
Rewriting as a Unified Model of Concurrency*

Jos~ Meseguer
SRI International, Menlo Park, CA 94025, and

Center for the Study of Language and Information
Stanford University, Stanford, CA 94305

1 Introduct ion

The main goal of this paper is to propose a general and precise answer to the question:

What is a concurrent system?

It seems fair to say that this question has not yet received a satisfactory answer, and that the
resulting situation is one of conceptual fragmentation within the field of concurrency. A related
problem is the integration o/ concurrent programming with other programming paradigms, such
as functional and object-oriented programming. Integration attempts typically graft an existing
concurrency model on top of an existing language, but such ad hoc combinations often lead to
monstrous deformities which are extremely difficult to understand. Instead, this paper proposes
a semantic integration of those paradigms based on a common logic and model theory.

The logic, called rewriting logic, is implicit in term rewriting systems but has passed for
the most 4part unnoticed due to our overwhelming tendency to associate term rewriting with
equational logic. Its proof theory exactly corresponds to (truly) concurrent computation, and
the model theory proposed for it in this paper provides the general concept of concurrent system
that we are seeking.

This paper also proposes rewrite rules as a very high level language to program concurrent
systems. Specifically, a language design based on rewriting logic is presented containing a func-
tional sublanguage entirely similar to OBJ3 [10] as well as more general system modules, and
also object-oriented modules that provide notational convenience for object-oriented applications
but are reducible to system modules [24]. The language's semantics is directly based on the
model theory of rewriting logic and yields the desired semantic integration of concurrency with
functional and object-oriented programming.

The resulting notion of concurrent system is indeed very general and specializes to a wide
variety of existing notions in a very natural way. Section 5 discusses the specializations to labelled
transition systems, Petri nets and concurrent object-oriented programming in some detail, and
summarizes several others; however, space limitations preclude a more comprehensive discussion,
for which we refer the reader to [25].

Acknowledgements . I specially thank Prof. Joseph Goguen for our long term collaboration
o n the OBJ and FOOPS languages [10, 11], concurrent rewriting [15] and its implementation on
the RI~M architecture [9, 13], all of which have directly influenced this work; he has also pro-
vided many positive suggestions for improving a previous version of this paper. I specially thank
Prof. Ugo Montanari for our collaboration on the semantics of Petri nets [26, 27]; the algebraic
ideas that we developed in that work have been a source of inspiration for the more general
ideas presented here. Mr. Narciso Marti-Oliet deserves special thanks for our collaboration on
the semantics of linear logic and its relationship to Petri nets [22, 21], which is another source of

°Supported by Office of Naval Research Contracts N00014-90-C-0086, N00014-88-C-0618 and N00014-86-C-
0450, and NSF Grant CCP~-8707155.

385

inspiration for this work; he also provided very many helpful comments and suggestions for im-
proving the exposition. I also thank all my fellow members of the OBJ and R.RM teams, past and
present, and in particular Dr. Claude Kirchner, Dr. Sany Leinwand, and Mr. Timothy Winkler,
who deserves special thanks for his many very good comments about the technical content as
well as for his kind assistance with the pictures. I also wish to thank Prof. Pierre-Louis Curien,
Prof. Pierpaolo Degano, Prof. Brian Mayoh, Prof. RObin Milner, Dr. Mark Moriconi, Prof. Peter
Mosses and Dr. Axel Poignr, all of whom provided helpful comments and encouragement.

2 Concurrent Rewriting

The idea of concurrent rewriting is very simple. It is the idea of equational simplification that
we are all familiar with from our secondary school days, plus the obvious remark that we can do
many of those simplifications independently, i.e., in parallel. Consider for example the following
NAT module written in a notation similar to that of ON J:

fmod NAT is mod NAT-CHOICE is

sort Nat . extending NAT .

op 0 : -> Nat . op _?_ : Nat Nat -> Nat .

op s_ : Nat -> Nat . vars N M : Nat .

op _÷_ : Nat Nat -> Nat [comm] . rl N .7 M => N .

vats N M : Nat . rl N ? M => M .

eq N + 0 = N . endm

~q (s N) + (s M) = s s (N ÷ M) .

endfm

NAT defines the Peano natural numbers. It begins with the keyword fmod followed by the mod-
ule's name, and ends with the keyword endfm. The sort Nat is declared using the keyword
s o r t . Each of the functions provided by the module, as well as the sorts of their arguments and
the sort of their result, is introduced using the keyword op. The syntax is user-definable, and
permits specifying function symbols in "prefix," (for example, s_), "infix" (_+_) or any "mixfix"
combination as well as standard parenthesized notation. Variables to be used for defining equa-
tions are declared with their corresponding sorts, and then equations are given (in this example,
equations for addition); such equations provide the actual "code" of the module.

To compute with this module, one performs equational simplification by using the equations
from left to right until no more simplifications are possible. Note that this can be done con-
currently, i.e., applyin~ several equations at once, as in the example of Figure 1, in which the
places where the equations have been matched at each step are marked. Notice that the function
symbol _+_ was declared to be commutative by the attribute 1 [comm]. This not only asserts that
the equation N * M = M + N is satisfied in the intended semantics, but it also means that when
doing simplification we are allowed to apply the rules for addition not just to terms - - in a purely
syntactic way- - but to equivalence classes of terms modulo the ~commutativity equation. In the
example of Figure 1, the equation N + 0 = N is applied (modulo commutativity) with 0 both
on the right and on the left.

The above module has equations that are Church-Rosser and terminating and is therefore
functional; its mathematical semantics is given by the initial algebra 2 associated to the syntax
and equations in the module [14], i.e., associated to the equational theory that the module
represents. Up to now, most work on term rewriting has dealt with that case. However, the true
possibilities of the concurrent rewriting model are by no means restricted to this case. Indeed,

qu OBJ it is possible to declare several attributes of this kind for an operator, including also associativity and
identity, and then do rewriting modulo such attributes.

2In the above example, the initial algebra is of course the natural numbers with successor and addition.

386

** S S " , S S

s* i * * S • , Jr " . . , J r , .

