modulo $E \cup B$ of w), where,

$$
v \preccurlyeq E \cup B \quad \Leftrightarrow_{\text {def }} \exists \gamma \text { s.t. } w \gamma=E \cup B \text {; }
$$

- otherwise, they are paths of the form $u \rightsquigarrow_{R,(E \cup B)}^{n} v_{n} \preccurlyeq_{E \cup B} w$ associated to a narrowing path $u \rightsquigarrow_{R,(E \cup B)}^{n} v_{n} \rightsquigarrow_{R,(E \cup B)} v$ s.t. (i)-(ii) above hold with $v \preccurlyeq_{E \cup B} w$. Therefore, w has narrowing depth $d \leq n+1$ in u 's narrowing tree.

Faithfulness of $\operatorname{FNG}_{\mathcal{R}}(u)$ (proofs in Appendix)

Theorem

(Over-Approximation Theorem). Given a topmost $\mathcal{R}=(\Sigma, E \cup B, R)$ with $E \cup B F V P$ and a symbolic initial state u, for every narrowing path from $u, u \rightsquigarrow_{R,(E \cup B)}^{*} v$ there is a node w in the folding narrowing path of $u F_{N G}(u)$ such that $v \preccurlyeq_{E \cup B} w$.

Theorem

(Faithfulness Theorem). For $\mathcal{R}=(\Sigma, E \cup B, R)$ and u as above, $F N G_{\mathcal{R}}(u)$ is a faithful over-approximation of the narrowing tree of u in the sense that for any set of states of \mathcal{R} described by a pattern term p, an instance of p can be reached by a narrowing path $u \rightsquigarrow_{R,(E \cup B)}^{*} v$ such that $\operatorname{Unif}_{E \cup B}(v=p) \neq \varnothing$ iff there is a node w in $F N G_{\mathcal{R}}(u)$ such that $\operatorname{Unif}_{E \cup B}(w=p) \neq \varnothing$.
In particular, if p is the negation of an invariant, any counterexample found in $F N G_{\mathcal{R}}(u)$ is a true counterexample and therefore proves the invariant's violation (i.e., $F N G_{\mathcal{R}}(u)$ has no spurious counterexamples).

