
Program Verification: Lecture 2

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Equational Theories

Theories in equational logic are called equational theories. In
Computer Science they are sometimes referred to as algebraic
specifications.

An equational theory is a pair (Σ, E), where:

• Σ, called the signature, describes the syntax of the theory, that
is, what types of data and what operation symbols (function
symbols) are involved;

• E is a set of equations between expressions (called terms) in
the syntax of Σ.

2

Unsorted, Many-Sorted, and Order-Sorted Signatures

Our syntax Σ can be more or less expressive, depending on how
many types (called sorts) of data it allows, and what relationships
between types it supports:

• unsorted (or single-sorted) signatures have only one sort, and
operation symbols on it;

• many-sorted signatures allow different sorts, such as Integer,
Bool, List, etc., and operation symbols relating these sorts;

• order-sorted signatures are many-sorted signatures that, in
addition, allow inclusion relations between sorts, such as
Natural < Integer.

3

Maude Functional Modules

Maude functional modules are equational theories (Σ, E), declared
with syntax

fmod (Σ, E) endfm

Such theories can be unsorted, many-sorted, or order-sorted, or
even more general membership equational theories (see §4.1–4.2 of
“All about Maude”).

In what follows we will see examples of unsorted, many-sorted and
order-sorted equational theories (Σ, E) expressed as Maude
functional modules, and of how one can use such theories as
functional programs by computing with the equations E.

4

Unsorted Functional Modules

*** prefix syntax

fmod NAT-PREFIX is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
op + : Natural Natural -> Natural .
vars N M : Natural .
eq +(N,0) = N .
eq +(N,s(M)) = s(+(N,M)) .

endfm

Maude> red +(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : +(s(s(0)), s(s(0))) .
rewrites: 3 in -10ms cpu (0ms real) (~ rewrites/second)
result Natural: s(s(s(s(0))))
Maude>

5

Unsorted Functional Modules (II)

fmod NAT-MIXFIX is *** mixfix syntax
sort Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> Natural [ctor] .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
vars N M : Natural .
eq N + 0 = N .
eq N + s M = s(N + M) .
eq N * 0 = 0 .
eq N * s M = N + (N * M) .

endfm

Maude> red (s s 0) + (s s 0) .
reduce in NAT-MIXFIX : s s 0 + s s 0 .
rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>

6

Many-Sorted Functional Modules

fmod NAT-LIST is
protecting NAT-MIXFIX .
sort List .
op nil : -> List [ctor] .
op _._ : Natural List -> List [ctor] .
op length : List -> Natural .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .

endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) .
rewrites: 5 in 0ms cpu (0ms real) (~ rewrites/second)
result Natural: s s s s 0
Maude>

7

Many-Sorted Signatures

The full signature Σ of the NAT-LIST example, that imports
NAT-MIXFIX, is then,

sorts Natural List .
op 0 : -> Natural .
op s_ : Natural -> Natural .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
op nil : -> List .
op _._ : Natural List -> List .
op length : List -> Natural .

8

Many-Sorted Signatures as Labeled Multigraphs

A many-sorted signature is just a labeled multigraph, whose nodes
are called sorts, whose labels are called function symbols, and
whose labeled multiedges are called the typings of the function
symbols.

Definition. A labeled multigraph, [also called a many-sorted
signature] is a triple Σ = (S, F,Σ), where S is its set of nodes [also
called sorts], F is its set of labels [also called function symbols], and
Σ is its labeled multigraph, [also called the signature], which is a
set Σ of triples of the form:

Σ ⊆ S∗ × F × S

where S∗ denotes the set of strings on the alphabet S. A triple
(s1 . . . sn, f, s) ∈ Σ is displayed as f : s1 . . . sn → s, or, [to
emphasize f as the label of the multiedge] as s1 . . . sn

f→ s.

9

Many-Sorted Signatures as Labeled Multigraphs (II)

In the signature terminology, we call f : s1 . . . sn → s a typing of f
with input sorts s1 . . . sn and result sort s.

In a typing of the form a : ϵ → s, we call a ∈ F a constant symbol
of sort s.

For example, we view an operator declaration like:

op _._ : Natural List -> List .

as a labeled multiedge having two input nodes and one output node
(see Picture 2.1).

Of course, when all operations are unary, signatures are exactly
labeled graphs (see Picture 2.2)

10

The Need for Order-Sorted Signatures

Many-sorted signatures are still too restrictive. The problem is that
some operations are partial, and there is no natural way of defining
them in just a many-sorted framework.

Consider for example defining a function first that takes the first
element of a list of natural numbers, or a predecessor function p
that assigns to each natural number its predecessor. What can we
do? If we define:

op first : List -> Natural .
op p_ : Natural -> Natural .

we have then the awkward problem of defining the values of
first(nil) and of p 0, which in fact are undefined.