0 0 s 0

• Jr "~

0 \o" ",, .) ,

Figure 1: Concurrent rewriting of an arithmetic expression

most of the applications discussed in this paper, including many well known concurrency models,
are not functional. Consider the NAT-CHOICE module above, which adds a nondeterministic choice
operator to the natural numbers. The intuitive operational behavior of this module is quite clear.
Natural number addition remains unchanged and is computed using the two rules in the NAT
module. Notice that any occurrence of the choice operator in an expression can be eliminated by
choosing either of the arguments. In the end, we can reduce any ground expression to a natural
number in Peano notation. The mathematical semantics of the module is much tess clear. If
we adopt an initial algebra semantics, it follows by the rules of equational deduction with the
two equations in NAT-CHOICE that N = M, i.e., everything collapses to one point. Therefore,
the declaration extending NAT, whose meaning is that two distinct natural numbers are not
identified by the new equations introduced in NAT-CHOICE, is violated in the worse possible way
by this semantics; yet, the operational behavior in fact respects such a declaration. To indicate
that this is not the semantics intended, I have used the keyword rood (instead of the previous
fmod) to indicate that this module is not functional. Similarly, I have written a new keyword
r l --instead of the usual eq before each equation-- and replaced the equal sign by the new sign
"=>" to suggest that r l declarations must be understood as "rules" and not as equations in the
usual sense. At the operational level the equations introduced by the keyword eq in a functional
module are also implemented as rewrite rules; the difference however lies in the mathematical
semantics given to the module, which for modules like the one above should not be the initial
algebra semantics. My proposal is to seek a logic and a model theory that are the perfect match
for this problem. For this solution to be in harmony with the old one, the new logic and the
new model theory should generalize the old ones.

2.1 Bas ic Un ive r sa l A l g e b r a

For the sake of making the exposition simpler, I treat the unsorted case; the many-sorted and
order-sorted cases can" be given a similar treatment. Therefore, a set E of function symbols is a
ranked alphabet ~ = {P.,~ [n E]N}. A E-algebra is then a set A together with an assignment of
a function fA : A n --* A for each f E E,~ with n E IN. I denote by Tn the ~.-algebra of ground
Z-terms, and by T ~ (X) the E-algebra of ~.-terms with variables in a set X. Similarly, given
a set E of E-equations, T~,E denotes the E-algebra of equivalence classes of ground ~.-terms
modulo the equations E (i.e., modulo provable equality using the equations E); in the same way,
T~,E(X) denotes the ~-algebra of equivalence classes of E-terms with variables in X modulo the
equations E. We let t =E t' denote the congruence modulo E of two terms t, t', and [t]E or just
It] denote the E-equivalence class of t.

Given a term t E Tz({zl, . . . ,x~)) , and a sequence of terms u l , . . . , u , ~ , t (u l / x l , . . . , u n / z n)

387

denotes the t e rm obta ined from t by simultaneously substituting ul for xl, i = 1 , . . . , n. To
simplify no ta t ion , I denote a sequence of objects a l , . . . , an by ~, or, to emphasize the length of
the sequence, by ~n. Wi th this no ta t ion , t (uz /x l , . . . , u,~/x~) is abbrevia ted to t(~/F).

2 .2 R e w r i t i n g L o g i c

We are now ready to in t roduce the new logic tha t we are seeking, which I call rewriting logic.
A signature in this logic is a pair (~ , E) with E a ranked alphabet of funct ion symbols and E a
set of E-equat ions. Rewri t ing will operate on equivalence classes of terms modulo a given set of
equat ions E . In this way, we free rewri t ing from the syntact ic constra ints of a t e rm representat ion
and gain a much greater flexibility in deciding what counts as a data structure; for example, s tr ing
rewri t ing is obta ined by impos ing an associat ivi ty axiom, and mult ise t rewri t ing by imposing
associat ivi ty and eommutat iv i ty . Of course, s t andard t e rm rewri t ing is ob ta ined as the par t icular
case in which the set E of equat ions is empty. The idea of rewri t ing in equivalence classes is well
known (see, e.g., [17, 5].)

Given a s ignature (E , E) , the sentences are sequents of the form [t]E---+ [t']E with t , t '
E- terms, where t and t ' may possibly involve some variables from the countably infinite set
X = { x l , . . . , x ,~ , . . .) . A theory in this logic, called a rewrite theory, is a slight generalization of
the usual no t ion of theory - -wh i c h is typical ly defined as a pair consist ing of a s ignature and a
set of sentences for i t - - in tha t , in addi t ion, we allow rules to be labelled. This is very na tu ra l
for m a n y applicat ions, and cus tomary for a u t o m a t a - -v iewed as labelled t rans i t ion sys t ems- -
and for Petr i nets, which are bo th par t icular instances of our definition (see Section 5.)

D e f i n i t i o n 1 A (labelled) rewrite theory a Tl is a 4-tuple 7~ = (E ,E ,L ,R) where E is a ranked
a lphabet of funct ion symbols, E is a set of E-equa t ions , / ; is a set called the set of labels, and R is
a set of pairs R C L × (Tz,E(X) ~) whose first component is a label and whose second component
is a pair of E-equivalence classes of terms, with X = { x l , . . . , x , ~ , . . . } a countably infinite set
of variables. Elements of R are called rewrite rules 4. We unders tand a rule (r, ([t], It'])) as a
labelled sequent and use for i t the no ta t ion r : [t] ~ [t']. To indicate tha t { x ~ , . . . , z,~} is the
set of variables occurr ing in either t or t ' , we write s r : I t (x 1 , . . . , x~)] ---* [t ' (x l , . . . , z,~)], or in
abbrevia ted no ta t ion r : [t (~)] ---* [t ' (~)] . []

Given a rewrite theory 7~, we say that 7~ entails a sequent [t] - -+ [t'] and write
7~ k- [t] ---+ [t'] if and only if [t] ~ [t'] can be obta ined by finite appl icat ion of the follow-
ing rules of deduction:

1. R e f l e x i v i t y . For each [t] e TE,E(X),

[t]---[t]
3I consciously depart from the standard terminology, that would call R a rewrite system. The reason for this

departure is very specific. I want to keep the term "rewrite system" for the models of such a theory, which will be
defined in Section 3 and which really are systems with a dynamic behavior. Strictly speaking, "R. is not a system;
it is only a static, linguistic, presentation of a class of systems --including the initial and free systems that most
directly formalize our dynamic intuitions about rewriting.

4To simplify the exposition, in this paper I consider only unconditional rewrite rules. However, all the results
presented here have been extended to conditional rules in [25] with very general rules of the form

~: [t] --~ [~'] i/ [~] ~ [vl] A. . . ^ [~k] ---* [v~].

This of course increases considerably the expressive power of rewrite theories.
5Note that, in general, the set {xl , . . . , x~} will depend on the representatives $ and t t chosen; therefore, we

allow any possible such qualification with explicit variables.

388

2. C o n g r u e n c e . For each f E E,~, n E IN,

It1] - - ~ [t~] . . . [tn] ~ [t']
l ! [/(t~,...,t,~)] ~ [f (t , . . . , t , ,)]

3. R e p l a c e m e n t . For each rewri te rule r : [t (x ~ , . . . , x ,)] - - ~ [t ' (= ~ , . . . , = ,)] in R,

[w,] - - ~ [w~] . . . [w~] ~ [w']
[t (~ / ~)] - - ~ [t'(w,/~-)]

4. T rans i t i v i t y .
It1] ~ [t2] It2] ~ [t31

It1] ~ [t3]

Equational logic (modulo a set of axioms E) is obtained from rewriting logic by adding the
following rule:

5. S y m m e t r y .
[tl]-----+ [t2]

It2] - - ~ It1]

With this new rule, sequents derivable in equational logic are bidirectional; therefore, in this case
we can adopt the notation [t] ~ It'] throughout and call such bidirectional sequents equations.

