
Program Verification: Lecture 17

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Programming Concurrent Systems with Rewrite Theories

Up to now we have consider Maude’s sublanguage of functional
modules in equational logic. Maude’s full language uses system
modules in rewriting logic to program concurrent systems.

A rewrite theory R is a triple R = (Σ, E,R), where:

• (Σ, E) an order-sorted equational theory, and

• R a set of (possibly conditional) labeled rewrite rules of the
form l : t −→ t′ if cond, with l a label, t, t′ Σ-terms, and cond

a condition or guard.

2

Maude System Modules

In Maude, rewrite theories are specified in system modules of the
form:

mod (Σ, E,R) endm

with (Σ, E,R) a rewrite theory.

A conditional rewrite rule of the form, l : t −→ t′ if cond is
specified in Maude with syntax,

crl [l] : t => t′ if cond .

and an unconditional rule l : t −→ t′ with syntax,

rl [l] : t => t′ .

In both cases the rule’s label [l] may be omitted.

3

Rewriting Logic is a Semantic Framework for Concurrency

Rewriting logic naturally expresses concurrent computation as
concurrent rewriting, and can model, for example,

1. Petri Nets

2. Process Calculi like CCS and the π-Calculus

3. Grammars and Tree Automata

4. Data Flow Networks

5. Concurrent Object Systems

very naturally and without any encodings.

To illustrate the ideas, we will focus on Concurrent Object
Systems, which are the most common and natural way to model
and program distributed systems.

4

Concurrent Objects in Rewriting Logic

In Concurrent object systems, objects interact with other objects,
typically by asynchronous message passing.

A distributed state, called a configuration, is a multiset or “soup”
of objects and messages, built up by an ACU union operator with
empty syntax (i.e. juxtaposition) as:

subsorts Object Msg < Configuration .

op none : -> Configuration .
op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

5

Objects and Messages

An object in a given state is represented as a term

⟨o : C | a1 : v1, . . . , an : vn⟩

where o is the object’s name or identifier, C is its class name, the
ai’s are the names of the object’s attribute identifiers, and the vi’s
are the corresponding values, declared in Maude as:

op <_:_|_> : Oid Class Atts -> Object [ctor] .
op _,_ : Atts Atts -> Atts [ctor assoc comm id: null] .

The user can choose any syntax for messages (will see an example).

6

A Communication Protocol Example

Consider Sender and Receiver classes, where a Sender (resp. a
Receiver) sends (resp. receives) elements from an AU -list of
numbers (with constructors nil and _;_) and has the form:

vars N M : Nat . var L : List . vars A B : Oid . var TV : Bool .

< A : Sender | buff: L, rec: B, cnt: M, ack-w: TV >

< B : Receiver | buff: L, snd: A, cnt: M >

They use respective messages of the form:

msg to_from_val_cnt_ : Oid Oid Nat Nat -> Msg [ctor] .

msg to_from_ack_ : Oid Oid Nat -> Msg [ctor] .

Their communication protocol is defined by the rules:

7

A Communication Protocol Example (II)

rl [snd] : < A : Sender | buff: (N ; L),rec: B,cnt: M,ack-w: false >
=> (to B from A val N cnt M)

< A : Sender | buff: L,rec: B,cnt: M,ack-w: true > .

rl [rec] : (to B from A val N cnt M)
< B : Receiver | buff: L,snd: A,cnt: M >

=> < B : Receiver | buff: (L ; N),snd: A,cnt: s(M) >
(to A from B ack M) .

rl [ack-rec] : (to A from B ack M)
< A : Sender | buff: L, rec: B, cnt: M, ack-w: true >

=> < A : Sender | buff: L, rec: B, cnt: s(M), ack-w: false > .

Since communication is asynchronous, counters and
acknowledgements are used to ensure in-order communication.

