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Scaling Up Inductive Proofs with NulTP

Theorem proving is the strongest form of program verification.
However, it is labor intensive and requires significant user expertise.
Therefore, methods to scale up theorem proving verification are
very important. The NulTP supports several such methods:

1. Bundling: Prove many properties with a single multiclause.

2. Internalize and Conquer: Make already proved properties
available in subsequent proofs by adding them to the module

(internalization); and exploit program equivalences.

3. Modularize and Conquer: Inherit already proved properties

of sub/super modules in super/sub modules.

4. Proof Strategies: Automate large parts of a proof by proof
strategies that recursively apply some simplification and/or

induction proof rules.



Scaling Up Inductive Proofs with NulTP

In this lecture I will illustrate the effectiveness of scaling up

methods (1)—(3) by means of two case studies.

In a first case study I will show how bundling, proving program
equivalences, and internalization allow a very short proof of

associativity-commutativity of natural number addition.

In a second case study I will show how proving many properties of
various functions on lists, trees, and mapping trees to lists can be

done with very short proofs using techniques (1)—(3).



[ Case Study 1 ]

Recall the standard definition of natural number addition by
recursion on the right argument in PEANO+R (Lecture 15). Let us

prove its semantic equivalence with PEANO+L.:

set include BOOL off .

fmod PEANO+L is
sort Nat .
op O : -> Nat [ctor metadata "0"]
op s : Nat -> Nat [ctor metadata "4"]
op _+_ : Nat Nat -> Nat [metadata "8"]
vars N M : Nat .
eq O+ N=N.
eq s(N) + M = s(N + M)

endfm



[Case Study 1 (II)]

NuITP> set module PEANO+R .
Module PEANO+R is now active.
NuITP> set goal ((0 + Y:Nat = Y:Nat) /\ (s(X:Nat) + Y:Nat = s(X:Nat + Y:Nat)))

Initial goal set.

Goal Id: O
Skolem Ops:
None

Executable Hypotheses:
None
Non-Executable Hypotheses:
None
Goal:
(Y:Nat =(0 + Y:Nat)) /\ s(X:Nat + Y:Nat) =(s(X:Nat) + Y:Nat)



NuITP> apply gsi! to O on Y:Nat with O ;; s(K:Nat)

Generator Set Induction with Equality Predicate Simplification (GSI!)
applied to goal O.

Goals 0.1 and 0.2 have been proved.
qed
NuITP> set module PEANO+L .
Module PEANO+L is now active.
NuITP> set goal (Y:Nat + O = Y:Nat) /\ (Y:Nat + s(X:Nat) = s(Y:Nat + X:Nat))

Initial goal set.

Goal Id: O
Skolem Ops:
None

Executable Hypotheses:



None
Non-Executable Hypotheses:
None
Goal:
(Y:Nat =(Y:Nat + 0)) /\ s(Y:Nat + X:Nat) =(Y:Nat + s(X:Nat))

NuITP> apply gsi! to O on Y:Nat with O ;; s(K:Nat)

Generator Set Induction with Equality Predicate Simplification (GSI!)
applied to goal O.

Goals 0.1 and 0.2 have been proved.

ged

NuITP>



[Case Study 1 (III)]

By using the Lemma Internalization Theorem 2, the following
program PEANO+LR is semantically equivalent to both PEANO+L and
PEANO+R:

set include BOOL off .

fmod PEANO+LR is
protecting PEANO+R .
vars N M : Nat .
*** the already-proved equations of PEANO+L are internalized
eq O+ N=N.
eq s(N) + M =s(N + M) .

endfm

Therefore, we can use PEANO+LR to prove that + in PEANO+R (and
of course in PEANO+L) is AC:



[Case Study 1 (IV)]

NuITP> set module PEANO+LR .
Module PEANO+LR is now active.

NuITP> set goal (X:Nat + Y:Nat = Y:Nat + X:Nat) /\
((X:Nat + Y:Nat) + Z:Nat = X:Nat + (Y:Nat + Z:Nat))

Initial goal set.