In rewritinglogic a sequent It] ~ It'] should not be read as "It] equals [t']," but as "[t] becomes
[tt]. " Therefore, rewriting logic is a logic of becoming or change, not a logic of equality in a static
Platonic sense. Adding the symmetry rule is a very strong restriction, namely assuming that
all change is reversible, thus bringing us into a timeless Platonic realm in which "before" and
"after" have been identified. A related observation is that It] should not be understood as a term
in the usual first-order logic sense, but as a proposition --bui l t up using the logical connectives
in E - - that asserts being in a certain state having a certain structure. The rules of rewriting
logic are therefore rules to reason about change in a concurrent system. They allow us to draw
valid conclusions about the evolution of the system from certain basic types of change known to
be possible thanks to the rules R.

2 .3 C o n c u r r e n t R e w r i t i n g

A nice consequence of having defined rewriting logic is that concurrent rewriting, rather than
emerging as an operational notion, actually coincides with deduction in such a logic.

Def in i t ion 2 Given a rewrite theory n = (E, E, L, R), a (E, E)-sequent It] --~ [t'] is called:

• a O-step concurrent T~-rewrite iff it can be derived from T~ by finite application of the rules
1 and 2 of rewriting deduction (in which case [t] and [t]' necessarily coincide);

• a one-step concurrent T~-rewrite iff it can be derived from 7~ by finite application of the
rules 1-3, with at least one application of rule 3; if rule 3 was applied exactly once, we then
say that the sequent is a one-step sequential 7~-rewrite;

• a concurrent T~-rewrite (or just a rewrite) iff it can be derived from T~ by finite application
of the rules 1-4.

We call the rewrite theory T~ sequential if all one-step 7~-rewrites are necessarily sequential. A
sequential rewrite theory T~ is in addition called deterministic if for each It] there is at most one
one-step (necessarily sequential) rewrite [t] ~ It']. The notions of sequential and deterministic
rewrite theory can be made relative to a given subset S C T£,E(X) by requiring that the
corresponding property holds for each [t'] "reachable from S," i.e., for each [t'] such that for
some [t] E S there is a concurrent T/-rewrite [t] ---* [t'].

389

The usual notions of confluence, termination, normal form, etc., as well as the well known
Church-Rosser property of confluent rules remain unchanged when considered from the per-
spective of concurrent rewriting [25]. Indeed, concurrent rewriting is a more convenient way of
considering such notions than the traditional way using sequential rewriting.

3 S e m a n t i c s

As such, a rewrite theory 7~ : (~2, E, L, R) is a static description of what a system can do. The
meaning should be given by a model of its actual behavior. I construct below a model in which
behavior exactly corresponds to deduction.

Given a rewrite theory 7~ = (E , Z , L , R) , the model that we are seeking is a category :F~(X)
whose objects are the equivalence classes of terms It] E T~,E(X) and whose morphisms are equiva-
lence classes of terms representing proofs in rewriting deduction, i.e., concurrent T&rewrites. The
rules for generating such terms, with the specification of their respective domain and codomain,
are given below. Note that in the rest of this paper I always use "diagrammatic" notation for
morphism composition, i.e., a;/3 always means the composition of a followed by ft.

1. Iden t i t i es . For each It] E T~,E(X),

[t]: It] - - ~ It]

2. Y].-strueture. For each f E E,~, n E iN,

~ : [t~] ~ [t~] . . . ~ . : [t.] ~ [r]
/ (e l , . . . , a,~): [f (t l , . . . , tn)] ---+ [f (t~ , . . . , t~)]

a. R e p l a c e m e n t . ro t each rewrite rule r : [t (~)] - - ~ [r (~)] in R,

, ~ : [~'1] - - * [~] . . . ,~. : [w 4 ~ [~ ']
r (~ , . . . , , ~ , ,) : [t (~ /~)] --- , [t ' (,o ' /~)]

4. C o m p o s i t i o n .

For the case of equational logic we can also define a similar model as a category T~-*(X)
(actually a groupoid 6) by using the rule of symmetry to generate additional terms:

5. Invers ion .
~ : It1] - - * [t21

~ - 1 : It2] - ~ [tl]

C o n v e n t i o n and W a r n i n g . In the case when the same label r appears in two different rules
of R, the "proof terms" r(~) can sometimes be ambiguous. I will always assume that such
ambiguity problems have been resolved by disambiguating the label r in the proof terms r(~) if
necessary. With this understanding, I adopt the simpler notation r(~) to ease the exposition.

Each of the above rules of generation defines a different operation taking certain proof terms
as arguments and returning a resulting proof term. In other words, proof terms form an algebraic
structure T~n(X) consisting of a graph with identity arrows and with operations f (for each
f E E), r (for each rewrite rule), and _ ;_ (for composing arrows). Our desired model Tn(X) is
the quotient of :P~(X) modulo the following equations7:

SA category C is called a groupoid iff any morphism f : A ----* B in g has an inverse morphism f-1 : B -----* A
such that f;f-1 = 1A, and f -1; f = lB.

tin the expressions appearing in the equations, when compositions of morphisms age involved, we always
implicitly assume that the corresponding domains and codomains match.

390

1. C a t e g o r y .

(a) Assoeiativity. For all a , f l , 7 (~ ;~) ;7 = ~; (f l ;7)

(b) Identities. For each ~ : It] ---+ It'] a; It'] = a and [t]; c~ =

2. F u n c t o r i a l i t y o f t h e Z - a l g e b r a i c s t r u c t u r e . For each f E ~ , n E 1N,

(a) Preservation of composition. For all a l , . . . , a n , i l l , . . - , fin,

f (~ ; fl~,.. . , ,~n; fl,0 : / (~ , . . . , ,~,0; f(f l~, . - . , fin)

(b) Preservation of identities, f ([t l] , . . . , [tn]) = [f (t l , . . . , t n)]

3. A x i o m s in E. For t (x~ , . . . , Xn) = t ' (x z , . . . , x,~) an axiom in E , for all c ~ , . . . , C~n,

~ (~ , . . . , ~ ,) = t ' (~ , . . . , ~)

4. E x c h a n g e . For each r : It(x1, . . . , xn)] ---* [t ' (x l , . . . , xn)] in R,

~1: [~1] --* [~] - . . ~ n : [~'n] "--* [~']
~(~) = r (M) ; t ' (~) = t(~); r([~'])

Similarly, the groupoid 7"~(X) is obtained by identifying the terms generated by rules 1-5
modulo the above equations plus the additional:

5. I nve r se . For any a : [t] - -~ [t'] in T~-~(X), a;a -1 = [t] and a-1;a = [t']

Note that the set X of variables is actually a parameter of these constructions, and we need
not assume X to be fixed and countable. In particular, for X = 0, I adopt the notations ff'R
and ~*~ respectively. The equations in 1 make T~(X) a category, the equations in 2 make R ,
each f E ~ a functor, and 3 forces the axioms E. The exchange law states that any rewriting
of the form r(~) --which represents the simultaneous rewriting of the term at the top using
rule r and "belo.__w_w," i.e., in the subterms matched by the ru le - - is equivalent to the sequential
composition r([w]); t ' (~) corresponding to first rewriting on top with r and then below on the
matched subterms. The exchange law also states that rewriting at the top by means of rule r and
rewriting "below" are processes that are independent of each other and therefore can be done in
any order. Therefore, r (~) is also equivalent to the sequential composition t(~); r([w']). Since
[t (Xl , . . . , Xn)] and [t ' (Xl , . . . , xn)] can be regarded as functors T~(X) n ----* T~z(X), the exchange
law just asserts that r is a natural transformation [20], i.e.,

L e m m a 3 For each r : [t (x l , . . . , x,,)] --~ I t ' (x1 , . . . , Xn)] in R, the family of morphisms

{r([~]--) : [t (~ /~)] ---, [~'(~/~)] I t-~'] e T~,~(X)")

is a natural transformation r : [t(xl , . . . ,xn)] ==~ [t ' (x l , . . . ,Xn)] between the functors
[t (x , , . . . , ~n)], [r (~ l , . . . , ~,,)1 : ~ (x) n - - , : r~ (x) .

What the exchange law provides in general is a way of abstracting a rewriting computation
by considering immaterial the order in which rewrites are performed "above" and "below" in the
term; further abstraction among proof terms is obtained from the functoriality equations. The
equations 1-4 provide in a sense the most abstract view of the computations of the rewrite theory
7~ that can reasonably be given. In particular, we can prove that all terms have an equivalent
expression as step sequences or as interleaving sequences:

391

Lemma 4 For each [a] : [t] --~ [t'] in 7-r~(X), either It] = [t'] and [a] = [[t]], or there is an
n E]N and a chain of morphisms [all, 0 < i < n whose terms ai describe one-step (concurrent)
rewrites

[t] Its] . . . [t,,] [t']
such tha t [a] = [a0 ; . . . ;an]. In addit ion, we can always choose all the a i corresponding to
sequential rewrites. []

The category Try(X) is just one among many models tha t can be assigned to the rewriting
theory T~. The general notion of model, called an 7~-system, is defined as follows:

D e f i n i t i o n 5 Given a rewrite theory T~ = (E, E , L, R) , an Ti-system S is a category S together
with:

• a (E, E)-a lgebra structure, i.e., for each f E En, n 6 IN, a functor f s : 8 n ~ $, in such a
way tha t the equations E are satisfied, i.e., for any t (x l , . . . , x n) = t ' (x l , . . . , x •) in E we
have an ident i ty of functors t s = t~, where the functor ts is defined inductively from the
functors f s in the obvious way.

• for each rewrite rule r : [t(~)] - -* [t'(~)] in R a natura l transformation r s : t s ==~ t~.

An Ti-homomorphism F : S ~ S ' between two 7~-systems is then a functor F : S ~ S '
such tha t i t is a E-algebra homomorphism - - i . e . , f s * F = F n * f s , , for each / in En, n 6 IN--
and such tha t " F preserves R," i.e., for each rewrite rule r : [t(~)] ----* [t'(~)] in R we have
the ident i ty of natura l transformations rs * F = F" • rs, , where n is the number of variables
appearing in the rule. This defines a category Ti-Sys in the obvious way.

An T&groupoid is an 7~-system S whose category structure is actually a groupoid. This
defines a fall subcategory ~-Grpd C Tg-Sys. []

W h a t the above definition captures formally is the idea that the models of a rewrite theory
are systems. By a "system" I of course mean a machine-like entity that can be in a variety of
states, and tha t can change its s tate by performing certain transitions. Such transit ions are of
course transit ive, and it is natural and convenient to view states as "idle" transit ions tha t do
not change the state. In other words, a system can be natural ly regarded as a category, whose
objects are the s tates of the system and whose morphisms are the system's transit ions.

For sequential systems, this is in a sense the end of the story (see Section 5.1.) As I will
argue and just ify more fully with examples in Section 5, what makes a system concurrent is
precisely the existence of an addit ional algebraic structure. Ugo Montanari and I first observed
this fact for the part icular case of Petri nets for which the algebraic structure is precisely that
of a commutat ive monoid [26, 27]. However, this observation holds in full generality for any
algebraic structure whatever. What the algebraic structure captures is twofold. Firstly, the
states themselves are distributed according to such a structure; for Petri nets the distr ibution
takes the form of a muItiset tha t we can visualize with tokens and places; for a functional
program involving just syntactic rewriting, the distr ibution takes the form of a labelled tree
structure which can be spat ia l ly dis tr ibuted in such a way that many transit ions (i.e., rewrites)
can happen concurrently in a way analogous to the concurrent firing of transit ions in a Petri
net. Secondly, concurrent transitions are themselves distributed according to the same algebraic
structure; this is what the notion of 7~-system captures, and is for example manifested in the
concurrent firing of Petr i nets and, more generally, in any type of concurrent rewriting.

The expressive power of rewrite theories to specify concurrent transit ion systems s is great ly
increased by the possibili ty of having not only transit ions, but also parameterized transitions,

SSuch expressive power is further increased by allowing conditional rewrite rules, a more general case to which
all that is said in this paper has been extended in [25],

392

System ~ ~ Category
State (~ Object
Transition ~ ~ Morphism
Procedure ~ ~ Natural Transformation
Distributed Structure ~ ~ Algebraic Structure

Figure 2: The mathematical structure of concurrent systems

i.e., procedures. This is what rewrite rules - -w i th variables-- provide. The family of states to
which the procedure applies is given by those states where a component of the (distributed)
state is a substitution instance of the lefthand side of the rule in question. The rewrite rule is
then a procedure 9 which transforms the state locally, by replacing such a substitution instance
by the corresponding substitution instance of the righthand side. The fact that this can take
place concurrently with other transitions "below" is precisely what the concept of a natural
transformation formalizes. The table of Figure 2 summarizes our present discussion.

A detailed proof of the following theorem on the existence of initial and free T~-systems for
the more general case of conditional rewrite theories is given in [25], where the soundness and
completeness of rewriting logic for T~-system models is also proved.

T h e o r e m 6 7"~ is an initial object in the category 7~-Sys, and T~*-* is an initial object in the cat-
egory T~-Grpd. More generally, T n (X) has the following universal property: Given an 7~-system
S, each function F : X ---* Obj(S) extends uniquely to an 7~-homomorphism F ~ : TTt(X) --~ S.
7"~"(X) has the same universal property with respect to 7~-groupoids.

