
Program Verification: Lecture 15

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1



Proving Inductive Theorems with the NuITP

The NuITP is a next-generation inductive theorem proper for
Maude replacing the earlier Maude Inductive Theorem Prover
(ITP). The NuITP uses advanced symbolic techniques to automate
large parts of inductive proofs, thus saving proof time and effort.

In the NuITP, standard induction on the natural numbers is
generalized to induction on constructors, using the so-called
generator set induction (GSI) inference rule.

To better understand generator set induction we can see how, in
the case of the natural numbers, it can directly express standard
natural number induction.

Let us see how associativity of addition is proved, first by standard
induction, and then by the NuITP using generator set induction.

2



Standard Proof of Associativity of Addition

We want to prove that the addition operation in the module:

fmod PEANO+R is
sort Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .
op _+_ : Nat Nat -> Nat .
vars N M L : Nat .
eq N + 0 = N .
eq N + s(M) = s(N + M) .

endfm

where PEANO+R suggests that we recurse on the right (R) argument
when defining +, satisfies the associativity property,

(∀N, M, L) N + (M + L) = (N + M) + L.

3



Standard Proof of Associativity of Addition (II)

We can prove this property by induction on L. That is, we prove it
for L = 0 (base case) and then assuming that it holds for L, we
prove it for s(L) (induction step).

BaseCase: We need to show,

(∀N, M) N + (M + 0) = (N + M) + 0.

We can do this trivially, by simplification with the equation

eq N + 0 = N .

4



Standard Proof of Associativity of Addition (III)

InductionStep: We think of L as a generic constant (typically
written n in textbooks) and assume that the associativity equation
(induction hypothesis (IH))

(∀N, M) N + (M + L) = (N + M) + L

holds for that constant. Then, we try to prove the equation,

(∀N, M) N + (M + s(L)) = (N + M) + s(L).

using the induction hypothesis. Again, we can do this by
simplification with the equations E in NAT, and the induction
hypothesis IH equation, since we have,

5



Standard Proof of Associativity of Addition (IV)

N + (M + s(L)) −→E N + s(M + L)

−→E s(N + (M + L)) −→IH s((N + M) + L)).

and

(N + M) + s(L) −→E s((N + M) + L).

q.e.d

6



Machine-Assisted Inductive Proofs with Maude’s NuITP

Maude’s NuITP is an inductive theorem prover supporting proofs
by induction in Maude functional modules. The NuITP is a
research collaboration involving Francisco Durán at the University
of Málaga, Santiago Escobar and Julia Sapiña at the Technical
University of Valencia, and José Meseguer at UIUC. It is a Maude
program used as follows:

• one first loads in Maude the functional module or modules one
wants to reason about

• one then loads the file NuITP.maude into Maude.

• one sets one of the modules previously loaded in Maude as the
current module and sets a multiclause as the goal to be proved.

• one then gives commands, corresponding to inductive proof
steps, or formula simplification steps, to prove the chosen goal.

7



Proof of + Associativity with Maude’s NuITP (I)

To prove the associativity of addition, we first load into Maude
PEANO+R annotated with an RPO termination order, just as for the
MTA. To prevent Maude from also loading BOOL we first type:
set include BOOL off .

fmod PEANO+R is
sort Nat .
op 0 : -> Nat [ctor metadata "0"] .
op s : Nat -> Nat [ctor metadata "4"] .
op _+_ : Nat Nat -> Nat [metadata "8"] .
vars N M L : Nat .
eq N + 0 = N .
eq N + s(M) = s(N + M) .

endfm

Then we load NuITP.maude into Maude and set PEANO+R as current
module and associativity of + as the goal to be proved as follows:

8



Proof of + Associativity with Maude’s NuITP (II)

NuITP
Inductive Theorem Prover

for Maude Equational Theories
alpha 12a

NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP> set goal ((N:Nat + M:Nat) + L:Nat = N:Nat + (M:Nat + L:Nat)) .

Initial goal set.