8

The rewrite Command

Maude can execute rewrite theories with the rewrite command
(can be abbreviated to rew). For example,

Maude> rew
< 'a : Sender | buff: (1 ; 2 ; 3 ; 4 ; 5),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > .

result Configuration:
< 'a : Sender | buff: nil,rec: 'b,cnt: 5,ack-w: false >
< 'b : Receiver | buff: (1 ; 2 ; 3 ; 4 ; 5),snd: 'a,cnt: 5 >

The rewrite command applies the rules in a fair way (all rules are
given a chance); and for object systems the frewrite command
does so in an object- and message-fair manner. Rules are applied
until termination, and, if it terminates, a result is given.

9

The rewrite Command (II)

In this example, the rules always terminate, but in general we can
easily have nonterminating computations.

For this reason the rewrite command can be given a numeric
argument stating the maximum number of rewrite steps.
Furthermore, using Maude’s trace command we can observe each
of these steps. For example,

10

The rewrite Command (III)

Maude> set trace on .
Maude> rew [3] < 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > .
*********** rule
rl < A : Sender | buff: (N ; L),rec: B,cnt: M,ack-w: false > =>
< A : Sender | buff: L, rec: B,cnt: M,ack-w: true > to B from A val N cnt M
[label snd] .

< 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
--->
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >
to 'b from 'a val 1 cnt 0
*********** rule
rl < B : Receiver | buff: L,snd: A,cnt: M > to B from A val N cnt M =>
< B : Receiver | buff: (L ; N),snd: A,cnt: s M > to A from B ack M [label rec] .

< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > to 'b from 'a val 1 cnt 0

11

--->
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >
< 'b : Receiver | buff: (nil ; 1),snd: 'a,cnt: 1 > to 'a from 'b ack 0
*********** rule
rl < A : Sender | buff: L,rec: B,cnt: M,ack-w: true > to A from B ack
M => < A : Sender | buff: L,rec: B,cnt: s M,ack-w: false > [label ack-rec] .

< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >
< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 > to 'a from 'b ack 0
--->
< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 >
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 1, ack-w: false >

result Configuration:
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 1,ack-w: false >
< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 >

12

The search Command

Concurrent systems can be nondeterministic. The rewrite
command gives us one possible behavior among many.

To explore all behaviors from an initial state we can use the search
command, which takes two terms: a ground term which the chosen
initial state, and a constructor term, possibly with variables, which
specifies a class of target states as term instances.

Maude then does a breadth first search for target states. For
example, to find all terminating states from state < 'a : Sender
| buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false > < 'b
: Receiver | buff: nil,snd: 'a,cnt: 0 > we can give the
command (where the “!” in =>! specifies that the target state
must be a terminating state),

13

The search Command (II)

Maude> search < 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > =>! C:Configuration .

Solution 1 (state 9)
states: 10 rewrites: 9 in 7ms cpu (34ms real) (1268 rewrites/second)
C --> < 'a : Sender | buff: nil,rec: 'b,cnt: 3,ack-w: false >
< 'b : Receiver | buff: (1 ; 2 ; 3),snd: 'a,cnt: 3 >
No more solutions.

We can then inspect the search graph by giving the command,

14

The search Command (III)

Maude> show search graph .
state 0, Configuration:
< 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 >
arc 0 ===> state 1 (rl < A : Sender | buff: (N ; L),rec: B,cnt: M,ack-w: false >
=> < A : Sender | buff: L,rec: B,cnt: M,ack-w: true > to B from A val N cnt M
[label snd] .)

state 1, Configuration:
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 >
to 'b from 'a val 1 cnt 0
arc 0 ===> state 2 (rl < B : Receiver | buff: L,snd: A,cnt: M >

to B from A val N cnt M =>
< B : Receiver | buff: (L ; N),snd: A,cnt: s M > to A from B ack M [label rec] .)

state 2, Configuration:
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >

15

< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 > to 'a from 'b ack 0
arc 0 ===> state 3 (rl < A : Sender | buff: L,rec: B,cnt: M,ack-w: true >

to A from B ack M =>
< A : Sender | buff: L,rec: B,cnt: s M,ack-w: false > [label ack-rec] .)

state 3, Configuration:
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 1,ack-w: false >
< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 >
arc 0 ===> state 4 (rl < A : Sender | buff: (N ; L),rec: B,cnt: M,ack-w: false >
=> < A : Sender | buff: L,rec: B,cnt: M,ack-w: true >

to B from A val N cnt M [label snd] .)