3.1 E q u a t i o n a l l y D e f i n e d C l a s s e s o f M o d e l s

Since T~-systems are an "essentially algebraic" concept l°, we can consider classes 0 of 7~-systems
defined by the satisfaction of additional equations. Such classes give rise to full subcategory
inclusions ® ~ Tt-Sys, and by general universal algebra results about essentially algebraic
theories (see, e.g., [2]) such inclusions are reflective [20], i.e., for each 7~-system S there is an
7~-system R o (S) E 0 and an T~-homomorphism po(S) : S --~ Ro(S) such that for any 7~-
homomorphism F : ,5 ---* 7) ~ i th 7) E 0 there is a unique 7~-homomorphism F 0 : Re(,5) ~ 79
such that F = po(S) ; F ~>. The full subcategory ~-Gryd C_ ~ -Sys is also reflective, but it is not
equationally definable. The situation generalizes tha t of the inclusion of the category of groups
into the category of monoids. What we have in this case is an inclusion that is aforgetfulfunctor
from a category of algebras with additional operations (in this case the inversion operation.)
However, for any equationally definable (full) subcategory O C Tt-Sys~ defined by a collection of
equations H , the intersection 0 n T&Grpd has a very simple description, since it is just the full
subcategory of Tt-Grpd definable by the equations H.

Therefore, we can consider subcategories of Tl-S~ls or of 7~-Grpd that are defined by certain
equations and be guaranteed that they have initial and free objects, that they are closed by
subobjects and products, etc. Consider for example the following conditional equations:

Vf, g E Arrows, f = g if So(f) = to(g) A e l (f) = Ol(g)

V / , g e Arrows, / = g ff O d D = 01(g) ^ 01(/) = Oo(g).

airs actual parameters are precisely given by a substitution.
1°In the precise sense of being specifiable by an "essentiai]y algebraic theory" or a "sketch" [2]; see [25].

393

Figure 3: Subcategories of 7C-Sys and their initial objects

The first equation forces a category to be a preorder, and the addition of the second requires this
preorder to be a poset. By imposing the first one, or by imposing both, we get full subcategories

7c-Pos C 7Z-Preord C T~-Sys.

A routine inspection of 7~-Preord for 7C = (E, E , L , R) reveals that its objects are preordered
E-algebras (A,_<) (i.e., preordered sets with a E-algebra structure such that all the opera-
tions in E are monotonic) that satisfy the equations E and such that for each rewrite rule
r : [t(~)] ---* [t'(¥)] in R and for each ~ E g '~ we have, tA('5) >_ t~A('5). The poset case is entirely
analogous, except that the relation < is a partial order instead of being a preorder. The reflection
functor associated to the inclusion T~-Preord C 7c-Sys, sends q-n(X) to the familiar 7C-rewriting
relation 11 o n (x) on E-equivalence classes of terms with variables in X. It is easy to show that
rewriting logic remains complete when we restrict the models to be preorders [25]. Similarly, the
reflection associated to the inclusion 7C-Pos C 7C-Sys maps TTc(X) to the partial order > 7¢(x)
obtained from the preorder --+ 7¢(x) by identifying any two It], [tq such that It] ~ 7¢(x)[t'] and
It'] --*n(x)[t]. Again, rewriting logic remains complete for poset models [25].

Intersecting 7C-Pos and ~-Preord with the category 7C-Grpd we get two subcategories defin-
able by the first equation or by both, but now in the context of 7~- Grpd. Combining the notions
of a groupoid and a preorder we get exactly the notion of an equivalence relation and therefore
a subcategory 7C-Equiv whose initial object is the usual congruence ~-7¢ on ground terms mod-
ulo provable equality generated by the rules in 7C when regarded as equations. A poset that
is also a groupoid yields a discrete category whose only arrows are identities, i.e., a set. It is
therefore easy to see that the subcategory obtained by intersecting 7C-Pos with 7C-Grpd is just
the familiar category Ti-AIg of ordinary E-algebras that satisfy the equations E [unlabel(R),
where the unIabel function removes the labels from the rules and turns the sequent signs " ----* "
into equality signs. Similarly, the reflection functor into 7c-Alg maps Tn(X) to Tn(X) , the free
E-algebra on X. Figure 3 summarizes the relationships among all these categories.

11It is perhaps more suggestive to call "-'*Tz(x) the teachability relation of the system TTz(X).

394

4 R e w r i t e Rules as a P r o g r a m m i n g Language

In this paper I have put forward the view that , by generalizing the logic and the model theory
of equational logic to those of rewriting logic, a much broader field of applications for rewrite
rule programming is possible - -based on the idea of programming concurrent systems ra ther
than algebras-- with the same high standards of mathematical rigor for its semantics. I present
below a specific proposal for such a semantics. This proposal has two advantages. Firs t , the
functional case of equational logic is kept as a sublanguage having a more specialized semantics;
second, the operational and mathematical semantics of a module are related in a part icular ly
nice way. The proposal is embodied in Maude, a language design tha t contains OBJ3 [10] as
i ts functional sublanguage. As already mentioned, all the ideas and results in this paper extend
without problem 1~ to the order-sorted case13; the unsorted case has only been used for the sake
of a simpler exposition. Therefore, all tha t is said below is understood in the context of order-
sorted rewriting logic. In Maude there are three kinds of modules: functional - - in t roduced by
the keyword fmod, such as the NAT module in Section 2 - - , system - - in t roduced by the keyword
rood such as the module NAT-CHOICE-- and object-oriented - - in t roduced by the keyword omod
(See Section 5.3.) The semantics of object-oriented modules reduces to that of system modules;
therefore, in this section we focus on the functional and system cases. Functional and system
modules are respectively of the form fmod T8 endfm, and rood T8 ~ endm, for T~ and T8 ~ rewrit ing
theories 14. Their semantics is given in terms of a machine linking the module 's operat ional
semantics with its denotat ional semantics. The general notion of a machine is as follows.

D e f i n i t i o n 7 For 7~ a rewrite theory and @ ~-+ Ti-Sys a reflective full subcategory, an Ti-machine
over ~ is an TS-homomorphism ~_] : S ---* M - -ca l led the machine's abstraction map-- with
S an 7~-system and jr4 E ®. Given 7~-machines over O, ~_] : $ - -~ .£4 and'I_] ' : $ ' ~ ~4 ' an
TS-machine homomorphism is a pair of 7~-homomorphisms (F, G), F : S ---* S I, G : A,~ ~ /~r,
such tha t 3-]; G = F ; ~_]'. This defines a category T~-Mach/O; it is easy to check that the initial
object in this category is the unique ~-homomorphism 7-T~ ---* Re(Tn)

The intuitive idea behind a machine [_] : 3 ~ .M is that we can use a system S to compute
a result relevant for a model ~4 of interest in a class ~ of models. What we do is to perform
a certain computat ion in S , a ~ l then output the result by means of the abstract ion map 3-]-
A very good example is an arithmetic machine with S = ~AT, for NAT the rewriting theory
of the Peano natural numbers corresponding to the module NAT is in Section 2, with J~4 = lN,
and with 3-] the unique homomorphism from the initial NAT-system ~AT; i.e., this is the init ial
machine in NAT-Mach/NAT-AIg. To compute the result of an ari thmetic expression t, we perform
a terminat ing rewriting and output the corresponding number, which is an element of iN.