Goal Id: 0
Skolem Ops:

None
Executable Hypotheses:

9



None
Non-Executable Hypotheses:

None
Goal:

(N:Nat +(M:Nat + L:Nat)) =((N:Nat + M:Nat) + L:Nat)

The user can now give commands to the NuITP to prove this goal.
The command that exactly corresponds to standard induction on
the natural numbers is:

apply gsi to 0 on L:Nat with 0 ;; s(K:Nat) .

where the generator set used for sort Nat is: {0, s(K)},
corresponding exactly to the base case and induction step of
standard induction. Let us explore this concept in more detail.

10



Generator Sets

For fmod (Σ, E ∪B) endfm an admissible equational program
sufficiently complete w.r.t. constructors Ω, a generator set for sort
s in Σ, is a finite set of constructor terms of sort s,

{u1, . . . , un} ⊆ TΩ(X)s

such that any ground constructor term of sort s is a ground
instance modulo B of some ui, i.e., ∀w ∈ TΩs

∃i, 1 ≤ i ≤ n,
∃γ ∈ [vars(ui) → TΩ], s.t. w =B uiγ.

{0, s(K)} is a generator set of sort Nat; and {0, s(0), s(s(K))} is
also a generator set for Nat: many choices are possible.

For _;_ an associative operator of sort LIst with Nat < List,
{nil , n, (L;L′)}, {nil , n, (m;L)} and {nil , n, (L;m)} are all
generator sets of sort LIst (with variables n,m : Nat, L,L′ : LIst).

11



Checking Correctness of Generator Sets

Correctness of a generator set {u1, . . . , un} for a sort s can be
reduced to: (i) checking {u1, . . . , un} ⊆ TΩ(X)s and (ii) a sufficient
completeness check for a module. For {nil , n, (m;L)} the module:
fmod GEN-SET-SORT-PREDICATE-FOR-List is protecting TRUTH-VALUE .
sorts Nat List . subsorts Nat < List .
op 0 : -> Nat [ctor] op nil : -> List [ctor] .
op s : Nat -> Nat [ctor] op _;_ : List List -> List [ctor assoc] .
op List : List -> Bool .
eq List(nil) = true . eq List(n:Nat) = true .
eq List(m:Nat ; L:List) = true .
endfm

In the current alpha version of NuITP it is the user’s responsibility
to check the sufficient completeness of the module defining the sort
predicate associated to a generator set using Maude’s SCC.

Warning: the variables of a generator set should be fresh, not
appearing in any goal. And the ui should be linear terms.

12



Proof of + Associativity with Maude’s NuITP (III)

NuITP> apply gsi to 0 on L:Nat with 0 ;; s(K:Nat) .

Generator Set Induction (GSI) applied to goal 0.

Goal Id: 0.1
Skolem Ops:

None
Executable Hypotheses:

None
Non-Executable Hypotheses:

None
Goal:

(N:Nat +(M:Nat + 0)) =((N:Nat + M:Nat) + 0)

Goal Id: 0.2
Skolem Ops:

K.Nat
Executable Hypotheses:

13



((N:Nat + M:Nat) + K) =>(N:Nat +(M:Nat + K))
Non-Executable Hypotheses:

None
Goal:

(N:Nat +(M:Nat + s(K))) =((N:Nat + M:Nat) + s(K))

These goals are exactly those generated by standard induction.
Note that the role of the generic constant L is here played by the
Skolem constant K.

As in standard induction, all we have left to do is to simplify these
goals using: (i) the module’s equations; and (ii) the induction
hypothesis. In the NuITP this is done with the equality predicate
simplification (eps) command as follows:

14



Proof of + Associativity with Maude’s NuITP (IV)

NuITP> apply eps to 0.1 .

Equality Predicate Simplification (EPS) applied to goal 0.1.

Goal 0.1.1 has been proved.

Unproved goals:

Goal Id: 0.2
Skolem Ops:

K.Nat
Executable Hypotheses:

((N:Nat + M:Nat) + K) =>(N:Nat +(M:Nat + K))
Non-Executable Hypotheses:

None
Goal:

(N:Nat +(M:Nat + s(K))) =((N:Nat + M:Nat) + s(K))

15



NuITP> apply eps to 0.2 .

Equality Predicate Simplification (EPS) applied to goal 0.2.

Goal 0.2.1 has been proved.

qed

The qed acronym indicates that there are no pending goals and the
inductive proof of associativity of + has been finished, exactly as
with standard induction.

