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1 Introduct ion  

The main goal of this paper is to propose a general and precise answer to the question: 

What is a concurrent system? 

It seems fair to say that this question has not yet received a satisfactory answer, and that the 
resulting situation is one of conceptual fragmentation within the field of concurrency. A related 
problem is the integration o/ concurrent programming with other programming paradigms, such 
as functional and object-oriented programming. Integration attempts typically graft an existing 
concurrency model on top of an existing language, but such ad hoc combinations often lead to 
monstrous deformities which are extremely difficult to understand. Instead, this paper proposes 
a semantic integration of those paradigms based on a common logic and model theory. 

The logic, called rewriting logic, is implicit in term rewriting systems but has passed for 
the most 4part unnoticed due to our overwhelming tendency to associate term rewriting with 
equational logic. Its proof theory exactly corresponds to (truly) concurrent computation, and 
the model theory proposed for it in this paper provides the general concept of concurrent system 
that we are seeking. 

This paper also proposes rewrite rules as a very high level language to program concurrent 
systems. Specifically, a language design based on rewriting logic is presented containing a func- 
tional sublanguage entirely similar to OBJ3 [10] as well as more general system modules, and 
also object-oriented modules that provide notational convenience for object-oriented applications 
but are reducible to system modules [24]. The language's semantics is directly based on the 
model theory of rewriting logic and yields the desired semantic integration of concurrency with 
functional and object-oriented programming. 

The resulting notion of concurrent system is indeed very general and specializes to a wide 
variety of existing notions in a very natural way. Section 5 discusses the specializations to labelled 
transition systems, Petri nets and concurrent object-oriented programming in some detail, and 
summarizes several others; however, space limitations preclude a more comprehensive discussion, 
for which we refer the reader to [25]. 
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2 Concurrent Rewriting 

The idea of concurrent rewriting is very simple. It is the idea of equational simplification that  
we are all familiar with from our secondary school days, plus the obvious remark that we can do 
many of those simplifications independently, i.e., in parallel. Consider for example the following 
NAT module written in a notation similar to that  of ON J: 

fmod NAT is mod NAT-CHOICE is 

sort Nat . extending NAT . 

op 0 : -> Nat . op _?_ : Nat Nat -> Nat . 

op s_ : Nat -> Nat . vars N M : Nat . 

op _÷_ : Nat Nat -> Nat [comm] . rl N .7 M => N . 

vats N M : Nat . rl N ? M => M . 

eq N + 0 = N . endm 

~q (s N) + (s M) = s s (N ÷ M) . 

endfm 

NAT defines the Peano natural numbers. It begins with the keyword fmod followed by the mod- 
ule's name, and ends with the keyword endfm. The sort Nat is declared using the keyword 
s o r t .  Each of the functions provided by the module, as well as the sorts of their arguments and 
the sort of their result, is introduced using the keyword op. The syntax is user-definable, and 
permits specifying function symbols in "prefix," (for example, s_), "infix" (_+_) or any "mixfix" 
combination as well as standard parenthesized notation. Variables to be used for defining equa- 
tions are declared with their corresponding sorts, and then equations are given (in this example, 
equations for addition); such equations provide the actual "code" of the module. 

To compute with this module, one performs equational simplification by using the equations 
from left to right until no more simplifications are possible. Note that this can be done con- 
currently, i.e., applyin~ several equations at once, as in the example of Figure 1, in which the 
places where the equations have been matched at each step are marked. Notice that the function 
symbol _+_ was declared to be commutative by the attribute 1 [comm]. This not only asserts that  
the equation N * M = M + N is satisfied in the intended semantics, but it also means that  when 
doing simplification we are allowed to apply the rules for addition not just to terms - - in  a purely 
syntactic way- -  but to equivalence classes of terms modulo the ~commutativity equation. In the 
example of Figure 1, the equation N + 0 = N is applied (modulo commutativity) with 0 both 
on the right and on the left. 

The above module has equations that  are Church-Rosser and terminating and is therefore 
functional; its mathematical semantics is given by the initial algebra 2 associated to the syntax 
and equations in the module [14], i.e., associated to the equational theory that  the module 
represents. Up to now, most work on term rewriting has dealt with that case. However, the true 
possibilities of the concurrent rewriting model are by no means restricted to this case. Indeed, 

qu OBJ it is possible to declare several attributes of this kind for an operator, including also associativity and 
identity, and then do rewriting modulo such attributes. 

2In the above example, the initial algebra is of course the natural numbers with successor and addition. 
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Figure 1: Concurrent rewriting of an arithmetic expression 

most of the applications discussed in this paper, including many well known concurrency models, 
are not functional. Consider the NAT-CHOICE module above, which adds a nondeterministic choice 
operator to the natural numbers. The intuitive operational behavior of this module is quite clear. 
Natural number addition remains unchanged and is computed using the two rules in the NAT 
module. Notice that any occurrence of the choice operator in an expression can be eliminated by 
choosing either of the arguments. In the end, we can reduce any ground expression to a natural 
number in Peano notation. The mathematical semantics of the module is much tess clear. If 
we adopt an initial algebra semantics, it follows by the rules of equational deduction with the 
two equations in NAT-CHOICE that N = M, i.e., everything collapses to one point. Therefore, 
the declaration extending NAT, whose meaning is that two distinct natural numbers are not 
identified by the new equations introduced in NAT-CHOICE, is violated in the worse possible way 
by this semantics; yet, the operational behavior in fact respects such a declaration. To indicate 
that this is not the semantics intended, I have used the keyword rood (instead of the previous 
fmod) to indicate that this module is not functional. Similarly, I have written a new keyword 
r l  --instead of the usual eq before each equation-- and replaced the equal sign by the new sign 
"=>" to suggest that r l  declarations must be understood as "rules" and not as equations in the 
usual sense. At the operational level the equations introduced by the keyword eq in a functional 
module are also implemented as rewrite rules; the difference however lies in the mathematical 
semantics given to the module, which for modules like the one above should not be the initial 
algebra semantics. My proposal is to seek a logic and a model theory that are the perfect match 
for this problem. For this solution to be in harmony with the old one, the new logic and the 
new model theory should generalize the old ones. 

