
Program Verification: Lecture 21

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

LTL Verification of Declarative Concurrent Programs

Proving that and admissible Maude system module mod R endm
satisfies a property φ means proving that its canonical model does:

CR |= φ.

We have seen how to do this for invariants. But properties that
talk about infinite behavior (e.g., fairness) require a richer logic,
such as Linear Temporal Logic (LTL). Since temporal logic requires
specifying state predicates that need not be specified in R and
reasoning about infinite behaviors, we will associate to R a Kripke
structure K(R,State)Π with state predicates Π and chosen sort of
states State. So our property satisfaction problem will be recast as:

K(R,State)Π, [t] |= φ.

where [t] is our chosen initial state of sort State.

2

The Syntax of LTL(AP)

Given a set Π of state predicates (also called “atomic
propositions”), we define the formulae of the propositional linear
temporal logic LTL(Π) inductively as follows:

• True: ⊤ ∈ LTL(Π).

• State predicates: If p ∈ Π, then p ∈ LTL(Π).

• Next operator: If φ ∈ LTL(Π), then ⃝φ ∈ LTL(Π).

• Until operator: If φ,ψ ∈ LTL(Π), then φ U ψ ∈ LTL(Π).

• Boolean connectives: If φ,ψ ∈ LTL(Π), then the formulae ¬φ,
and φ ∨ ψ are in LTL(Π).

3

The Syntax of LTL(AP) (II)

Other LTL connectives can be defined in terms of the above
minimal set of connectives as follows:

• Other Boolean connectives:

◦ False: ⊥ = ¬⊤

◦ Conjunction: φ ∧ ψ = ¬((¬φ) ∨ (¬ψ))

◦ Implication: φ→ ψ = (¬φ) ∨ ψ.

4

• Other temporal operators:

◦ Eventually: 3φ = ⊤ U φ

◦ Henceforth: 2φ = ¬3¬φ

◦ Release: φ R ψ = ¬((¬φ) U (¬ψ))

◦ Unless: φW ψ = (φ U ψ) ∨ (2φ)

◦ Leads-to: φ; ψ = 2(φ→ (3ψ))

◦ Strong implication: φ⇒ ψ = 2(φ→ ψ)

◦ Strong equivalence: φ⇔ ψ = 2(φ↔ ψ).

5

The Models of LTL: Kripke Structures

Kripke structures are the natural models for propositional temporal
logic. Essentially, a Kripke structure is a (total) unlabeled
transition system to which we have added a collection of unary
state predicates on its set of states.

A binary relation R ⊆ A×A on a set A is called total iff for each
a ∈ A there is at least one a′ ∈ A such that (a, a′) ∈ R. If R is not
total, it can be made total by defining
R• = R ∪ {(a, a) ∈ A2 |̸ ∃a′ ∈ A (a, a′) ∈ R}. Note that a total
relation R is exactly a never terminating transition relation on A.
Totality is introduced as a technical device to make all maximal
(non-extensible) computations infinite.

6

The Models of LTL: Kripke Structures (II)

A Kripke structure on state predicates Π is a triple
A = (A,→A, |=A) such that A is a set, called the set of states, →A

is a total binary relation on A, called the transition relation, and
|=A is a binary relation _ |=A _ ⊆ A×Π, called the predicate
satisfaction relation, specifying which state predicates p ∈ Π hold in
a state a ∈ A, denoted a |=A p.

How can we associate a Kripke structure to an admissible rewrite
theory R = (Σ, E ∪B,R)? We just need to make explicit two
things: (1) the intended top sort State of states in the signature Σ;
and (2) the relevant state predicates Π. Having fixed the sort
State, our associated Kripke structure has as its set of states the
elements of sort State in the canonical term algebra CΣ/E⃗,B .

7

The Models of LTL: Kripke Structures (III)

The corresponding transition relation will the totalization (→R)•

of the one-step rewrite relation →R in the canonical model
CR = (CΣ/E⃗,B ,→R).

We will explain later in this lecture how the remaining part of the
Kripke structure —namely, the state predicates Π and the
predicate satisfaction relation |= specifying what state predicates
hold in each state— can also be defined using equations. However,
before doing so it will be helpful to see how the semantics of LTL is
defined for any Kripke structure.

