Appendix 1 to Lecture 22: Automata and LTL Model Checking

J. Meseguer

LTL Satisfaction as Language Containment

Recall that, given a Kripke structure $\mathcal{A} = (A, \rightarrow_{\mathcal{A}}, \models_{\mathcal{A}})$ on atomic propositions Π , and choosing an initial state $a \in A$ and an LTL formula $\varphi \in LTL(\Pi)$, the satisfaction relation is defined by the chain of equivalences:

$$\mathcal{A}, a \models_{LTL} \varphi \iff \forall \pi \in Paths(\mathcal{A})_a \ \pi \models_{LTL} \varphi \iff \forall \pi \in Paths(\mathcal{K})_a \ \pi; \Pi_{\mathcal{A}} \models_{LTL} \varphi.$$

If we define the set $Traces(\mathcal{A})_a$ of the traces of \mathcal{A} from initial state a as: $Traces(\mathcal{A})_a = \{\pi; \Pi_{\mathcal{A}} \mid \pi \in Paths(\mathcal{A})_a, we can rephrase the above definition of satisfaction as the simpler equivalence:$

$$\mathcal{A}, a \models_{LTL} \varphi \iff \forall \tau \in Traces(\mathcal{A})_a \ \tau \models_{LTL} \varphi.$$

But we can view $Traces(\mathcal{A})_a$ as a language of infinite words on the alphabet $\mathcal{P}(\Pi)$. Specifically, an infinite word on an alphabet Λ is just a function $\tau \in [\mathbb{N} \to \Lambda]$, where we suggestively denote $[\mathbb{N} \to \Lambda]$ as Λ^{ω} (ω denotes the set of natural numbers viewed as an "ordinal set" with its < order), to emphasize that this is the language of infinite words on Λ , just as Λ^* is the language of finite words on Λ . Therefore, we have the language containment: $Traces(\mathcal{A})_a \subseteq \mathcal{P}(\Pi)^{\omega}$.

Now observe that the relation $\tau \models_{LTL} \varphi$ between an infinite word $\tau \in \mathcal{P}(\Pi)^{\omega}$ and an LTL formula $\varphi \in LTL(\Pi)$ is defined *independently of any Kripke structure*, since the inductive semantic definition of $\tau \models_{LTL} \varphi$ is given in terms of the syntactic structure of φ and can be *expressed in terms of traces*, regardless of where such traces come from. Therefore, an LTL formula $\varphi \in LTL(\Pi)$ also defines a language of infinite words, namely, the set of all traces τ that satisfy φ . Call this language $\mathcal{L}(\varphi)$ the *language of* φ , i.e., $\mathcal{L}(\varphi) = \{\tau \in \mathcal{P}(\Pi)^{\omega} \mid \tau \models_{LTL} \varphi\}$. Using this notation, we can express the satisfaction relation $\mathcal{A}, a \models_{LTL} \varphi$ in an even simpler, language-theoretic way by the equivalence:

$$\mathcal{A}, a \models_{LTL} \varphi \iff Traces(\mathcal{A})_a \subseteq \mathcal{L}(\varphi).$$

The intuitive meaning is that, semantically, the property φ specifies a set of allowable traces, so \mathcal{A} starting at a satisfies property φ iff all its traces are among those allowed by φ .

Büchi Automata and Decidability of ω -Regular Languages

Recall that *regular languages* are languages recognized by finite automata; and that Boolean operations on such languages, such as union, intersection and complement, as well as properties such as language containment or language emptiness, can be *effectively computed*, resp. *decided*, by means of automata. Thanks to the work of the Swiss mathematician Richard Büchi, finite automata on an input alphabet Λ can also recognize ω -regular languages as subsets of the set