2.1 Bas ic  Un ive r sa l  A l g e b r a  

For the sake of making the exposition simpler, I treat the unsorted case; the many-sorted and 
order-sorted cases can" be given a similar treatment. Therefore, a set E of function symbols is a 
ranked alphabet ~ = {P.,~ [ n E ]N}. A E-algebra is then a set A together with an assignment of 
a function fA : A n --* A for each f E E,~ with n E IN. I denote by Tn the ~.-algebra of ground 
Z-terms, and by T ~ ( X )  the E-algebra of ~.-terms with variables in a set X. Similarly, given 
a set E of E-equations, T~,E denotes the E-algebra of equivalence classes of ground ~.-terms 
modulo the equations E (i.e., modulo provable equality using the equations E); in the same way, 
T~,E(X)  denotes the ~-algebra of equivalence classes of E-terms with variables in X modulo the 
equations E. We let t =E t' denote the congruence modulo E of two terms t, t', and [t]E or just 
It] denote the E-equivalence class of t. 

Given a term t E Tz({zl, . . . ,x~)) ,  and a sequence of terms u l , . . . , u , ~ ,  t ( u l / x l , . . . , u n / z n )  
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denotes the t e rm obta ined  from t by simultaneously substituting ul for xl, i = 1 , . . . ,  n.  To 
simplify no ta t ion ,  I denote a sequence of objects  a l , . . . ,  an by ~, or, to emphasize the  length of 
the  sequence, by ~n. Wi th  this no ta t ion ,  t (uz /x l , . . . ,  u,~/x~) is abbrevia ted  to t(~/F). 

2 .2  R e w r i t i n g  L o g i c  

We are now ready to in t roduce  the new logic tha t  we are seeking, which I call rewriting logic. 
A signature in  this logic is a pair  (~ ,  E )  with E a ranked alphabet  of funct ion symbols  and  E a 
set of E-equat ions.  Rewri t ing will operate  on equivalence classes of terms modulo  a given set of 
equat ions  E .  In this way, we free rewri t ing from the syntact ic  constra ints  of a t e rm representat ion 
and  gain a much greater  flexibility in  deciding what  counts  as a data structure; for example,  s tr ing 
rewri t ing is obta ined  by impos ing  an associat ivi ty axiom, and  mult ise t  rewri t ing by imposing 
associat ivi ty and  eommutat iv i ty .  Of course, s t andard  t e rm rewri t ing is ob ta ined  as the  par t icular  
case in  which the set E of equat ions  is empty.  The  idea of rewri t ing in equivalence classes is well 
known (see, e.g., [17, 5].) 

Given a s ignature  ( E , E ) ,  the sentences are sequents of the form [t]E---+ [t']E with t , t '  
E- terms,  where t and t '  may  possibly involve some variables from the countably  infinite set 
X = { x l , . . . ,  x ,~ , . . . ) .  A theory in this logic, called a rewrite theory, is a slight generalization of 
the usual  no t ion  of theory - -wh i c h  is typical ly defined as a pair  consist ing of a s ignature  and a 
set of sentences for i t - -  in tha t ,  in  addi t ion,  we allow rules to be labelled. This is very na tu ra l  
for m a n y  applicat ions,  and  cus tomary  for a u t o m a t a  - -v iewed  as labelled t rans i t ion  sys t ems- -  
and for Petr i  nets,  which are bo th  par t icular  instances of our  definition (see Section 5.) 

D e f i n i t i o n  1 A (labelled) rewrite theory a Tl is a 4-tuple 7~ = (E ,E ,L ,R)  where E is a ranked 
a lphabet  of funct ion symbols,  E is a set of E-equa t ions , / ;  is a set called the set of labels, and R is 
a set of pairs R C L × (Tz,E(X) ~) whose first component  is a label and whose second component  
is a pair  of E-equivalence classes of terms,  with X = { x l , . . . , x , ~ , . . . }  a countably  infinite set 
of variables. Elements  of R are called rewrite rules 4. We unders tand  a rule (r,  ([t], It'])) as a 
labelled sequent and use for i t  the no ta t ion  r : [t] ~ [t']. To indicate  tha t  { x ~ , . . . ,  z,~} is the 
set of variables occurr ing in  either t or t ' ,  we write s r : I t ( x 1 , . . . ,  x~)] ---* [ t ' ( x l , . . . ,  z,~)], or in 
abbrevia ted no ta t ion  r :  [ t ( ~ ) ]  ---* [ t ' ( ~ ) ] .  [] 

Given a rewrite theory 7~, we say that  7~ entails a sequent [ t ] - -+  [t'] and write 
7~ k- [t] ---+ [t'] if and only if [t] ~ [t'] can be obta ined  by finite appl icat ion of the follow- 
ing rules of deduction: 

1. R e f l e x i v i t y .  For each [ t ] e  TE,E(X), 

[t]---[t] 
3I consciously depart from the standard terminology, that would call R a rewrite system. The reason for this 

departure is very specific. I want to keep the term "rewrite system" for the models of such a theory, which will be 
defined in Section 3 and which really are systems with a dynamic behavior. Strictly speaking, "R. is not a system; 
it is only a static, linguistic, presentation of a class of systems --including the initial and free systems that most 
directly formalize our dynamic intuitions about rewriting. 

4To simplify the exposition, in this paper I consider only unconditional rewrite rules. However, all the results 
presented here have been extended to conditional rules in [25] with very general rules of the form 

~: [t] --~ [~'] i/ [~] ~ [vl] A. . .  ^ [~k] ---* [v~]. 

This of course increases considerably the expressive power of rewrite theories. 
5Note that, in general, the set {xl , . . . ,  x~} will depend on the representatives $ and t t chosen; therefore, we 

allow any possible such qualification with explicit variables. 
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2. C o n g r u e n c e .  For each f E E,~, n E IN, 

It1] - - ~  [t~] . . .  [tn] ~ [t']  
l ! [/(t~,...,t,~)] ~ [ f ( t , . . . , t , , ) ]  

3. R e p l a c e m e n t .  For each  rewri te  rule  r :  [ t ( x ~ , . . . ,  x , ) ]  - - ~  [ t ' ( = ~ , . . . ,  = , ) ]  in R,  

[w,] - - ~  [w~] . . .  [w~] ~ [w']  
[ t ( ~ / ~ ) ] - - ~  [t'(w,/~-)] 

4. T rans i t i v i t y .  
It1] ~ [t2] It2] ~ [t31 

It1] ~ [t3] 

Equational logic (modulo a set of axioms E)  is obtained from rewriting logic by adding the 
following rule: 

5. S y m m e t r y .  
[tl]-----+ [t2] 

It2] - - ~  It1] 

With this new rule, sequents derivable in equational logic are bidirectional; therefore, in this case 
we can adopt the notation [t] ~ It'] throughout and call such bidirectional sequents equations. 