Each choice of a reflective full subcategory ~ as a category of models yields a different
semantics. As already implicit in the ar i thmetic machine example, the semantics of a functional
module 16 fmod 7~ end:fro is the initial machine in Tt-Mach/7"~-Alg. For the semantics of a system
module rood 7~ endm not having any functional submodules 17 I propose the initial machine in
T~-Mach/T~-Preord, but other choices are also possible. On the one hand, we could choose to be
as concrete as possible and take ® = 7~-Sys in which case the abstract ion map is the identi ty
homomorphism for T~. On the other hand, we could instead be even more abstract , and choose

12Exercising of course the well known precaution of making explicit the universal quantification of rules.
lSI.e., there is not just one sort, but a partially ordered set of sorts --with the ordering understood as type

inclusion-- and the function symbols can be overloaded [12].
14This is somewhat inaccurate in the case of system modules having functional submodules, which is discussed

below, because we have to "remember" that the submodule is functional.
15In this case E is the commutativity attribute, and R consists of the two rules for addition.
16For this semantics to behave well, the rules R in the functional module ~ should be conj~uent modulo E.
lVSee below for a discussion of submodule issues.

395

t9 = 7~-Pos; however, this would have the unfortunate effect of collapsing all the states of a cyclic
rewriting, which seems undesirable for many "reactive" systems. If the machine TT~ ~ M is the
semantics of a functional or system module with rewrite theory 7~, then we call Tr~ the module 's
operational semantics, and M its denotational semantics.

In Mande a module can have submodules. Functional modules can only have functional
submodules, but system modules can have both functional and system submodules. For example,
NAT was declared a submodule of NAT-CHOICE. The meaning of submodule relations in which
the submodule and the supermodule axe both of the same kind is the obvious one, i.e., we
augment the signature, equations, labels, and rules of the submodule by adding to them the
corresponding ones in the supermodule; we then give semantics to the module so obtained
according to i ts kind, i.e., functional or system. The semantics of a system module having
a functional submodule is somewhat more delicate. Suppose that the rewrite theory of the
functional submodule is is 7~ = (~, E , L, R) and that of the system supermodule plus i ts system
submodules is 7~ t = (~/ , E t, L ~, R'); as before we can form 7~U7~ ~ = (~U ~', EU E', LU L ~, RU R~),
but the semantics of the module is now given by the init ial machine in the category

(~ U 7~')-Mach/(E U ~', E U E' U unlabel(R), L', R~)-Preord.

Notice that (E tO ~ , E U E ~ U unlabel(R), L t, R~)-Preord is an equationally definable full subcat-
egory of (7~ U 7~')-Preord, namely the one defined by the equations t(~) = t ' (~) for each rewrite
rule r : [t(~)] ---* [t'(~)], and therefore is also reflective.

Given a preorder f14 in (~ U E ~, E U EtO unlabel(R), L ~, R')-Preord we can forget about R ~
and the labels and view it as an 7~-algebra M I n . Given a system module rood 7~ ~ endm having
fmod 7~ endfm as i ts functional submodule and TT~uT~, ~ M as i ts semantics, we say that this
submodule relation is extending if the unique 7~-homomorphism h : T~z ---* M 17e is injective;
similarly, we say tha t i t is protecting if h is an isomorphism. We leave for the reader to check
that the extending relation asserted for the impor ta t ion of NAT in NAT-CHOICE does in fact hold.

As OBJ, Maude has also theories to specify semantic requirements for interfaces and to make
high level assertions about modules; they can be functional, system, or object-oriented. Also as
OBJ, Mande has parameterized modules - - aga in of the three k inds - - and views that are theory
interpretat ions relat ing theories to modules or to other theories. Details for all these aspects of
the language will appear elsewhere 19. Finally, note tha t Mande is a logic programming language
in the general axiomatic sense made precise in [23].

5 Unifying Models of Concurrency

Labelled transi t ion systems, Petri nets and concurrent object-oriented programming are dis-
cussed as specializations of concurrent rewriting; other specializations are also discussed briefly.

5 .1 L a b e l l e d T r a n s i t i o n S y s t e m s

This is the par t icular ly simple case of rewrite theories 7~ = (E , E , L , R) such tha t E = 0,
= E0, i.e., E only involves constants, and all the rules in 7~ are of the form r : a ---* b for

a, b constants. For example, the transit ion system of Figure 4 corresponds to the rewrite theory
of the sytem module LTS in the same figure. Since E contains only constants and the rules
have no variables, the rules 1-5 of rewriting logic specialize to very simple rules. The rule of
congruence becomes a tr ivial subcase of reflexivity, and the rule of replacement just yields each
rule r : a - -* b in 7~ as its own consequence. Thus, we just have reflexivity and t ransi t ivi ty with

ISWe assume that, if several functional submodules have been declared, we have already taken their union.
19Some basic results about views and parameterization for system modules have already been given in [25].

396

t

mod LTS is

sort State .

ops a,b,c : -> State

rls p,q : a => b

rl r : b => b

rl s : b => c

rls v,w : c => a

rl t : c => b

rl u : c => c

endm

Figure 4: A labelled transition system and its code in Maude

the rules r : a --+ b in 7~ as basic axioms. Therefore, Tn is just the free category - -a lso called
the path category-- generated by the labelled transition system when regarded as a graph. More
generaJly, any 7~-system with ~ a labelled transition system is just a category C together with
the assignment of an object of C to each constant in ~ and a morphism in C for each rule in R in
a way consistent with the assignment of objects. In other words, such systems are just sequential
systems, and their sequentiality is precisely due to the absence of any operations other than
constants. In fact, labelled transition systems are intrinsically sequential as rewrite theories, in
the precise sense of Definition 2. However, since several transitions are in general possible from
a given state, they exhibit a form of nondeterminism.

Interleaving approaches to concurrency restrict themselves to labelled transition systems or
similar sequential structures. We can always sequentialize a concurrent computation (see Lemma
4) and therefore much valuable work can be and has been done in this context. However, the
context as such is intrinsically sequential and forces a form of indirect reasoning when considering
concurrency aspects; therefore, it seems quite limited. Plato's analogy of the cave 2° may provide
an apt metaphor for this situation, with labelled transition systems being the wall of the cave
on which the shadows of true concurrency are reflected. The metaphor seems apt because it
agrees with the mathematical facts; for 7~ an arbitrary rewrite theory, the descent into the cave
is precisely the forgetful functor 7~-Sys --+ Cat.