Goal Id: O
Skolem Ops:
None

Executable Hypotheses:
None

Non-Executable Hypotheses:
None

Goal:
((X:Nat + Y:Nat) =(Y:Nat + X:Nat)) /\(X:Nat +(Y:Nat + Z:Nat)) =((X:Nat +



Y:Nat) + Z:Nat)
NuITP> apply gsi! to O on Y:Nat with O ;; s(K:Nat)

Generator Set Induction with Equality Predicate Simplification (GSI!)
applied to goal O.

Goal 0.1 has been proved.

Goal Id: 0.2
Skolem Ops:
K.Nat
Executable Hypotheses:
((X:Nat + K) + Z:Nat) =>(X:Nat +(K + Z:Nat))
Non-Executable Hypotheses:
(K + X:Nat) =(X:Nat + K)
Goal:
(K + X:Nat) =(X:Nat + K)

NuITP>
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Since goal 0.2 is identical to its non-executable hypothesis, we can
use clause subsumption (cs) (which applies in particular when a

goal is a substitution instance of a hypothesis) to finish the proof:

NuITP> apply cs to 0.2 .
Clause Subsumption (CS) applied to goal 0.2.
Goal 0.2.1 has been proved.
qed

NuITP>

That is, we have both proved PEANO+R =,,,,, PEANO+L and + AC

with just three applications of gsi! and one application of cs.

Furthermore, the Lemma Internalization Theorem 3 gives us the
additional program equivalence: PEANO+R =,.,,, PEANO+AC for the

program:
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set include BOOL off .

fmod PEANO+AC is sort Nat .
op O : -> Nat [ctor metadata "O"] .
op s : Nat -> Nat [ctor metadata "4"]
op _+_ : Nat Nat -> Nat [assoc comm metadata "8"]
vars N M : Nat .
eq N+ 0 =N .
eq N + s(M) = s(N + M) .

endfm

PEANO+AC will be much more effective than either PEANO+R,
PEANO+L, or PEANO+LR in proving further properties (not just of +,
but of other functions using +), that require knowledge that + is

AC.
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Modularize and Conquer

The key idea of the modularize and conquer method is to inherit
already proved properties of a sub/super theory in a super/sub

theory. Recall that a theory inclusion
(X0, Eo U By) C (X, EUB)
is (by definition) protecting iff Ts;/puB|s, = Tsy/E,UB,-

We will use two theorems that are proved in an Appendix to this
lecture, soon to appear:

Theorem (Up Theorem). For a theory inclusion of admissible
theories (Xg, Fo U Bg) C (X, E' U B) sufficiently complete w.r.t.
respective constructors {2y and €2, with respective sort sets Sy and
Sst.s€ 8,50 € SyANs<sy=s€ESy, st Qs, =, where
Qls, =def {(c:w—35) € Q| (w,s) € S; xSy}, and s.t.
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(u€To, Nu—p,pv) = v € Ty, for ¢ any unconditional
multiclause such that ¢ € IndThmpor (X0, Eo U Bg) we have
¢ € IndThmpor (%, EUB).

The requirement that ¢ is unconditional is essential. For example,
for (3o, Eg U Bg) the theory of PEANO+R, and (X, F' U B) the theory
that adds the equation s(s(s(0))) = 0 to get the naturals modulo 3.
Obviously, s(s(s(0))) # 0 & IndThmpor (%, EU B); but

s(s(s(0))) # 0 € IndThmpor (X0, Eg U By), expressible as the
clause s(s(s(0))) = 0 — false. Indeed:

NulTP> set module PEANO+R .
Module PEANO+R is now active.
NuITP> set goal s(s(s(X:Nat))) = 0 -> false .

Initial goal set.

14



Goal Id: O
Skolem Ops:
None
Executable Hypotheses:
None
Non-Executable Hypotheses:
None
Goal:
0 = s(s(s(X:Nat))) -> false

NuITP> apply eps to O .
Equality Predicate Simplification (EPS) applied to goal O.
Goal 0.1 has been proved.
ged

NulTP>
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[Modularize and Conquer (II)]

Theorem (Up and Down Theorem). For a theory inclusion of
admissible theories (3, Fg U By) C (3, EU B) such that (3, EUB)
protects (X9, Fg U Bp) and ¢ any Yp-multiclause we have the

equivalence:

QY € [ndThmFOL(ZO,EO U Bo) < pcC IndThmFOL(E,E U B)

By the Up Theorem, if an unconditional multiclause ¢ is an
inductive theorem of submodule (¥, Fg U Bp) it is also an
inductive theorem of supermodule (3, E U B).