In rewritinglogic a sequent It] ~ It'] should not be read as "It] equals [t']," but as "[t] becomes 
[tt]. " Therefore, rewriting logic is a logic of becoming or change, not a logic of equality in a static 
Platonic sense. Adding the symmetry rule is a very strong restriction, namely assuming that  
all change is reversible, thus bringing us into a timeless Platonic realm in which "before" and 
"after" have been identified. A related observation is that It] should not be understood as a term 
in the usual first-order logic sense, but as a proposition --bui l t  up using the logical connectives 
in E - -  that  asserts being in a certain state having a certain structure. The rules of rewriting 
logic are therefore rules to reason about change in a concurrent system. They allow us to draw 
valid conclusions about the evolution of the system from certain basic types of change known to 
be possible thanks to the rules R. 

2 .3  C o n c u r r e n t  R e w r i t i n g  

A nice consequence of having defined rewriting logic is that concurrent rewriting, rather than 
emerging as an operational notion, actually coincides with deduction in such a logic. 

Def in i t ion  2 Given a rewrite theory n = (E, E, L, R), a (E, E)-sequent It] --~ [t'] is called: 

• a O-step concurrent T~-rewrite iff it can be derived from T~ by finite application of the rules 
1 and 2 of rewriting deduction (in which case [t] and [t]' necessarily coincide); 

• a one-step concurrent T~-rewrite iff it can be derived from 7~ by finite application of the 
rules 1-3, with at least one application of rule 3; if rule 3 was applied exactly once, we then 
say that  the sequent is a one-step sequential 7~-rewrite; 

• a concurrent T~-rewrite (or just a rewrite) iff it can be derived from T~ by finite application 
of the rules 1-4. 

We call the rewrite theory T~ sequential if all one-step 7~-rewrites are necessarily sequential. A 
sequential rewrite theory T~ is in addition called deterministic if for each It] there is at most one 
one-step (necessarily sequential) rewrite [t] ~ It']. The notions of sequential and deterministic 
rewrite theory can be made relative to a given subset S C T£,E(X)  by requiring that  the 
corresponding property holds for each [t'] "reachable from S," i.e., for each [t'] such that for 
some [t] E S there is a concurrent T/-rewrite [t] ---* [t']. 
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The usual notions of confluence, termination, normal form, etc., as well as the well known 
Church-Rosser property of confluent rules remain unchanged when considered from the per- 
spective of concurrent rewriting [25]. Indeed, concurrent rewriting is a more convenient way of 
considering such notions than the traditional way using sequential rewriting. 

3 S e m a n t i c s  

As such, a rewrite theory 7~ : (~2, E,  L, R) is a static description of what a system can do. The 
meaning should be given by a model of its actual behavior. I construct below a model in which 
behavior exactly corresponds to deduction. 

Given a rewrite theory 7~ = ( E , Z , L , R ) ,  the model that we are seeking is a category :F~(X) 
whose objects are the equivalence classes of terms It] E T~,E(X) and whose morphisms are equiva- 
lence classes of terms representing proofs in rewriting deduction, i.e., concurrent T&rewrites. The 
rules for generating such terms, with the specification of their respective domain and codomain, 
are given below. Note that  in the rest of this paper I always use "diagrammatic" notation for 
morphism composition, i.e., a;/3 always means  the composition of a followed by ft. 

1. Iden t i t i es .  For each It] E T~,E(X), 

[t]: It] - - ~  It] 

2. Y].-strueture. For each f E E,~, n E iN, 

~ :  [t~] ~ [t~] . . .  ~ . :  [t.] ~ [ r ]  
/ ( e l , . . . ,  a,~): [ f ( t l , . . . ,  tn)] ---+ [ f ( t~ , . . . ,  t~)] 

a. R e p l a c e m e n t .  ro t  each rewrite rule r :  [ t ( ~ ) ]  - - ~  [ r ( ~ ) ]  in R,  

, ~ :  [~'1] - - *  [ ~ ]  . . .  ,~. : [ w 4  ~ [ ~ ' ]  
r ( ~ , . . . , , ~ , , )  : [ t (~ /~ ) ]  --- ,  [ t ' ( ,o ' /~)]  

4. C o m p o s i t i o n .  

For the case of equational logic we can also define a similar model as a category T~-*(X) 
(actually a groupoid 6) by using the rule of symmetry to generate additional terms: 

5. Invers ion .  
~ :  It1] - - *  [t21 

~ - 1 :  It2] - ~  [tl] 

C o n v e n t i o n  and  W a r n i n g .  In the case when the same label r appears in two different rules 
of R, the "proof terms" r(~) can sometimes be ambiguous. I will always assume that such 
ambiguity problems have been resolved by disambiguating the label r in the proof terms r(~) if 
necessary. With this understanding, I adopt the simpler notation r(~) to ease the exposition. 

Each of the above rules of generation defines a different operation taking certain proof terms 
as arguments and returning a resulting proof term. In other words, proof terms form an algebraic 
structure T~n(X) consisting of a graph with identity arrows and with operations f (for each 
f E E), r (for each rewrite rule), and _ ;_ (for composing arrows). Our desired model Tn(X)  is 
the quotient of :P~(X) modulo the following equations7: 

SA category C is called a groupoid iff any morphism f : A ----* B in g has an inverse morphism f-1 : B -----* A 
such that f;f-1 = 1A, and f -1; f  = lB. 

tin the expressions appearing in the equations, when compositions of morphisms age involved, we always 
implicitly assume that the corresponding domains and codomains match. 
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1. C a t e g o r y .  