5.2 P e t r i N e t s

This is one of the most basic models of concurrency. It has the great advantage of exhibiting
concurrency directly, not through the indirect mediation of interleavings. Its relationship to
concurrent rewriting can be expressed very simply. It is just the particular case of rewrite
theories At" = (P. ,E,L,R) with ~0 = A t~ {A), ~2 = {®), with all the other P', empty, with
E = ACI - -wi th ACI the axioms of associativity and commutativity for ® and identity A for
® - - and with all terms in the rules R ground terms. Consider for example the Petri net in
Figure 5, which represents a machine to buy subway tickets. With a dollar we can buy a ticket
t l by pushing the button b - t 1 and get two quarters back; if we push b - t 2 instead, we get a
longer distance ticket t2 and one quarter back. Similar buttons allow purchasing the tickets with
quarters. Finally, with one dollar we can get four quarters by pushing change. The corresponding
rewrite theory is that of the TICKET module in the same figure.

The rules of deduction specialize as follows. The congruence rule applies just to ® and
yields instances of reflexivity for the constants. Since the rewrite rules have no variables, the
replacement rule yields each of the rewrite rules as axioms. Interpreting ® as conjunction in
linear logic [8], this specialization yields sound and complete rules of deduction for the linear

2°Republic, Bk. VII, 514-517.

397

$

H q t2

mod TICKET is

sort Place .

ops $,q,tl,t2 : -> Place .

op _®_ : Place Place -> Place

[assoc comm id: A] .

rl b-tl : $ => tl Q q Q q .

rl b-t2 : $ => t2 ® q .

rl change : $ => q ® q ® q ® q .

rl b'-tl : q ® q => tl .

rl b'-t2 : q ® q ® q => t2 .

endm

Figure 5: A Petri net and its code in Mande

theory having each of the rewrite rule sequents as axioms; i.e., rewriting logic specializes in this
case to conjunctive linear logic. The models of rewrite theories Af of this kind are categories with
a commutative monoid structure in which we have chosen certain objects - - the "places"-- and
certain morphisms - - t he "transitions." The initial system T~ is exactly the category T[A f] that
Ugo Montanari and I associated to a Petri net as its semantics in [26, 27]. Naxciso Maxti-Oliet
and I later studied the connection of this model with models for linear logic in [22, 21] and
obtained in this way a systematic triangular correspondence between Petri nets, linear logic and
categories which is a particular instance of the more general triangular correspondence between
concurrent systems, rewriting logic and categories developed in this paper.

5 .3 C o n c u r r e n t O b j e c t - O r i e n t e d P r o g r a m m i n g

The basic syntax for objects and messages is given by the following order-sorted rewrite signature:

sorts Object, Attribute, Attributes, Message, Configuration, Data, Value.
sorts OId, CId, A i d . *** o b j e c t , c l a s s and a t t r i b u t e i d e n l : i f i e r s
subsorts Object, Message < Configuration .
subsorts Attribute < At tr ibutes .
subsorts OId, Data < Value.
op (_ : _ 1 -) : OId CId Attributes ~ Object .
op (_ : _) : A i d Value - -* At t r ibute .
op _,_ : Attributes Attributes --~ Attributes [assoc comm id: ni~ .
op __ : Configuration Configuration --~ Configuration [assoc comm id: A] .

where the operators __ and _,_ axe both associative and commutative with respective identities
A and nil. With this syntax, an object is represented as a t e r m (0 : C I al : vx,. . . ,a,~ : v,~) where
0 is the object's name, C is its class, the ai's are the names of the object's attributes, and the
vi's are their corresponding values. The configuration is the distributed state of the concurrent
object-oriented system and is represented as a multiset of objects and messages. The system
evolves by concurrent rewriting (modulo A C I) of the configuration by means of rewrite rules
specific to each particular system, whose lefthand and righthand sides may in general involve
patterns for several objects and messages. For example, objets in a class Accnt of bank accounts,
each having a bal(ance) attribute, may receive messages for crediting or debiting the account
and evolve according to the rules:

c r e d i t (B , M) <B: Accnt I hal: N) ~ (B : Accnt } hal: N + M>
debit(B, M) (B : Accnt I hal: N) -----, (B : Accnt I bat: N - M) .

398

CR

c ~

/ \
LbdTransSys FunctlProgr

/ ' , ,
LambdaCalc AlgebraicDT' s

Hcrbrand-GOdel-Kleene

CRAI CRAcI

1 J 1"----.
PostSys Pe~iNets Chain ConcOOP

1 1 / 1 " ,
P~S~Gran~nars CCS Actors POP UNITY

1
Turmg

Figure 6: The Big Picture

Concurrent object-oriented systems can be defined in Maude by means of object-oriented
module definitions of the form omod (9 endora which provide special syntax taking advantage of
the structural properties common to all such systems. However, the semantics of object-oriented
modules is entirely reducible to that of system modules, i.e., we can systematically translate
an object-oriented module omod (.9 endom into a corresponding system module r, od O k endm
whose Ok-machine semantics is the object-oriented module's intended semantics. Maude's object-
oriented modules are discussed in detail in [24]; such modules share some similarities with those
of FOOPS [11], and the idea of transforming objects by rewrite rules goes back to [9]. However,
in comparison with FOOPS, both the t reatment of concurrency and the semantics are new.

5 .4 T h e B i g P i c t u r e

Space limitations preclude a detailed discussion of other models of concurrency to which con-
current rewriting specializes (see [25].) However, we can summarize such specializations using
Figure 6, where CR stands for concurrent rewriting, the arrows indicate specializations, and
the subscripts ~, AI, and ACI stand for syntactic rewriting, rewriting modulo associativity
and identity, and ACI rewriting respectively. Functional programming (in particular Maude's
functional modules) corresponds to the case of confluent ~1 rules, and includes the A-calculus
(in combinator form) and the Herbrand-GSdel-Kleene theory of recursive functions. Rewriting
modulo A I yields Post systems and related grammar formalisms, including Turing machines.
Rewriting modulo ACI includes Berry and Boudol's chemical abstract machine [3] (which itself
specializes to CCS [28]), as well as actors [1] and Unity's model of computation [4] which can
both be regarded as special cases of concurrent object-oriented programming with rewrite rules;
a third special case is Engelfriet et al.'s POPs and POTs higher level Petri nets [6, 7].

6 C o n c l u d i n g R e m a r k s

Within the space constraints of this paper it is impossible to do justice to the wealth of related
literature on term rewriting, abstract data types, concurrency, Petri nets, linear and equational
logic, ordered, continuous and nondeterministic algebras, etc. The paper [25] contains 85 such
references. I would however like to mention Huet 's lecture notes [16], which contains a brief
discussion of rules for rewriting logic, and also work on applications of 2-categories to rewriting
and to domain-theoretic and categorical approximations, including work by Rydeheard and Stell
[30] and Pitts [29], whose relationship to this work is studied in [25].