8

The Semantics of LTL(Π)

The semantics of the temporal logic LTL is defined by means of the
LTL satisfaction relation:

A, a |=LTL φ

between a Kripke structure A having Π as its state predicates, a
state a ∈ A, and an LTL formula φ ∈ LTL(Π). Specifically,
A, a |=LTL φ holds iff for each path π ∈ Path(A)a the path
satisfaction relation

π |=LTL φ

holds, where we define the set Path(A) of computation paths as
the set of functions of the form π : N −→ A such that for each
n ∈ N, we have π(n) →A π(n+ 1) and define
Path(A)a = {π ∈ Path(A) | π(0) = a}.

9

The Semantics of LTL(Π) (II)

The path satisfaction relation π |=LTL φ is itself defined in terms of
the trace satisfaction relation τ |=LTL φ, where a trace τ is a
function τ ∈ [N → P(Π)], i.e., a sequence:
τ(0), τ(1), τ(2), . . . τ(n), . . ., with each τ(i) ⊆ Π a subset of state
predicates. π |=LTL φ is defined in terms of trace satisfaction by
the definitional equivalence:

π |=LTL φ ⇔def (π; |̃=A) |=LTL φ

where (see STACS Ex.38) |̃=A : A ∋ a 7→ {p ∈ Π | a |=A p} ∈ P(Π)

is the function defined by the relation |=A⊆ A×Π. So we get a

trace N π→ A
|̃=A→ P(Π). Thanks to the above equivalence, the

Kripke structure A has dissappeared from the picture!, i.e., LTL
satisfaction is defined exclusively in terms of traces τ ∈ [N → P(Π)].

10

The Semantics of LTL(Π) (III)

Finally, we inductively define the trace satisfaction relation for any
trace τ ∈ [N → P(Π)] as follows:

• We always have τ |=LTL ⊤.

• For p ∈ Π,
τ |=LTL p ⇔def p ∈ τ(0).

• For ⃝φ ∈ LTL(Π),

τ |=LTL ⃝φ ⇔def s; τ |=LTL φ,

where s : N −→ N is the successor function.

• For φ U ψ ∈ LTL(Π),

τ |=LTL φ U ψ ⇔def

11

(∃n ∈ N) ((sn; τ |=LTL ψ)∧((∀m ∈ N) m < n ⇒ sm; τ |=LTL φ)).

• For ¬φ ∈ LTL(Π),

τ |=LTL ¬φ ⇔def τ ̸|=LTL φ.

• For φ ∨ ψ ∈ LTL(Π),

τ |=LTL φ ∨ ψ ⇔def

τ |=LTL φ or τ |=LTL ψ.

12

The LTL Module

The LTL syntax, in a typewriter approximation of the
mathematical syntax, is supported in Maude by the following LTL
functional module (in the file model-checker.maude).

mod LTL is
protecting BOOL .
sort Formula .

*** primitive LTL operators
ops True False : -> Formula [ctor format (g o)] .
op ~_ : Formula -> Formula [ctor prec 53 format (r o d)] .
op _/_ : Formula Formula -> Formula [comm ctor gather (E e)

prec 55 format (d r o d)] .
op _\/_ : Formula Formula -> Formula [comm ctor gather (E e)

prec 59 format (d r o d)] .
op O_ : Formula -> Formula [ctor prec 53 format (r o d)] .
op _U_ : Formula Formula -> Formula [ctor prec 63 format (d r o d)] .

13

op _R_ : Formula Formula -> Formula [ctor prec 63 format (d r o d)] .

*** defined LTL operators
op _->_ : Formula Formula -> Formula [gather (e E) prec 65

format (d r o d)] .
op _<->_ : Formula Formula -> Formula [prec 65 format (d r o d)] .
op <>_ : Formula -> Formula [prec 53 format (r o d)] .
op []_ : Formula -> Formula [prec 53 format (r d o d)] .
op _W_ : Formula Formula -> Formula [prec 63 format (d r o d)] .
op _|->_ : Formula Formula -> Formula [prec 63 format (d r o d)] .