(a) Assoeiativity. For all a , f l , 7  (~ ;~ ) ;7  = ~; ( f l ;7)  

(b) Identities. For each ~ :  It] ---+ It'] a;  It'] = a and [t]; c~ = 

2. F u n c t o r i a l i t y  o f  t h e  Z - a l g e b r a i c  s t r u c t u r e .  For each f E ~ ,  n E 1N, 

(a) Preservation of composition. For all a l , . . . ,  a n , i l l , . . - ,  fin, 

f ( ~ ;  fl~,.. . , ,~n; fl,0 : / ( ~ , . . . ,  ,~,0; f(f l~, . - . ,  fin) 

(b) Preservation of identities, f ( [ t l ] , . . . ,  [tn]) = [ f ( t l , . . . , t n ) ]  

3. A x i o m s  in E.  For t (x~ , . . . ,  Xn) = t ' ( x z , . . . ,  x,~) an axiom in E ,  for all c ~ , . . . ,  C~n, 

~ ( ~ , . . . ,  ~ , )  = t ' ( ~ , . . . , ~ )  

4. E x c h a n g e .  For each r :  It(x1, . . . ,  xn)] ---* [ t ' ( x l , . . . ,  xn)] in R, 

~1:  [~1] --* [~]  - . .  ~ n :  [~'n] "--* [~'] 
~(~) = r ( M ) ; t ' ( ~ )  = t(~);  r([~']) 

Similarly, the groupoid 7"~(X)  is obtained by identifying the terms generated by rules 1-5 
modulo the above equations plus the additional: 

5. I nve r se .  For any a :  [t] - -~ [t'] in T~-~(X), a;a  -1 = [t] and a-1;a  = [t'] 

Note that the set X of variables is actually a parameter  of these constructions, and we need 
not assume X to be fixed and countable. In particular, for X = 0, I adopt the notations ff'R 
and ~*~ respectively. The equations in 1 make T~(X)  a category, the equations in 2 make R ,  
each f E ~ a functor, and 3 forces the axioms E.  The exchange law states that  any rewriting 
of the form r(~)  --which represents the simultaneous rewriting of the term at the top using 
rule r and "belo.__w_w," i.e., in the subterms matched by the ru le - -  is equivalent to the sequential 
composition r([w]); t ' (~)  corresponding to first rewriting on top with r and then below on the 
matched subterms. The exchange law also states that  rewriting at the top by means of rule r and 
rewriting "below" are processes that  are independent of each other and therefore can be done in 
any order. Therefore, r (~)  is also equivalent to the sequential composition t(~); r([w']). Since 
[ t (Xl , . . . ,  Xn)] and [ t ' (Xl , . . . ,  xn)] can be regarded as functors T~(X)  n ----* T~z(X), the exchange 
law just asserts that  r is a natural transformation [20], i.e., 

L e m m a  3 For each r : [ t ( x l , . . . ,  x,,)] --~ I t ' (x1 , . . . ,  Xn)] in R, the family of morphisms 

{r([~]--) : [ t (~ /~) ]  ---, [~'(~/~)] I t-~'] e T~,~(X)") 

is a natural transformation r : [t(xl , . . . ,xn)] ==~ [ t ' (x l , . . . ,Xn)]  between the functors 
[ t ( x , , . . . ,  ~n)], [ r ( ~ l , . . . ,  ~,,)1 : ~ ( x )  n - - ,  : r~ (x ) .  

What  the exchange law provides in general is a way of abstracting a rewriting computation 
by considering immaterial  the order in which rewrites are performed "above" and "below" in the 
term; further abstraction among proof terms is obtained from the functoriality equations. The 
equations 1-4 provide in a sense the most abstract view of the computations of the rewrite theory 
7~ that  can reasonably be given. In particular, we can prove that  all terms have an equivalent 
expression as step sequences or as interleaving sequences: 
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Lemma 4 For each [a] : [t] --~ [t'] in 7-r~(X), either It] = [t'] and [a] = [[t]], or there is an 
n E ]N and a chain of morphisms [all, 0 < i < n whose terms ai  describe one-step (concurrent) 
rewrites 

[t] Its] . . .  [t,,] [t'] 
such tha t  [a] = [ a0 ; . . .  ;an]. In addit ion,  we can always choose all the a i  corresponding to  
sequential rewrites. [] 

The category Try(X) is just  one among many models tha t  can be assigned to the rewriting 
theory T~. The general notion of model, called an 7~-system, is defined as follows: 

D e f i n i t i o n  5 Given a rewrite theory T~ = (E, E ,  L,  R) ,  an Ti-system S is a category S together 
with:  

• a (E,  E)-a lgebra  structure,  i.e., for each f E En, n 6 IN, a functor f s  : 8 n ~ $ ,  in such a 
way tha t  the equations E are satisfied, i.e., for any t ( x l , . . . , x n )  = t ' ( x l , . . . , x • )  in E we 
have an ident i ty  of functors t s  = t~, where the functor ts  is defined inductively from the 
functors f s  in the obvious way. 

• for each rewrite rule r : [t(~)] - -*  [t'(~)] in R a natura l  transformation r s  : t s  ==~ t~. 

An Ti-homomorphism F : S ~ S '  between two 7~-systems is then a functor F : S ~ S '  
such tha t  i t  is a E-algebra homomorphism - - i . e . ,  f s  * F = F n * f s , ,  for each / in En, n 6 IN--  
and such tha t  " F  preserves R," i.e., for each rewrite rule r : [t(~)] ----* [t'(~)] in R we have 
the ident i ty  of natura l  transformations rs  * F = F"  • rs, ,  where n is the number of variables 
appearing in the rule. This defines a category Ti-Sys in the obvious way. 

An T&groupoid is an 7~-system S whose category structure is actually a groupoid. This 
defines a fall subcategory ~-Grpd C Tg-Sys. [] 

W h a t  the  above definition captures formally is the idea that  the models of a rewrite theory 
are systems. By a "system" I of course mean a machine-like entity that  can be in a variety of 
states, and tha t  can change its s tate by performing certain transitions. Such transit ions are of 
course transit ive,  and it is natural  and convenient to view states as "idle" transit ions tha t  do 
not  change the state.  In other words, a system can be natural ly regarded as a category, whose 
objects  are the s tates  of the system and whose morphisms are the system's  transit ions.  