If we had instead used the generator set {0, s(0), s(s(K))} a
somewhat different proof with two “base cases” and one “induction
step” would have been created. The user has the freedom to choose
a generator set that best matches the recursive equations in the
module. In this example the generator set {0, s(K)} was a good
match; but in other examples other choices may be preferable.

16



The gsi! Command

For many NuITP commands like gsi that apply an inductive
inference rule, the best strategy before applying another command
is to simplify the subgoals just generated using the eps command.

This situation is so common, that the NuITP combines both
commands into the gsi! command, that applies eps to each of the
goals generated by gsi. This can greatly shorten proofs. Let us see
the effect for proving associativity of +:
NuITP> set module PEANO+R .

Module PEANO+R is now active.

NuITP> set goal ((N:Nat + M:Nat) + L:Nat = N:Nat + (M:Nat + L:Nat)) .

Initial goal set.

17



Goal Id: 0
Skolem Ops:

None
Executable Hypotheses:

None
Non-Executable Hypotheses:

None
Goal:

(N:Nat +(M:Nat + L:Nat)) =((N:Nat + M:Nat) + L:Nat)

NuITP> apply gsi! to 0 on L:Nat with 0 ;; s(K:Nat) .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied
to goal 0.

Goals 0.1 and 0.2 have been proved.

qed

NuITP>

18



Proving Program Equivalences in NuITP

Recall from the Program Equivalence Theorem in Lecture 14 that
fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E′ ∪B′) endfm iff
(Σ, E ∪B) ≡ind (Σ, E′ ∪B′) iff (by definition)

TΣ/E∪B |= E′ ∪B′ and TΣ/E′∪B′ |= E ∪B.

In particular, proving program equivalences can be useful for
program optimization purposes.

Let us prove that our equational program PEANO+R is semantically
equivalent to the following program PEANO+R-FAST, which runs,
roughly, twice as fast.

19



Proving Program Equivalences in NuITP (II)

fmod PEANO+R-FAST is
sort Nat .
op 0 : -> Nat [ctor metadata "0"] .
op s : Nat -> Nat [ctor metadata "4"] .
op _+_ : Nat Nat -> Nat [metadata "8"] .
vars N M : Nat .
eq N + 0 = N .
eq N + s(0) = s(N) .
eq N + s(s(M)) = s(s(N + M)) .

endfm

Note that a good generator set for this program, matching its
recursive equations, is: {0, s(0), s(s(K))}. Proofs for this module
using this generator set will tend to be shorter than proofs using
the “vanilla flavored” generator set {0, s(K)}.

Let us now prove that PEANO+R and PEANO+R-FAST are equivalent.

20



Proving Program Equivalences in NuITP (III)

NuITP> set goal ((N:Nat + 0 = N:Nat) /\ (N:Nat + s(0) = s(N:Nat)) /\
(N:Nat + s(s(M:Nat)) = s(s(N:Nat + M:Nat)))) .

Initial goal set.

Goal Id: 0
Skolem Ops:

None
Executable Hypotheses:

None
Non-Executable Hypotheses:

None
Goal:

(N:Nat =(N:Nat + 0)) /\(s(N:Nat) =(N:Nat + s(0))) /\
s(s(N:Nat + M:Nat)) =(N:Nat + s(s(M:Nat)))

NuITP> apply eps to 0 .

21



Equality Predicate Simplification (EPS) applied to goal 0.

Goal 0.1 has been proved.

qed

NuITP> set module PEANO+R-FAST .

Module PEANO+R-FAST is now active.

NuITP> set goal ((X:Nat + 0 = X:Nat) /\ (X:Nat + s(Y:Nat) = s(X:Nat + Y:Nat))) .

Initial goal set.

Goal Id: 0
Skolem Ops:

None
Executable Hypotheses:

None
Non-Executable Hypotheses:

None

22



Goal:
(X:Nat =(X:Nat + 0)) /\ s(X:Nat + Y:Nat) =(X:Nat + s(Y:Nat))

NuITP> apply gsi! to 0 on Y:Nat with 0 ;; s(0) ;; s(s(K:Nat)) .

Generator Set Induction with Equality Predicate Simplification (GSI!) applied
to goal 0.

Goals 0.1, 0.2 and 0.3 have been proved.

qed

NuITP>

23