state 4, Configuration:
< 'a : Sender | buff: 3,rec: 'b,cnt: 1,ack-w: true >
< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 > to 'b from 'a val 2 cnt 1
arc 0 ===> state 5 (rl < B : Receiver | buff: L,snd: A,cnt: M >

to B from A val N cnt M =>
< B : Receiver | buff: (L ; N),snd: A,cnt: s M > to A from B ack M [label rec] .)

state 5, Configuration:
< 'a : Sender | buff: 3,rec: 'b,cnt: 1,ack-w: true >

16

< 'b : Receiver | buff: (1 ; 2),snd: 'a,cnt: 2 > to 'a from 'b ack 1
arc 0 ===> state 6 (rl < A : Sender | buff: L,rec: B,cnt: M,ack-w: true >

to A from B ack M =>
< A : Sender | buff: L,rec: B,cnt: s M,ack-w: false > [label ack-rec] .)

state 6, Configuration:
< 'a : Sender | buff: 3,rec: 'b,cnt: 2,ack-w: false >
< 'b : Receiver | buff: (1 ; 2),snd: 'a,cnt: 2 >
arc 0 ===> state 7 (rl < A : Sender | buff: (N ; L),rec: B,cnt: M,ack-w: false >

=> < A : Sender | buff: L,rec: B,cnt: M,ack-w: true >
to B from A val N cnt M [label snd] .)

state 7, Configuration:
< 'a : Sender | buff: nil,rec: 'b,cnt: 2,ack-w: true >
< 'b : Receiver | buff: (1 ; 2),snd: 'a,cnt: 2 > to 'b from 'a val 3 cnt 2
arc 0 ===> state 8 (rl < B : Receiver | buff: L,snd: A,cnt: M >

to B from A val N cnt M =>
< B : Receiver | buff: (L ; N),snd: A,cnt: s M > to A from B ack M [label rec] .)

state 8, Configuration:
< 'a : Sender | buff: nil,rec: 'b,cnt: 2,ack-w: true >

17

< 'b : Receiver | buff: (1 ; 2 ; 3),snd: 'a,cnt: 3 > to 'a from 'b ack 2
arc 0 ===> state 9 (rl < A : Sender | buff: L,rec: B,cnt: M,ack-w: true >

to A from B ack M =>
< A : Sender | buff: L,rec: B,cnt: s M,ack-w: false > [label ack-rec] .)

state 9, Configuration:
< 'a : Sender | buff: nil,rec: 'b,cnt: 3,ack-w: false >
< 'b : Receiver | buff: (1 ; 2 ; 3),snd: 'a,cnt: 3 >

18

The search Command (IV)

We can then ask for the shortest path to any state in the state
graph (for example, state 3) by giving the command,

Maude> show path 3 .
state 0, Configuration:
< 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 >
===[rl < A : Sender | buff: (N ; L),rec: B,cnt: M,ack-w: false > =>
< A : Sender | buff: L,rec: B,cnt: M,ack-w: true > to B from A val N cnt M
[label snd] .]===>
state 1, Configuration:
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > to 'b from 'a val 1 cnt 0
===[rl < B : Receiver | buff: L,snd: A,cnt: M > to B from A val N cnt M =>
< B : Receiver | buff: (L ; N),snd: A,cnt: s M > to A from B ack M
[label rec] .]===>
state 2, Configuration:

19

< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 0,ack-w: true >
< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 > to 'a from 'b ack 0
===[rl < A : Sender | buff: L,rec: B,cnt: M,ack-w: true > to A from B ack M =>
< A : Sender | buff: L,rec: B,cnt: s M,ack-w: false > [label ack-rec] .]===>
state 3, Configuration:
< 'a : Sender | buff: (2 ; 3),rec: 'b,cnt: 1,ack-w: false >
< 'b : Receiver | buff: 1,snd: 'a,cnt: 1 >

20

The search Command (V)

Similarly, we can search for target terms reachable by: (i) one
rewrite step, (ii) one or more rewrite steps, or (iii) zero, one or
more steps by typing (respectively):

• search t =>1 t′ .