For sequential systems, this is in a sense the end of the story (see Section 5.1.) As I will 
argue and just ify more fully with examples in Section 5, what makes a system concurrent is 
precisely the existence of an addit ional  algebraic structure. Ugo Montanari  and I first observed 
this fact for the part icular  case of Petri  nets for which the algebraic structure is precisely that  
of a commutat ive  monoid [26, 27]. However, this observation holds in full generality for any 
algebraic structure whatever. What  the algebraic structure captures is twofold. Firstly, the 
states themselves are distributed according to such a structure; for Petri  nets the distr ibution 
takes the form of a muItiset tha t  we can visualize with tokens and places; for a functional 
program involving just  syntactic rewriting, the distr ibution takes the form of a labelled tree 
structure which can be spat ia l ly  dis tr ibuted in such a way that  many transit ions (i.e., rewrites) 
can happen concurrently in a way analogous to the concurrent firing of transit ions in a Petri  
net. Secondly, concurrent transitions are themselves distributed according to the same algebraic 
structure; this is what  the notion of 7~-system captures, and is for example manifested in the 
concurrent firing of Petr i  nets and, more generally, in any type of concurrent rewriting. 

The expressive power of rewrite theories to specify concurrent transit ion systems s is great ly 
increased by the possibili ty of having not only transit ions,  but also parameterized transitions, 

SSuch expressive power is further increased by allowing conditional rewrite rules, a more general case to which 
all that is said in this paper has been extended in [25], 
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System ~ ~ Category 
State ( ~ Object 
Transition ~ ~ Morphism 
Procedure ~ ~ Natural Transformation 
Distributed Structure ~ ~ Algebraic Structure 

Figure 2: The mathematical  structure of concurrent systems 

i.e., procedures. This is what rewrite rules - -w i th  variables--  provide. The family of states to 
which the procedure applies is given by those states where a component of the (distributed) 
state is a substitution instance of the lefthand side of the rule in question. The rewrite rule is 
then a procedure 9 which transforms the state locally, by replacing such a substitution instance 
by the corresponding substitution instance of the righthand side. The fact that  this can take 
place concurrently with other transitions "below" is precisely what the concept of a natural 
transformation formalizes. The table of Figure 2 summarizes our present discussion. 

A detailed proof of the following theorem on the existence of initial and free T~-systems for 
the more general case of conditional rewrite theories is given in [25], where the soundness and 
completeness of rewriting logic for T~-system models is also proved. 

T h e o r e m  6 7"~ is an initial object in the category 7~-Sys, and T~*-* is an initial object in the cat- 
egory T~-Grpd. More generally, T n ( X )  has the following universal property: Given an 7~-system 
S, each function F : X ---* Obj(S)  extends uniquely to an 7~-homomorphism F ~ : TTt(X) --~ S. 
7"~"(X) has the same universal property with respect to 7~-groupoids. 

3.1 E q u a t i o n a l l y  D e f i n e d  C l a s s e s  o f  M o d e l s  

Since T~-systems are an "essentially algebraic" concept l°, we can consider classes 0 of 7~-systems 
defined by the satisfaction of additional equations. Such classes give rise to full subcategory 
inclusions ® ~ Tt-Sys, and by general universal algebra results about essentially algebraic 
theories (see, e.g., [2]) such inclusions are reflective [20], i.e., for each 7~-system S there is an 
7~-system R o ( S )  E 0 and an T~-homomorphism po(S)  : S --~ Ro(S )  such that  for any 7~- 
homomorphism F : ,5 ---* 7) ~ i th  7) E 0 there is a unique 7~-homomorphism F 0 : Re(,5) ~ 79 
such that  F = po(S) ;  F ~>. The full subcategory ~-Gryd  C_ ~ -Sys  is also reflective, but it is not 
equationally definable. The situation generalizes tha t  of the inclusion of the category of groups 
into the category of monoids. What  we have in this case is an inclusion that  is aforgetfulfunctor 
from a category of algebras with additional operations (in this case the inversion operation.) 
However, for any equationally definable (full) subcategory O C Tt-Sys~ defined by a collection of 
equations H ,  the intersection 0 n T&Grpd has a very simple description, since it is just the full 
subcategory of Tt-Grpd definable by the equations H.  

Therefore, we can consider subcategories of Tl-S~ls or of 7~-Grpd that  are defined by certain 
equations and be guaranteed that  they have initial and free objects, that  they are closed by 
subobjects and products, etc. Consider for example the following conditional equations: 

Vf,  g E Arrows, f = g if So(f)  = to(g) A e l ( f )  = Ol(g) 

V / , g  e Arrows, / = g ff O d D  = 01(g) ^ 01(/)  = Oo(g). 

airs actual parameters are precisely given by a substitution. 
1°In the precise sense of being specifiable by an "essentiai]y algebraic theory" or a "sketch" [2]; see [25]. 
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Figure 3: Subcategories of 7C-Sys and their initial objects 

The first equation forces a category to be a preorder, and the addition of the second requires this 
preorder to be a poset. By imposing the first one, or by imposing both, we get full subcategories 

7c-Pos C 7Z-Preord C T~-Sys. 

A routine inspection of 7~-Preord for 7C = (E, E , L ,  R) reveals that  its objects are preordered 
E-algebras (A,_<) (i.e., preordered sets with a E-algebra structure such that all the opera- 
tions in E are monotonic) that  satisfy the equations E and such that for each rewrite rule 
r :  [t(~)] ---* [t'(¥)] in R and for each ~ E g '~ we have, tA('5) >_ t~A('5). The poset case is entirely 
analogous, except that  the relation < is a partial order instead of being a preorder. The reflection 
functor associated to the inclusion T~-Preord C 7c-Sys, sends q-n(X) to the familiar 7C-rewriting 
relation 11 o n ( x )  on E-equivalence classes of terms with variables in X.  It is easy to show that 
rewriting logic remains complete when we restrict the models to be preorders [25]. Similarly, the 
reflection associated to the inclusion 7C-Pos C 7C-Sys maps TTc(X) to the partial order > 7¢(x) 
obtained from the preorder --+ 7¢(x) by identifying any two It], [tq such that  It] ~ 7¢(x)[t'] and 
It'] --*n(x)[t]. Again, rewriting logic remains complete for poset models [25]. 