By the Up and Down Theorem, if the theory inclusion

(X0, Eo U By) C (X2, EU B) is protecting, it doen’t matter where we
prove that a Yg-multiclause ¢ is an inductive theorem: we could do
it either in the submodule (X, Eg U By) or in the supermodule

(X, E'U B), since it holds for both.
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Case Study 2

Consider the following three modules, defining functions on lists,

trees, and between trees and lists:

fmod NAT-LIST+R is protecting PEANO+R .

sorts NeList List . subsorst Nat < NelList < List
op nil : -> List [ctor metadata "1"]
op _;_ : List List -> List [assoc metadata "5"]
op _;_ : NeList NeList -> NeList [ctor assoc metadata "5"]
op rev : List -> List [metadata "10"] . xx* 1ist reverse
op + : List -> Nat [metadata "12"] . *x*x% adds all numbers in list
var N : Nat . wvars L : List
eq L ; nil =L . eqnil ; L =1L .
eq rev(nil) = nil
eq rev(N) = N . eq rev(N ; L) = rev(L) ; N .
eq +(nil) =0 eq +(N) =N . eq +(N ; L) =N + +(L)
endfm
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fmod NAT-TREE+R is protecting PEANO+R .

sort Tree subsort Nat < Tree

op _~_ : Tree Tree -> Tree [ctor metadata
op rev : Tree -> Tree [metadata "10"]
op + : Tree -> Nat [metadata "12"]
vars N M : Nat vars T1 T2 : Tree
eq rev(N) = N .
eq rev(Tl = T2) = rev(T2) ~ rev(T1l)
eq +(N) = N .
eq +(T1 = T2) = +(T1) + +(T2)
endfm

l16ll:|
%% tree reverse

***% adds all numbers in tree

fmod NAT-TREE-LIST+R is protecting NAT-TREE+R .

protecting NAT-LIST+R .

op rev : Nat -> Nat [metadata "10"] *okok
op + : Nat -> Nat [metadata "12"] k% >k
op t21 : Tree -> List [metadata "9"] k% k
var N : Nat vars Tl T2 : Tree
eq t21(N) = N .
eq t21(T1 ~ T2) = t21(T1) ; t21(T2)

endfm

added for preregularity
added for preregularity
maps trees to lists
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Case Study 2 (II)

We would like to prove the following four inductive theorems about
NAT-LIST+R:

1. rev(rev(L: List)) = L: List
2. rev(L:List; Q:List) = rev(Q : List) ; rev(L: List)
3. +(L:List; Q:List) = +(L:List) + +(Q:List)

4. +(rev(L:List)) = +(L: List)

Likewise, we would like to prove the following two inductive
theorems about (respectively) NAT-TREE+R and NAT-TREE-LIST+R:
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1. rev(rev(T:Tree)) = T:Tree

2. +(rev(T:Tree)) =+ :Tree).

1. t2l(rev(T:Tree)) = rev(t2l(T:Tree))
2. +(t2U(T:Tree)) = +(T:Tree).

However, since, using the Strong Protection Theorem in the
Appendix to this lecture it is easy to check that NAT-TREE-LIST+R
protects NAT-TREE+R, using the Up and Down Theorem we can get
a shorted proof by bundling these four equations together and
proving them in NAT-TREE-LIST+R.
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[Case Study 2 (III)]

Since both NAT-LIST+R and NAT-TREE+R have functions + that
extend natural number additions to lists (resp. trees), this is a
good example of a case where the remark at the end of Case Study
1 that PEANO+AC will be much more effective than PEANO+R in
proving properties of other functions using + applies. Therefore,
we would like to carry out those proofs using semantically
equivalent programs that internalize the knowledge that natural

number addition is AC, namely,

set include BOOL off .