*** leads-to
op _=>_ : Formula Formula -> Formula [gather (e E) prec 65

format (d r o d)] .
op _<=>_ : Formula Formula -> Formula [prec 65 format (d r o d)] .

vars f g : Formula .

eq f -> g = ~ f \/ g .
eq f <-> g = (f -> g) /\ (g -> f) .
eq <> f = True U f .
eq [] f = False R f .

14

eq f W g = (f U g) \/ [] f .
eq f |-> g = [](f -> (<> g)) .
eq f => g = [] (f -> g) .
eq f <=> g = [] (f <-> g) .

*** negative normal form
eq ~ True = False .
eq ~ False = True .
eq ~ ~ f = f .
eq ~ (f \/ g) = ~ f /\ ~ g .
eq ~ (f /\ g) = ~ f \/ ~ g .
eq ~ O f = O ~ f .
eq ~(f U g) = (~ f) R (~ g) .
eq ~(f R g) = (~ f) U (~ g) .

endfm

15

The LTL Module (II)

Note that, for the moment, no set Π of state predicates has been
specified in the LTL module. We will explain in what follows how
state predicates are defined for a given system module M, and how
they are added to the LTL module as a subsort Prop of Formula.

Note that the nonconstructor connectives have been defined in
terms of more basic constructor connectives in the first set of
equations. But since there are good reasons to put an LTL formula
in negative normal form by pushing the negations next to the state
predicates (this is specified by the second set of equations) we need
to consider also the duals of the basic connectives ⊤, ⃝, U , and ∨
as constructors. That is, we need to also have as constructors the
dual connectives: ⊥, R, and ∧ (note that ⃝ is self-dual).

16

Associating Kripke Structures to Rewrite Theories

Since the models of temporal logic are Kripke structures, we need
to explain how we can associate a Kripke structure to and
admissible system module mod R endm.

We associate a Kripke structure to the rewrite theory
R = (Σ, E,R) specified by such a system module by making
explicit three things: (1) the intended top sort State of states in the
signature Σ; (2) the relevant state predicates, that is, the relevant
set Π of such predicates, and (3) the satisfaction relation |=
between states and predicates.

In general, the state predicates need not be part of the system
specification and therefore they need not be specified in our system
module. They are typically part of the property specification.

17

Associating Kripke Structures to Rewrite Theories (II)

This is because the state predicates need not be related to the
operational semantics of a system module M: they are just certain
predicates about the states of the system specified by M that are
needed to specify some properties.

Therefore, after choosing a given top sort,a say Foo, in M as our sort
State of states we can specify the relevant state predicates in a
module M-PREDS which is a protecting extension of M according to
the following general pattern:
mod M-PREDS is protecting M .
including SATISFACTION .
subsort Foo < State .
...

endm
aIf the connected component has no top sort, we instead choose the kind

[Foo].

18

Associating Kripke Structures to Rewrite Theories (III)

Where the dots ‘...’ indicate the part in which the syntax and
semantics of the relevant state predicates is specified, as further
explained in what follows. The module SATISFACTION (which is
contained in the file model-checker.maude) is very simple, and has
the following specification:

fmod SATISFACTION is
protecting BOOL
sorts State Prop .
op _|=_ : State Prop -> Bool [frozen] .

endfm

where the sort State is unspecified. However, by importing
SATISFACTION into M-PREDS and giving the subsort declaration

19

Associating Kripke Structures to Rewrite Theories (IV)

subsort Foo < State .

all terms of sort Foo in M are also made terms of sort State. Note
that we then have the kind identity, [Foo]=[State].

The operator

op _|=_ : State Prop -> Bool [frozen] .

is crucial to define the semantics of the relevant state predicates in
M-PREDS. Each such state predicate is declared as an operator of
sort Prop.

In standard LTL propositional logic the set Π of state predicates is
assumed to be a set of constants.

20

Associating Kripke Structures to Rewrite Theories (V)

In Maude we can define parametric state predicates, that is,
operators of sort Prop which need not be constants, but may have
one or more extra sorts as parameter arguments. We then define
the semantics of such state predicates (when the predicate holds)
by appropriate equations.