21Although not reflected in the picture, rules confluent modulo equations E are also functional.

399

I conclude pointing out that the model theory of rewriting logic presented here --besides
yielding the general notion of concurrent system that we were seeking and providing the se-
mantic basis f()r the integration of the concurrent, functional and object-oriented computational
paradigms-- does also establish a general triangular correspondence between logic~ categories
and concurrent systems that can be summarized as follows:

Formulas ~ * Objects

States

Proofs , , Morphisms

Transitions

This generalizes to arbitrary rewrite systems the triangular correspondence between linear logic,
Petri nets and linear categories previously developed in joint work with Narciso Martf-Oliet
[22]. In particular, the correspondence between logic and categories is a Lambek-Lawvere corre-
spondence [18, 19], a type of correspondence more abstract and general than the Curry-Howard
isomorphism.

R e f e r e n c e s

[1] G. Agha. Actors. MIT Press, 1986.

[2] M. Barr and C. Wells. Toposes, Tr•les and Theories. Springer-Vertag, 1985.

[3] G~rard Berry and G~rard Boudol. The Chemical Abstract Machine. In Proc. POPL'90, pages 81-94.
ACM, 1990.

[4] K. Many Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[5] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoretical Compuier Science,
Vol. B. North-Holland, 1990.

[6] J. Engelfriet. Net-based description of parallel object-based systems, or POTs and POPs. Technical
report, Noordwijkerhout FOOL Workshop, May 1990.

[7] J. Engelfriet, G. Leih, and G. Rozenberg. Parallel object-based systems and Petri nets, I and II.
Technical Report 90-04-5, Dept. of Computer Science, University of Leiden, February 1990.

[8] Jean-Yves Girard. Towards a geometry of interaction. In J.W. Gray and A. Scedrov, editors,
Proc. AMS Summer Research Conference on Categories in Computer Science and Logic, Boulder,
Colorado, June 1987, pages 69-108. American Mathematical Society, 1989.

[9] J.A. Goguen and J. Meseguer. Software for the rewrite rule machine. In Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems, Tokyo, Japan, pages 628-637. ICOT,
1988.

[10] Joseph Goguen, Claude Kirchner, H~l~ne Kirchner, Aristide M~grelis, Jos~ Meseguer, and Timothy
Winkler. An introduction to OBJ3. In Jean-Pierre Jouannaud and Stephane Kaplan, editors, Pro-
ceedings, Conference on Conditional Term Rewriting, Orsay, France, July 8-10, 1987, pages 258-263.
Springer-Verlag, Lecture Notes in Computer Science No. 308, 1988.

[i1] Joseph Goguen and Jos~ Meseguer. Unifying functional, object-oriented and relational programming
with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-
Oriented Programming, pages 417-477. MIT Press, 1987. Preliminary version in SIGPLAN Notices,

400

Volume 21, Number 10, pages 153-162, October 1986; also, Technical Report CSLI-87-93, Center for
the Study of Language and Information, Stanford University, March 1987.

[12] Joseph Goguen and Jos~ Meseguer. Order-sorted algebra I: Partial and overloaded operations, errors
and inheritance. Technical Report SRI-CSL-89-10, SRI International, Computer Science Lab, July
1989. Given as lecture at Seminar on Types, Carnegie~Mellon University, June 1983. Submitted for
publication.

[13] Joseph Goguen, Jos6 Meseguer, Sany Leinwand, Timothy Winkler, and Hitoshi Aida. The rewrite
rule machine. Technical Report SRI-CSL-89-6, SRI International, Computer Science Lab, March
1989.

[14] Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra semantics and
continuous algebras. Journal of the Associalion for Computing Machinery, 24(1):68-95, January
1977.

[15] Joseph A. Goguen, Claude Kirchner, and Jos~ Meseguer. Concurrent term rewriting as a model of
computation. In R. Keller and J. Fasel, editors, Proc. Workshop on Graph Reduction, Santa Fe, New
Mexico, pages 53-93. Springer LNCS 279, 1987.

[16] G. Huet. Formal Structures for Computation and Deduction. INRIA, 1986.

[17] Gerard Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.
Journal of the Association for Computing Machinery, 27:797-821, 1980. Preliminary version in 18th
Symposium on Mathematical Foundations of Computer Science, 1977.

[18] Joachim Lambek. Deductive systems and categories II. In Category Theory, Homology Theory and
their Applications L Springer Lecture Notes in Mathematics No. 86, 1969.

[19] F.W. Lawvere. Adjointness in foundations. Dialectiea, 23(3/4):281-296, 1969.

[20] Saunders MaeLane. Categories for the working mathematician. Springer, 1971.

[21] Narciso Marti-Oliet and Jos~ Meseguer. An algebraic axiomatization of linear logic models. Technical
Report SRI-CSL-89-11, SRI International, Computer Science Lab, December 1989. To appear in
G.M. Reed, A.W. Roscoe and R. Waehter (eds.), Proceedings of the Oxford Symposium on Topology
in Computer Science, Oxford University Press, 1990.

[22] Narciso Martf-Oliet and Jos~ Meseguer. From Petri nets to linear logic. In D.H. Pitt et al., editor,
Category Theory and Computer Science, pages 313-340. Springer Lecture Notes in Computer Science,
Vol. 389, 1989. Full version to appear in Mathematical Structures in Computer Science.

[23] Jos~ Meseguer. General logics. In H.-D. Ebbinghans et at., editor, Logic Colloquium'87, pages
275-329. North-Holland, 1989.

[24] Jos~ Meseguer. A logical theory of concurrent objects. In ECOOP-OOPSLA'90 Conference on
Object-Oriented Programming, Ottawa, Canada, October 1990. ACM, 1990.

[25] Jos~ Meseguer. Rewriting as a unified model of concurrency. Technical Report SRI-CSL-90-02, SRI
International, Computer Science Laboratory, February 1990. Revised June 1990.

[26] Jos~ Meseguer and Ugo Montanari. Petri nets are monoids. Technical report, SRI International,
Computer Science Laboratory, January 1988. Revised June 1989; to appear in Information and
Computation.

[27] Jos~ Meseguer and Ugo Montanari. Petri nets are monoids: A new algebraic foundation for net
theory. In Proc. LICS'88, pages 155-164. IEEE, 1988.

[28] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[29] A. Pitts. An elementary calculus of approximations. Unpublished manuscript, University of Sussex,
December 1987.

[30] D.E. Rydeheard and J.G. Stell. Foundations of equational deduction: A categorical treatment of
equational proofs and unification algorithms. In Proceedings of the Summer Conference on Category
Theory and Computer Science, Edinburgh, Sept. 1987. Springer LNCS 283, 1987.