 Λ^{ω} of infinite words on Λ . The definition of a finite automaton¹ **B** on an input alphabet Λ remains the same: we specify its input alphabet, finite set of states, initial state (or set of initial states), Λ -labeled transition relation, and a subset of final/accepting states. The only thing that changes is the notion of acceptance. A finite word $w \in \Lambda^*$ is accepted by an automaton \mathcal{B} iff the input w can reach a state in the set F of accepting states of \mathcal{A} . Instead, \mathbb{B} will accept an infinite word $\tau \in \Lambda^{\omega}$ iff $F \cap inf_{\mathbf{B}}(\tau) \neq \emptyset$, where $inf_{\mathbf{B}}(\tau) = \{b \in B \mid \{n \in \mathbb{N} \mid , init \xrightarrow{\tau \mid \leq n} \mathbf{B} \} \cong \mathbb{N}\}$, where $\tau \mid_{\leq n}$ denotes the finite word $\tau(0) \dots \tau(n)$, and where \cong is the equinumerosity (sometimes also called equicardinality) equivalence relation on sets (see §8 of STACS), so that $\{b \in B \mid \{n \in \mathbb{N} \mid , init \xrightarrow{\tau \mid \leq n} \mathbf{B} \} \cong \mathbb{N}\}$ is the set of states of \mathbf{B} that are visited infinitely often by the infinite input τ . Although automata remain the same, when this new interpretation of input acceptance is given to them, they are called $B\ddot{u}chi$ automata, in honor of Richard Büchi.

For our current purposes, we just need to use two facts about Büchi automata and ω -regular languages: (1) (Language Intersection) If two ω -regular languages, L_1 and L_2 on Λ are respectively recognized by Büchi automata \mathbf{B}_1 and \mathbf{B}_2 , then their intersection $L_1 \cap L_2$ is also an ω -regular language recognized by a Büchi automaton $\mathbf{B}_1 \otimes \mathbf{B}_2$ called the synchronous product of \mathbf{B}_1 and \mathbf{B}_2 (see §9.2 of [1] for a detailed construction of $\mathbf{B}_1 \otimes \mathbf{B}_2$). (2) (Language Emptiness) Given a Büchi automaton \mathbf{B} , there is an algorithm to effectively decide whether the language emptiness problem answers "empty" when $\mathcal{L}(\mathbf{B})$ is empty, but in case $\mathcal{L}(\mathbf{B})$ is non-empty, it effectively computes² a witness $\tau \in \mathcal{L}(\mathbf{B})$ proving its non-emptiness.

Model Checking LTL Properties with Büchi Automata

We now have almost all the ingredients needed to obtain a model checking *decision procedure* for deciding the LTL satisfaction problem $\mathcal{A}, a \models \varphi$ in case the set of states $Reach_{\mathcal{A}}(a)$ reachable from a is *finite*, except for two remaining technical details.

First, we need to associate to (\mathcal{A}, a) a Büchi automaton $\mathbb{B}(\mathcal{A}, a)$ such that $\mathcal{L}(\mathbb{B}(\mathcal{A}, a)) = Traces(\mathcal{A})_a$. This is easy: we can build $\mathbb{B}(\mathcal{A}, a)$ with input alphabet $\mathcal{P}(\Pi)$ so that it exactly mimics the behavior of \mathcal{A} from the initial state a as follows: (1) its set of states and its set of accepting states are both $\{\iota\} \oplus Reach_{\mathcal{A}}(a)$, (2) its initial state is the new added state ι , and (3) its labeled transition relation is the union:

$$\{\iota \xrightarrow{L(a)} a\} \cup \{b \xrightarrow{L(c)} c \mid b, c \in Reach_{\mathcal{A}}(a) \land b \to_{\mathcal{K}} c\}.$$

The equality $\mathcal{L}(\mathbb{B}(\mathcal{A}, a)) = Traces(\mathcal{A})_a$ follows trivially from this construction, since there is a one-to-one correspondence between the infinite executions of \mathcal{A} from a and the infinite computations of $\mathbb{B}(\mathcal{A}, a)$ having the exact same traces by construction.