11

The Need for Order-Sorted Signatures (II)

A much better solution is to recognize that these functions are
partial with the typing just given, but become total on appropriate
subsorts NeList < List of nonempty lists, and NzNatural <
Natural of nonzero natural numbers. If we define:

op s_ : Natural -> NzNatural .
op _._ : Natural List -> NeList .
op first : NeList -> Natural .
op p_ : NzNatural -> Natural .

everything is fine. Subsorts also allow us to overload operator
symbols. For example, Natural < Integer, and

op _+_ : Natural Natural -> Natural .
op _+_ : Integer Integer -> Integer .

12

Order-Sorted Functional Modules

fmod NATURAL is
sorts Natural NzNatural .
subsorts NzNatural < Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> NzNatural [ctor] .
op p_ : NzNatural -> Natural .
op _+_ : Natural Natural -> Natural .
op _+_ : NzNatural NzNatural -> NzNatural .
vars N M : Natural .
eq p s N = N .
eq N + 0 = N .
eq N + s M = s(N + M) .

endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0) .
rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
result NzNatural: s s s 0

13

Order-Sorted Functional Modules (II)

fmod NAT-LIST-II is
protecting NATURAL .
sorts NeList List .
subsorts NeList < List .
op nil : -> List [ctor] .
op _._ : Natural List -> NeList [ctor] .
op length : List -> Natural .
op first : NeList -> Natural .
op rest : NeList -> List .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .
eq first(N . L) = N .
eq rest(N . L) = L .

endfm

14

Order-Sorted Signatures Mathematically

An order-sorted signature Σ is a triple Σ = ((S,<), F,Σ), where
(S, F,Σ) is a many-sorted signature, and where < is a partial order
relation on the set S of sorts called subsort inclusion.

That is, < is a binary relation on S that is:

• irreflexive: ¬(x < x)

• transitive: x < y and y < z imply x < z

Any such relation < has an associated ≤ relation that is reflexive,
antisymmetric, and transitive. We will move back and forth
between < and ≤ (see STACS 7.4).

Note: Unless specified otherwise, by a signature we will always
mean an order-sorted signature.

15

Connected Components of the Poset of Sorts

Given a signature Σ, we can define an equivalence relation (see
STACS 7.6) ≡≤ between sorts s, s′ ∈ S as the smallest relation
such that:

• if s ≤ s′ or s′ ≤ s then s ≡≤ s′

• if s ≡≤ s′ and s′ ≡≤ s′′ then s ≡≤ s′′

We call the equivalence classes modulo ≡≤ the connected
components of the poset order (S,≤). Intuitively, when we view
the poset as a directed acyclic graph, they are the connected
components of the graph (see STACS 7.6, Exercise 68).

16

Connected Components Example

NzNatural

NzInteger

Integer

Natural

#
#

#
##

#
#

#
##

NeList

List

Bool

Prop

S/ ≡≤ = {{NzNatural,Natural,NzInteger, Integer}, {Nelist, List}, {Bool, Prop}}

17

Subsort vs. Ad-hoc Overloading

In general, the same operator name may have different declarations
in the same signature Σ. For example, in the NATURAL module we
have,

op _+_ : Natural Natural -> Natural .
op _+_ : NzNatural NzNatural -> NzNatural .

When we have two operator declarations, f : w −→ s, and
f : w′ −→ s′, with w and w′ strings of equal length, then: (1) if
w ≡≤ w′ and s ≡≤ s′, we call them subsort overloaded; (2)
otherwise, e.g, _+_ for Natural and for exclusive or in Bool, we call
them ad-hoc overloaded.

18

Order-Sorted Signatures as Labelled Multigraphs

Since an order-sorted signature is a many-sorted signature whose
set of nodes is a poset, we can describe them graphically as labeled
multigraphs whose set of nodes is a poset.

We can picture subsort inclusions as usual for partial orders, and
operators, as before, as labeled multiedges in the multigraph. For
example, the order-sorted signature of the module NAT-LIST-II is
depicted this way in Picture 2.3.

19

Exercises

Ex.2.1. Define in Maude the following functions on the naturals:

• > and ≥ as Boolean-valued binary functions importing the
built-in module BOOL with single sort Bool.

• max and min, that yield the maximum, resp. minimum, of two
numbers,

• even and odd as Boolean-valued functions on the naturals,

• factorial, the factorial function.

20

Exercises (II)

Ex.2.2. Define in Maude the following functions on list of natural
numbers:

• append and reverse, which appends two lists, resp. reverses the
list,

• max and min that computes the biggest (resp. smallest)
number in the list,

• get.even, which extracts the lists of even numbers of a list,

• odd.even, which, given a lists, produces a pair of list: the first
the sublist of its odd numbers and the second the sublist of its
even numbers.

21

Exercises (III)

Ex.2.3. Given a poset (S,≤), prove that the smallest equivalence
relation ≡≤ containing ≤ is the relation (≤ ∪ ≥)+, where, as
explained in STACS, given a binary relation R, the relation R+

denotes its transitive closure.

22