fmod NAT-LIST+AC is protecting PEANO+AC .

sorts NeList List . subsort Nat < NeList < List .

op nil : -> List [ctor metadata "1"] .

op _;_ : List List -> List [assoc metadata "5"] .

op _;_ : NeList NeList -> NeList [ctor assoc metadata "5"] .
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op rev : List -> List [metadata "10"] . xx% 1ist reverse

op + : List -> Nat [metadata "12"] . **x% adds all numbers in list
var N : Nat . wvars L : List
eq L ; nil =L . eqnil ; L=1L1.
eq rev(nil) = nil .
eq rev(N) = N . eq rev(N ; L) = rev(L) ; N .
eq +(nil) =0 eq +(N) =N . eq +(N ; L) =N + +(L)
endfm

set include BOOL off

fmod NAT-TREE+AC is protecting PEANO+AC .

sort Tree . subsort Nat < Tree
op _"_ : Tree Tree -> Tree [ctor metadata "6"]
op rev : Tree -> Tree [metadata "10"] . *** tree reverse
op + : Tree -> Nat [metadata "12"] . **x% adds all numbers in tree
vars N M : Nat . vars Tl T2 : Tree
eq rev(N) = N . eq rev(Tl = T2) = rev(T2) ~ rev(T1l)
eq +(N) = N . eq +(T1 =~ T2) = +(T1) + +(T2)
endfm
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[Case Study 2 (IV)]

The fact that we indeed have program equivalences

NAT-LIST+R =..,, NAT-LIST+AC and

NAT-TREE+R =,.,, NAT-TREE+AC, follows directly form the program
equivalence NAT+R =,,,,, NAT+AC by the Up Theorem and the

Lemma Internalization Theorem 3.

So, let us start by proving the four inductive theorems for
NAT-LIST+R using NAT-LIST+AC:

NuITP> set goal (rev(rev(L:List)) = L:List) /\
(rev(L:List ; Q:List) = (rev(Q:List) ; rev(L:List))) /\

(+(L:List ; Q:List) = (+(L:List) + +(Q:List))) /\ (+(rev(L:List)) = +(L:List)) .

Initial goal set.

Goal Id: O
Skolem Ops:
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None

Executable Hypotheses:
None

Non-Executable Hypotheses:
None

Goal:
(L:List = rev(rev(L:List))) /\(+(L:List) = +(rev(L:List))) /\(+(L:List ;
Q:List) = +(Q:List) + +(L:List)) /\ rev(L:List ; Q:List) = rev(Q:List) ;
rev(L:List)

NuITP> apply gsi! to O on L:List with nil ;; X:Nat ;; (Y:Nat ; L3:NeList)

Generator Set Induction with Equality Predicate Simplification (GSI!)
applied to goal O.

Goals 0.1 and 0.2 have been proved.

Goal Id: 0.3

Skolem Ops:
L3.NeList
Y.Nat
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Executable Hypotheses:
+(L3 ; Q:List) => +(L3) + +(Q:List)
+(rev(L3)) => +(L3)
rev(L3 ; Q:List) => rev(Q:List) ; rev(L3)
rev(rev(L3)) => L3
Non-Executable Hypotheses:
None
Goal:
(+(rev(L3) ; Y) =Y + +(L3)) /\ rev(rev(L3) ; Y) =Y ; L3

The key observation at this point is that we could easily prove each
of these two conjuncts using their executable hypotheses plus two
of the original inductive theorems we wanted to prove, namely,
+(L:List; Q:List) = +(L:List) + +(Q:List) and

rev(L:List; Q:List) = rev(Q : List) ; rev(L: List), used as lemmas
by means of the 1le! command, and bundled as a single conjunctive

formula:
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NuITP> apply le! to 0.3 with (rev(L:List ; Q:List) = rev(Q:List) ; rev(L:List))
/\ (+(L:List ; Q:List) = (+(L:List) + +(Q:List)))

Lemma Enrichment with Equality Predicate Simplification (LE!) applied to
goal 0.3.