Second, we need to observe the fact that the language $\mathcal{L}(\varphi)$ is ω -regular. This is because $\mathcal{L}(\varphi)$ is the language recognized by a Büchi automaton \mathbb{B}_{φ} that can be effectively constructed

¹See Def. 5 in §7.2 of *STACS*, where Λ is denoted L and is called the labeled set. But here we need two more pieces of information: In *STACS*, **B** is a triple $\mathbf{B} = (B, \Lambda, \rightarrow_{\mathbf{B}})$, with B a finite set; but here **B** is a 5-tuple $\mathbf{B} = (B, init, \Lambda, \rightarrow_{\mathbf{B}}, F)$, with $init \in B$ the initial state, and $F \subseteq B$ the set of accepting states.

²The reader might wonder how τ , being an infinite object, can be effectively specified. The reason is that the set *B* of states is *finite*. Therefore, τ , viewed as an infinite path on a finite graph, will necessarily have *cycles*, allowing a *finite* cycle description of τ .

from the LTL formula φ . Since the details of the construction $\varphi \mapsto \mathbb{B}_{\varphi}$ are rather involved, I refer to Section 9.4 of [1] (or, alternatively, to Section 6.8 of [4]), where this construction is described in full detail.

We are now ready to prove the main theorem of this Appendix:

Theorem (Decidability of LTL Model Checking). When the set of states $Reach_{\mathcal{A}}(a)$ reachable from state a is finite, the LTL satisfaction problem $\mathcal{A}, a \models_{LTL} \varphi$ is decidable. Furthermore, when $\mathcal{A}, a \models_{LTL} \varphi$, the decision procedure returns a (finite representation of) a trace $\tau \in$ $Traces(\mathcal{A})_a$ such that $\tau \models_{LTL} \varphi$.

Proof: Since we have the equivalence $\mathcal{A}, a \models_{LTL} \varphi \Leftrightarrow Traces(\mathcal{A})_a \subseteq \mathcal{L}(\varphi)$, we just need to have a decision procedure for effectively checking the set containment $Traces(\mathcal{A})_a \subseteq \mathcal{L}(\varphi)$. But this is equivalent to checking the emptiness problem $Traces(\mathcal{A})_a \cap \mathcal{L}(\varphi)^c = \emptyset$, where $\mathcal{L}(\varphi)^c$ denotes the complement of $\mathcal{L}(\varphi)$ in $\mathcal{P}(\Pi)^{\omega}$. But by the semantic definition $\tau \models_{LTL} \neg \varphi \Leftrightarrow_{def} \tau \models_{LTL} \varphi$, we have the language identity $\mathcal{L}(\varphi)^c = \mathcal{L}(\neg \varphi)$. So we just need a decision procedure for the emptiness problem $Traces(\mathcal{A})_a \cap \mathcal{L}(\neg \varphi) = \emptyset$. But this is just the emptiness problem $\mathcal{L}(\mathbb{B}(\mathcal{A}, a)) \cap \mathcal{L}(\mathbb{B}_{\neg \varphi}) = \emptyset$; that is, the Büchi automata language emptiness problem $\mathcal{L}(\mathbb{B}(\mathcal{A}, a) \otimes \mathbb{B}_{\neg \varphi}) = \emptyset$, which is decidable and returns a "witness trace" (a counterexample) $\tau \in Traces(\mathcal{A})_a$ in such a language intersection if the intersection is non-empty, as desired. \Box

Further Reading

The already cited Chapter 9 of [1] contains a detailed description of all the concepts presented here. In particular, Section 9.5 describes an on the fly LTL model checking algorithm to efficiently decide the emptiness problem $\mathcal{L}(\mathbb{B}(\mathcal{A}, a) \otimes \mathbb{B}_{\neg \varphi}) = \emptyset$ using double depth first search. This is the explicit-state model checking algorithm used by both the Spin model checker [3] and the Maude LTL model checker [2]. Another useful reference for the automata-theoretic approach to model checking is provided in Chapters 5 and 6 of [4].

References

- [1] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2001.
- [2] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. *Electron.* Notes Theor. Comput. Sci., 71:162–187, 2002.
- [3] G. Holzmann. The Spin Model Checker Primer and Reference Manual. Addison-Wesley, 2003.
- [4] D. A. Peled. Software Reliability Methods. Texts in Computer Science. Springer, 2001.