Intersecting 7C-Pos and ~-Preord with the category 7C-Grpd we get two subcategories defin- 
able by the first equation or by both, but now in the context of 7~- Grpd. Combining the notions 
of a groupoid and a preorder we get exactly the notion of an equivalence relation and therefore 
a subcategory 7C-Equiv whose initial object is the usual congruence ~-7¢ on ground terms mod- 
ulo provable equality generated by the rules in 7C when regarded as equations. A poset that  
is also a groupoid yields a discrete category whose only arrows are identities, i.e., a set. It is 
therefore easy to see that  the subcategory obtained by intersecting 7C-Pos with 7C-Grpd is just 
the familiar category Ti-AIg of ordinary E-algebras that satisfy the equations E [ unlabel(R), 
where the unIabel function removes the labels from the rules and turns the sequent signs " ----* " 
into equality signs. Similarly, the reflection functor into 7c-Alg maps Tn(X)  to Tn(X) ,  the free 
E-algebra on X. Figure 3 summarizes the relationships among all these categories. 

11It is perhaps more suggestive to call "-'*Tz(x) the teachability relation of the system TTz(X). 
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4 R e w r i t e  Rules  as a P r o g r a m m i n g  Language  

In this paper I have put  forward the view that ,  by generalizing the logic and the model theory 
of equational logic to those of rewriting logic, a much broader field of applications for rewrite 
rule programming is possible - -based  on the idea of programming concurrent systems ra ther  
than  algebras-- with the same high standards of mathematical  rigor for its semantics. I present 
below a specific proposal for such a semantics. This proposal has two advantages. Firs t ,  the 
functional case of equational logic is kept as a sublanguage having a more specialized semantics; 
second, the operational and mathematical  semantics of a module are related in a part icular ly 
nice way. The proposal is embodied in Maude, a language design tha t  contains OBJ3 [10] as 
i ts functional sublanguage. As already mentioned, all the ideas and results in this paper extend 
without problem 1~ to the order-sorted case13; the unsorted case has only been used for the sake 
of a simpler exposition. Therefore, all tha t  is said below is understood in the context of order- 
sorted rewriting logic. In Maude there are three kinds of modules: functional - - in t roduced  by 
the keyword fmod, such as the NAT module in Section 2 - - ,  system - - in t roduced  by the keyword 
rood such as the module NAT-CHOICE-- and object-oriented - - in t roduced  by the keyword omod 
(See Section 5.3.) The semantics of object-oriented modules reduces to that  of system modules; 
therefore, in this section we focus on the functional and system cases. Functional and system 
modules are respectively of the form fmod T8 endfm, and rood T8 ~ endm, for T~ and T8 ~ rewrit ing 
theories 14. Their semantics is given in terms of a machine linking the module 's  operat ional  
semantics with its denotat ional  semantics. The general notion of a machine is as follows. 

D e f i n i t i o n  7 For 7~ a rewrite theory and @ ~-+ Ti-Sys a reflective full subcategory, an Ti-machine 
over ~ is an TS-homomorphism ~_] : S ---* M - -ca l led  the machine's abstraction map-- with 
S an 7~-system and jr4 E ®. Given 7~-machines over O, ~_] : $ - -~ .£4 and'I_] '  : $ '  ~ ~4 '  an 
TS-machine homomorphism is a pair of 7~-homomorphisms ( F, G), F : S ---* S I, G : A,~ ~ /~r, 
such tha t  3-]; G = F ;  ~_]'. This defines a category T~-Mach/O; it is easy to check that  the initial  
object  in this category is the unique ~-homomorphism 7-T~ ---* Re(Tn)  

The intuitive idea behind a machine [_] : 3 ~ .M is that  we can use a system S to compute 
a result relevant for a model ~4 of interest in a class ~ of models. What  we do is to perform 
a certain computat ion in S ,  a ~ l  then output  the result by means of the abstract ion map 3-]- 
A very good example is an arithmetic machine with S = ~AT, for NAT the rewriting theory 
of the Peano natural  numbers corresponding to the module NAT is in Section 2, with J~4 = lN, 
and with 3-] the unique homomorphism from the initial  NAT-system ~AT; i.e., this is the init ial  
machine in NAT-Mach/NAT-AIg. To compute the result of an ari thmetic expression t, we perform 
a terminat ing rewriting and output the corresponding number, which is an element of iN. 

Each choice of a reflective full subcategory ~ as a category of models yields a different 
semantics. As already implicit  in the ar i thmetic  machine example, the semantics of a functional 
module 16 fmod 7~ end:fro is the initial machine in Tt-Mach/7"~-Alg. For the semantics of a system 
module rood 7~ endm not having any functional submodules 17 I propose the initial  machine in 
T~-Mach/T~-Preord, but other choices are also possible. On the one hand, we could choose to be 
as concrete as possible and take ® = 7~-Sys in which case the abstract ion map is the identi ty 
homomorphism for T~. On the other hand, we could instead be even more abstract ,  and choose 

12Exercising of course the well known precaution of making explicit the universal quantification of rules. 
lSI.e., there is not just one sort, but a partially ordered set of sorts --with the ordering understood as type 

inclusion-- and the function symbols can be overloaded [12]. 
14This is somewhat inaccurate in the case of system modules having functional submodules, which is discussed 

below, because we have to "remember" that the submodule is functional. 
15In this case E is the commutativity attribute, and R consists of the two rules for addition. 
16For this semantics to behave well, the rules R in the functional module ~ should be conj~uent modulo E. 
lVSee below for a discussion of submodule issues. 
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t9 = 7~-Pos; however, this would have the unfortunate effect of collapsing all the states of a cyclic 
rewriting, which seems undesirable for many "reactive" systems. If the machine TT~ ~ M is the 
semantics of a functional or system module with rewrite theory 7~, then we call Tr~ the module 's  
operational semantics, and M its denotational semantics. 

In Mande a module can have submodules. Functional modules can only have functional 
submodules, but  system modules can have both functional and system submodules. For example, 
NAT was declared a submodule of NAT-CHOICE. The meaning of submodule relations in which 
the submodule and the supermodule axe both of the same kind is the obvious one, i.e., we 
augment the signature,  equations, labels, and rules of the submodule by adding to them the 
corresponding ones in the supermodule; we then give semantics to the module so obtained 
according to i ts kind, i.e., functional or system. The semantics of a system module having 
a functional submodule is somewhat more delicate. Suppose that  the rewrite theory of the 
functional submodule is  is 7~ = (~,  E ,  L, R) and that  of the system supermodule plus i ts  system 
submodules is 7~ t = (~/ , E t, L ~, R'); as before we can form 7~U7~ ~ = (~U ~', EU E', LU L ~, RU R~), 
but  the semantics of the module is now given by the init ial  machine in the category 

( ~  U 7~')-Mach/(E U ~', E U E'  U unlabel(R), L', R~)-Preord. 