Goal 0.3.2 has been proved.

Goal Id: 0.3.1
Skolem Ops:
None
Executable Hypotheses:
None
Non-Executable Hypotheses:
None
Goal:
(+(L:List ; Q:List) = +(Q:List) + +(L:List)) /\ rev(L:List ; Q:List) =
rev(Q:List) ; rev(L:List)

NuITP> apply gsi! to 0.3.1 on L:List with nil ;; X:Nat ;; (Y:Nat ; L3:NelList)
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Generator Set Induction with Equality Predicate Simplification (GSI!)
applied to goal 0.3.1.

Goals 0.3.1.1, 0.3.1.2 and 0.3.1.3 have been proved.
ged
NuITP>

This only leaves us proving the two inductive theorems for
NAT-TREE+AC and the two for NAT-TREE-LIST+AC, which, by
NAT-TREE-LIST+AC protecting NAT-TREE+AC, we can prove together
as a conjunctive bundle of for theorems in NAT-TREE-LIST+AC.
However, since several of these theorems involve properties of
functions in NAT-LIST+AC, it would be silly to attempt such a proof
without first internalizing, thanks to the Up Theorem and the
Lemma Internalization Theorem 2, the four theorems we have
already proved about NAT-LIST+AC as follows:
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set include BOOL off

fmod NAT-TREE-LIST+AC-ENRICHED is protecting NAT-TREE+AC .
protecting NAT-LIST+AC .

op rev : Nat -> Nat [metadata "10"] . *** added for preregularity

op + : Nat -> Nat [metadata "12"] . xxx added for preregularity

op t21 : Tree -> List [metadata "9"] . *** maps trees to lists

var N : Nat . vars Tl T2 : Tree

eq t21(N) = N . eq t21(T1 ~ T2) = t21(T1) ; t21(T2)

eq rev(rev(L:List)) = L:List . *x*% internalized

eq +(L:List ; Q:List) = +(Q:List) + +(L:List) . **x* internalized

eq rev(L:List ; Q:List) = rev(Q:List) ; rev(L:List) . *** internalized

eq +(rev(L:List)) = +(L:List) . *x*x* internalized
endfm
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[Case Study 2 (V)]

We can in fact prove those four inductive theorems by a single
application of gsi! as follows:

NulTP> set module NAT-TREE-LIST+AC-ENRICHED .

Module NAT-TREE-LIST+AC-ENRICHED is now active.
NuITP> set goal (rev(rev(T:Tree))= T:Tree) /\
(+(rev(T:Tree)) = +(T:Tree)) /\

(t21(rev(T:Tree)) = rev(t21(T:Tree))) /\ (+(t21(T:Tree)) = +(T:Tree))

Initial goal set.

Goal Id: O
Skolem Ops:
None

Executable Hypotheses:
None
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Non-Executable Hypotheses:
None
Goal:

(T:Tree = rev(rev(T:Tree))) /\(+(T:Tree) = +(rev(T:Tree))) /\(+(T:Tree) =

+(t21(T:Tree))) /\ rev(t21l(T:Tree)) = t21(rev(T:Tree))
NuITP> apply gsi! to O on T:Tree with X:Nat ;; (P:Tree ~ Q:Tree)

Generator Set Induction with Equality Predicate Simplification (GSI!)
applied to goal O.

Goals 0.1 and 0.2 have been proved.
qed

NuITP>

In summary, we have proved eight inductive theorems and
established seven program equivalences with just: three

applications of gsi! and one application of le!.
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Soundness of Nul'TP’s Inference System

The theoretical basis, inference rules, and proof of soundness for
the inductive inference system +;,, on which the NulTP is based
are described in detail in the paper:

J. Meseguer and S. Skeirik, “Inductive Reasoning with
Equality Predicates, Contextual Rewriting and
Variant-Based Simplification” (submitted for publication).

which will soon be made available on the CS 476 web page.
However, since this is still an unpublished paper, I ask of all CS 476
students to please use of this paper in a private manner, solely for
purposes of following the CS 476 Fall 2022 course, since a finished

and improved version of it has not yet appeared in print.
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