We can illustrate all this by means of a simple mutual exclusion
example. Suppose that our original system module M is the
following module MUTEX, in which two processes, one named a and
another named b, can be either waiting or in their critical section,
and take turns accessing their critical section by passing each other
a different token (either $ or *).

21

Associating Kripke Structures to Rewrite Theories (VI)

mod MUTEX is
sorts Name Mode Proc Token Conf .
subsorts Token Proc < Conf .
op none : -> Conf .
op __ : Conf Conf -> Conf [assoc comm id: none] .
ops a b : -> Name .
ops wait critical : -> Mode .
op [_,_] : Name Mode -> Proc .
ops * $: -> Token .
rl [a-enter] : $ [a,wait] => [a,critical] .
rl [b-enter] : * [b,wait] => [b,critical] .
rl [a-exit] : [a,critical] => [a,wait] * .
rl [b-exit] : [b,critical] => [b,wait] $.

endm

22

Associating Kripke Structures to Rewrite Theories (VII)

Our obvious sort for states is the top sort Conf of configurations.
In order to state the desired safety and liveness properties we need
state predicates telling us whether a process is waiting or is in its
critical section. We can make these predicates parametric on the
name of the process and define their semantics as follows:

mod MUTEX-PREDS is protecting MUTEX . including SATISFACTION .
subsort Conf < State .
ops crit wait : Name -> Prop .
var N : Name .
var C : Conf .
eq [N,critical] C |= crit(N) = true .
eq C |= crit(N) = false [owise] .
eq [N,wait] C |= wait(N) = true .
eq C |= wait(N) = false [owise] .

endm

23

Associating Kripke Structures to Rewrite Theories (VIII)

The above example illustrates a general method by which desired
state predicates for a module M are defined in a protecting
extension, say M-PREDS, of M which imports SATISFACTION.

One specifies the desired states by choosing a top sort in M and
declaring it as a subsort of State. One then defines the syntax of
the desired state predicates as operators of sort Prop, and defines
their semantics by means of a set of equations that specify for what
states a given state predicate evaluates to true.

We assume that those equations together with those of M, are
ground convergent modulo B.

24

Associating Kripke Structures to Rewrite Theories (IX)

Since we should protect BOOL, it is important to make sure that
satisfaction of state predicates is fully defined. This can be checked
with Maude’s SCC tool.

This means that we should give equations for when the predicates
are true and when they are false. In practice, however, this often
reduces to specifying when a predicate is true by means of (possibly
conditional) equations of the general form,

t |= p(v1, . . . , vn) = true if C

because we can cover all the remaining cases, when it is false, with
an equation

x : State |= p(y1, . . . , yn) = false [owise] .

25

Associating Kripke Structures to Rewrite Theories (X)

In other cases, however —for example because we want to perform
further reasoning using formal tools— we may fully define the true
and false cases of a predicate not by using the [owise] attribute,
but by explicit (possibly conditional) equations of the more general
form,

t |= p(v1, . . . , vn) = bexp if C,

where bexp is an arbitrary Boolean expression.

We can now associate to an admissible system module M specifying
a rewrite theory R = (Σ, E,R) (with a selected top sort State of
states and with state predicates Π defined by means of equations D
in a protecting extension M-PREDS of M) a Kripke structure whose
set of states is CΣ/E,State and whose state predicates are specified
by the set:

26

Associating Kripke Structures to Rewrite Theories (XI)

Πground = {θ(p) | p ∈ Π, θ ground substitution},

where, by convention, we use the simplified notation θ(p) to denote
the ground term p(x1, . . . , xn)θ.

We then define the satisfaction relation |= ⊆ CΣ/E,State ×Πground

by means of the definitional equivalence:

[u] |= θ(p) ⇔def (u |= θ(p))!(E⃗∪D⃗),B = true

where [u] ∈ CΣ/E,State and θ(p) ∈ Πground .

The Kripke structure we are interested in is then

K(R,State)Π = (CΣ/E,State , (→R)•, |=).

27