Notice that  (E tO ~ ,  E U E ~ U unlabel(R), L t, R~)-Preord is an equationally definable full subcat- 
egory of (7~ U 7~')-Preord, namely the one defined by the equations t(~) = t ' (~) for each rewrite 
rule r :  [t(~)] ---* [t'(~)], and therefore is also reflective. 

Given a preorder f14 in (~ U E ~, E U EtO unlabel(R), L ~, R')-Preord we can forget about  R ~ 
and the labels and view it as an 7~-algebra M I n .  Given a system module rood 7~ ~ endm having 
fmod 7~ endfm as i ts functional submodule and TT~uT~, ~ M as i ts semantics, we say that  this 
submodule relation is extending if  the unique 7~-homomorphism h : T~z ---* M 17e is injective; 
similarly, we say tha t  i t  is protecting if h is an isomorphism. We leave for the reader to check 
that  the extending relation asserted for the impor ta t ion  of NAT in NAT-CHOICE does in fact hold. 

As OBJ, Maude has also theories to specify semantic requirements for interfaces and to make 
high level assertions about  modules; they can be functional,  system, or object-oriented.  Also as 
OBJ, Mande has parameterized modules - - aga in  of the three k inds - -  and views that  are theory 
interpretat ions relat ing theories to modules or to other theories. Details for all these aspects of 
the language will appear  elsewhere 19. Finally, note tha t  Mande is a logic programming language 
in the general axiomatic sense made precise in [23]. 

5 Unifying Models of Concurrency 

Labelled transi t ion systems, Petri  nets and concurrent object-oriented programming are dis- 
cussed as specializations of concurrent rewriting; other specializations are also discussed briefly. 

5 .1  L a b e l l e d  T r a n s i t i o n  S y s t e m s  

This is the par t icular ly  simple case of rewrite theories 7~ = ( E , E , L , R )  such tha t  E = 0, 
= E0, i.e., E only involves constants,  and all the rules in 7~ are of the form r : a ---* b for 

a, b constants.  For example,  the transit ion system of Figure 4 corresponds to the rewrite theory 
of the sytem module LTS in the same figure. Since E contains only constants and the rules 
have no variables, the  rules 1-5 of rewriting logic specialize to very simple rules. The rule of 
congruence becomes a tr ivial  subcase of reflexivity, and the rule of replacement just  yields each 
rule r : a - -*  b in 7~ as its own consequence. Thus, we just  have reflexivity and t ransi t ivi ty  with 

ISWe assume that, if several functional submodules have been declared, we have already taken their union. 
19Some basic results about views and parameterization for system modules have already been given in [25]. 
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t 

mod LTS is 

sort State . 

ops a,b,c : -> State 

rls p,q : a => b 

rl r : b => b 

rl s : b => c 

rls v,w : c => a 

rl t : c => b 

rl u : c => c 

endm 

Figure 4: A labelled transition system and its code in Maude 

the rules r : a --+ b in 7~ as basic axioms. Therefore, Tn is just the free category - -a lso called 
the path category-- generated by the labelled transition system when regarded as a graph. More 
generaJly, any 7~-system with ~ a labelled transition system is just a category C together with 
the assignment of an object of C to each constant in ~ and a morphism in C for each rule in R in 
a way consistent with the assignment of objects. In other words, such systems are just sequential 
systems, and their sequentiality is precisely due to the absence of any operations other than 
constants. In fact, labelled transition systems are intrinsically sequential as rewrite theories, in 
the precise sense of Definition 2. However, since several transitions are in general possible from 
a given state, they exhibit a form of nondeterminism. 

Interleaving approaches to concurrency restrict themselves to labelled transition systems or 
similar sequential structures. We can always sequentialize a concurrent computation (see Lemma 
4) and therefore much valuable work can be and has been done in this context. However, the 
context as such is intrinsically sequential and forces a form of indirect reasoning when considering 
concurrency aspects; therefore, it seems quite limited. Plato's analogy of the cave 2° may provide 
an apt metaphor for this situation, with labelled transition systems being the wall of the cave 
on which the shadows of true concurrency are reflected. The metaphor seems apt because it 
agrees with the mathematical facts; for 7~ an arbitrary rewrite theory, the descent into the cave 
is precisely the forgetful functor 7~-Sys --+ Cat. 

5.2 P e t r i  N e t s  

This is one of the most basic models of concurrency. It has the great advantage of exhibiting 
concurrency directly, not through the indirect mediation of interleavings. Its relationship to 
concurrent rewriting can be expressed very simply. It is just the particular case of rewrite 
theories At" = (P. ,E,L,R)  with ~0 = A t~ {A), ~2 = {®), with all the other P', empty, with 
E = ACI  - -wi th  ACI the axioms of associativity and commutativity for ® and identity A for 
® - -  and with all terms in the rules R ground terms. Consider for example the Petri net in 
Figure 5, which represents a machine to buy subway tickets. With a dollar we can buy a ticket 
t l  by pushing the button b - t 1  and get two quarters back; if we push b - t 2  instead, we get a 
longer distance ticket t2 and one quarter back. Similar buttons allow purchasing the tickets with 
quarters. Finally, with one dollar we can get four quarters by pushing change. The corresponding 
rewrite theory is that  of the TICKET module in the same figure. 