• search t =>+ t′ .

• search t =>* t′ .

21

The search Command (VI)

Furthermore, we can restrict any of those searches by giving an
equational condition on the target term. For example, all states
reachable from < 'a : Sender | buff: (1 ; 2 ; 3),rec:
'b,cnt: 0,ack-w: false > < 'b : Receiver | buff:
nil,snd: 'a,cnt: 0 > such that the value in the sender’s
counter is different from the value in the receiver’s counter can be
found by the command,

Maude> search < 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > =>*
< 'a : Sender | buff: L,rec: 'b,cnt: N,ack-w: TV > C:Configuration
< 'b : Receiver | buff: Q,snd: 'a,cnt: M > such that N =/= M .

Solution 1 (state 2)
C:Configuration --> to 'a from 'b ack 0
L --> 2 ; 3

22

N --> 0
TV --> true
Q --> 1
M --> 1

Solution 2 (state 5)
C:Configuration --> to 'a from 'b ack 1
L --> 3
N --> 1
TV --> true
Q --> 1 ; 2
M --> 2

Solution 3 (state 8)
C:Configuration --> to 'a from 'b ack 2
L --> nil
N --> 2
TV --> true
Q --> 1 ; 2 ; 3
M --> 3
No more solutions.

23

The search Command (VII)

A search can be further restricted by giving as an extra parameter
in brackets the number of solutions we want:

Maude> search [1] < 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > =>*
< 'a : Sender | buff: L,rec: 'b,cnt: N,ack-w: TV > C:Configuration
< 'b : Receiver | buff: Q,snd: 'a,cnt: M > such that N =/= M .

Solution 1 (state 2)
C:Configuration --> to 'a from 'b ack 0
L --> 2 ; 3
N --> 0
TV --> true
Q --> 1
M --> 1

24

The search Command (VIII)

In our communication protocol example the number of reachable
states for an initial state was finite, but for a general rewrite theory
the number of states reachable from an initial state can be infinite.
So, even if we search for a single solution, the search process may
not terminate, because no such solution exists. To make search
terminating, we can add as a second parameter a bound on the
length of the paths searched from the initial state.

search [1, 1] < 'a : Sender | buff: (1 ; 2 ; 3),rec: 'b,cnt: 0,ack-w: false >
< 'b : Receiver | buff: nil,snd: 'a,cnt: 0 > =>*
< 'a : Sender | buff: L,rec: 'b,cnt: N,ack-w: TV > C:Configuration
< 'b : Receiver | buff: Q,snd: 'a,cnt: M > such that N =/= M .

No solution.

25

Why is Rewriting Intrinsically Concurrent?

Up to now our description of rewriting computations has been
sequential: either a single step rewrite u →R/B v, or a sequence of
0, 1, or more rewrites u →∗

R/B v, So, where is the concurrency? In
what sense rewrite theories provide a semantic framework for
concurrency?

This question can be answered at an intuitive level by observing
that rules rewrite a local fragment of the distributed state. For
example, the rules snd, rec, and ack-rec in our communication
protocol only affect the addresse object and the corresponding
message. In a configuration with thousands of sender and receiver
objects, many rewrites with these rules can happen concurrently,
that is, simultaneously and independently of each other.

26

Why is Rewriting Intrinsically Concurrent? (II)

At the logical level, the same question has been answered by
rewriting logic, a logic where:

• Concurrent computation is logical deduction, and

• Programming concurrent systems is mathematical modeling.

A proof in rewriting logic directly expresses a concurrent
computation. Such a proof can have many sequential descriptions
(called interleavings) of the form u →∗

R/B v; but such interleavings
hide the actual concurrency.

An Appendix to this talk contains a link to an early paper on
rewriting logica explaining both the inference rules and the models.

aJ. Meseguer, “Rewriting as a Unified Model of Concurrency” in Proc. CON-
CUR 1990, Springer LNCS 458, 384–400, 1990.

27