The rules of deduction specialize as follows. The congruence rule applies just to ® and 
yields instances of reflexivity for the constants. Since the rewrite rules have no variables, the 
replacement rule yields each of the rewrite rules as axioms. Interpreting ® as conjunction in 
linear logic [8], this specialization yields sound and complete rules of deduction for the linear 

2°Republic, Bk. VII, 514-517. 
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H q t2 

mod TICKET is 

sort Place . 

ops $,q,tl,t2 : -> Place . 

op _®_ : Place Place -> Place 

[assoc comm id: A] . 

rl b-tl : $ => tl Q q Q q . 

rl b-t2 : $ => t2 ® q . 

rl change : $ => q ® q ® q ® q . 

rl b'-tl : q ® q => tl . 

rl b'-t2 : q ® q ® q => t2 . 

endm 

Figure 5: A Petri net and its code in Mande 

theory having each of the rewrite rule sequents as axioms; i.e., rewriting logic specializes in this 
case to conjunctive linear logic. The models of rewrite theories Af of this kind are categories with 
a commutative monoid structure in which we have chosen certain objects - - the  "places"--  and 
certain morphisms - - t he  "transitions." The initial system T~ is exactly the category T[A f] that  
Ugo Montanari and I associated to a Petri net as its semantics in [26, 27]. Naxciso Maxti-Oliet 
and I later studied the connection of this model with models for linear logic in [22, 21] and 
obtained in this way a systematic triangular correspondence between Petri nets, linear logic and 
categories which is a particular instance of the more general triangular correspondence between 
concurrent systems, rewriting logic and categories developed in this paper. 

5 .3 C o n c u r r e n t  O b j e c t - O r i e n t e d  P r o g r a m m i n g  

The basic syntax for objects and messages is given by the following order-sorted rewrite signature: 

sorts Object, Attribute, Attributes, Message, Configuration, Data, Value.  
sorts OId, CId, A i d  . *** o b j e c t ,  c l a s s  and a t t r i b u t e  i d e n l : i f i e r s  
subsorts Object, Message < Configuration . 
subsorts Attribute < At tr ibutes .  
subsorts OId, Data < Value.  
op (_ : _ 1 -) : OId CId Attributes ~ Object .  
op (_ : _) : A i d  Value - -*  At t r ibute .  
op _,_ : Attributes Attributes --~ Attributes [assoc comm id: ni~ . 
op __ : Configuration Configuration --~ Configuration [assoc comm id: A] . 

where the operators __ and _,_ axe both associative and commutative with respective identities 
A and nil. With this syntax, an object is represented as a t e r m  (0  : C I al : vx,. . . ,a,~ : v,~) where 
0 is the object's name, C is its class, the ai's are the names of the object's attributes, and the 
vi's are their corresponding values. The configuration is the distributed state of the concurrent 
object-oriented system and is represented as a multiset of objects and messages. The system 
evolves by concurrent rewriting (modulo A C I )  of the configuration by means of rewrite rules 
specific to each particular system, whose lefthand and righthand sides may in general involve 
patterns for several objects and messages. For example, objets in a class Accnt  of bank accounts, 
each having a bal(ance) attribute, may receive messages for crediting or debiting the account 
and evolve according to the rules: 

c r e d i t ( B , M )  <B: Accnt  I hal: N )  ~ ( B :  Accnt  } hal: N + M> 
debit(B,  M )  ( B  : Accnt  I hal: N )  -----, ( B :  Accnt  I bat: N - M ) .  
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Figure 6: The Big Picture 

Concurrent object-oriented systems can be defined in Maude by means of object-oriented 
module definitions of the form omod (9 endora which provide special syntax taking advantage of 
the structural properties common to all such systems. However, the semantics of object-oriented 
modules is entirely reducible to that of system modules, i.e., we can systematically translate 
an object-oriented module omod (.9 endom into a corresponding system module r, od O k endm 
whose Ok-machine semantics is the object-oriented module's intended semantics. Maude's object- 
oriented modules are discussed in detail in [24]; such modules share some similarities with those 
of FOOPS [11], and the idea of transforming objects by rewrite rules goes back to [9]. However, 
in comparison with FOOPS, both the t reatment  of concurrency and the semantics are new. 

5 .4  T h e  B i g  P i c t u r e  

Space limitations preclude a detailed discussion of other models of concurrency to which con- 
current rewriting specializes (see [25].) However, we can summarize such specializations using 
Figure 6, where CR stands for concurrent rewriting, the arrows indicate specializations, and 
the subscripts ~, AI, and ACI  stand for syntactic rewriting, rewriting modulo associativity 
and identity, and ACI  rewriting respectively. Functional programming (in particular Maude's 
functional modules) corresponds to the case of confluent ~1 rules, and includes the A-calculus 
(in combinator form) and the Herbrand-GSdel-Kleene theory of recursive functions. Rewriting 
modulo A I  yields Post systems and related grammar  formalisms, including Turing machines. 
Rewriting modulo ACI  includes Berry and Boudol's chemical abstract machine [3] (which itself 
specializes to CCS [28]), as well as actors [1] and Unity's model of computation [4] which can 
both be regarded as special cases of concurrent object-oriented programming with rewrite rules; 
a third special case is Engelfriet et al.'s POPs  and POTs higher level Petri nets [6, 7]. 

6 C o n c l u d i n g  R e m a r k s  

Within the space constraints of this paper it is impossible to do justice to the wealth of related 
literature on term rewriting, abstract data  types, concurrency, Petri nets, linear and equational 
logic, ordered, continuous and nondeterministic algebras, etc. The paper [25] contains 85 such 
references. I would however like to mention Huet 's  lecture notes [16], which contains a brief 
discussion of rules for rewriting logic, and also work on applications of 2-categories to rewriting 
and to domain-theoretic and categorical approximations, including work by Rydeheard and Stell 
[30] and Pitts [29], whose relationship to this work is studied in [25]. 

21Although not reflected in the picture, rules confluent modulo equations E are also functional. 
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I conclude pointing out that  the model theory of rewriting logic presented here --besides 
yielding the general notion of concurrent system that  we were seeking and providing the se- 
mantic basis f()r the integration of the concurrent, functional and object-oriented computational 
paradigms--  does also establish a general triangular correspondence between logic~ categories 
and concurrent systems that  can be summarized as follows: 

Formulas ~ * Objects 

States 

Proofs , , Morphisms 

Transitions 

This generalizes to arbitrary rewrite systems the triangular correspondence between linear logic, 
Petri nets and linear categories previously developed in joint work with Narciso Martf-Oliet 
[22]. In particular, the correspondence between logic and categories is a Lambek-Lawvere corre- 
spondence [18, 19], a type of correspondence more abstract and general than the Curry-Howard 
isomorphism. 
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