
Program Verification: Lecture 14

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

1

Inductive Theorems do not Change the Initial Algebra

Theorem (Lemma Internalization Theorem 1) Let (Σ, E) be an
equational theory and G a set of Σ-equations such that
(Σ, E) |=ind G. Then, TΣ/E = TΣ/E∪G.

Proof : Since TΣ/E∪G |= E we have a unique Σ-homomorphism
h : TΣ/E → TΣ/E∪G. And since TΣ/E |= E ∪G, we also have a
unique Σ-homomorphism g : TΣ/E∪G → TΣ/E . But then, the
initiality of TΣ/E forces h; g = idTΣ/E

, and the initiality of TΣ/E∪G

forces g;h = idTΣ/E∪G
. Therefore, we have an isomorphism:

TΣ/E
∼= TΣ/E∪G. We will be done of we prove the following lemma:

Lemma Let E,E′ be two sets of Σ-equations such that
TΣ/E

∼= TΣ/E′ . Then, TΣ/E = TΣ/E′ .

2

Inductive Theorems do not Change the Initial Algebra (II)

Proof of the Lemma: TΣ/E and TΣ/E′ are uniquely determined
by the respective ground equality relations =E ∩T 2

Σ and =E′ ∩T 2
Σ.

We just need to show (=E ∩T 2
Σ) = (=E′ ∩T 2

Σ). Since we have a
Σ-isomorphism h : TΣ/E → TΣ/E′ , and unique Σ-homomorphisms
[_]E : TΣ → TΣ/E , and [_]E′ : TΣ → TΣ/E , the initiality of TΣ

forces [_]E ;h = [_]E′ , i.e., hs([t]E) = [t]E′ for each t ∈ TΣ,s, s ∈ S.
Let t ∈ TΣ,s and t′ ∈ TΣ,s′ with t =E t′. Then [s] = [s′] and, by h

order-sorted Σ-homomorphism and [t]E = [t′]E , we must have
hs([t]E) = hs′([t

′]E), which forces:

hs([t]E) = [t]E′ = [t′]E′ = hs′([t
′]E)

giving us the containment (=E ∩T 2
Σ) ⊆ (=E′ ∩T 2

Σ). Using the
inverse isomorphism h−1 we likewise get (=E′ ∩T 2

Σ) ⊆ (=E ∩T 2
Σ),

giving us (=E ∩T 2
Σ) = (=E′ ∩T 2

Σ), as desired. q.e.d. q.e.d.

3

Equivalence of Equational Theories

Call two equational theories (Σ, E) and (Σ, E′) equivalent, denoted
(Σ, E) ≡ (Σ, E′) iff (by definition) E ⊢ E′ and E′ ⊢ E.

Ex.14.1 Prove that:

(Σ, E) ≡ (Σ, E′) ⇔ (=E) = (=E′) ⇔ Alg(Σ,E) = Alg(Σ,E′).

For example, the sets of equations
E = {x · (y · z) = (x · y) · z, x · 1 = x = 1 · x, x · x−1 = 1, 1 = x−1 · x},
and E′ = {(x · y) · z = x · (y · z), 1 · x = x, x · 1 = x, x · x−1 =

1, x−1 · x = 1, 1−1 = 1, (x−1)−1 = x, (x · y)−1 =

y−1 · x−1, x · (x−1 · y) = y, x−1 · (x · y) = y} define equivalent
theories (Σ, E) ≡ (Σ, E′) for the theory of groups. But E′ is much
better, because E⃗′ is confluent and terminating. Therefore, by the
Church-Rosser Theorem we can decide whether any Σ-equality
u = v is a theorem of group theory by checking whether u!E⃗′ = v!E⃗′ .

4

Inductive Equivalence of Equational Theories

Call two equational theories (Σ, E) and (Σ, E′) inductively
equivalent, denoted (Σ, E) ≡ind (Σ, E′) iff (by definition)
(Σ, E) |=ind E′ and (Σ, E′) |=ind E.

Ex.14.2 Prove that:

(Σ, E) ≡ind (Σ, E′) ⇔ (=E ∩T 2
Σ) = (=E′ ∩T 2

Σ) ⇔ TΣ/E = TΣ/E′ .

Ex.14.1 and Ex.14.2 give us
(Σ, E) ≡ (Σ, E′)⇒ (Σ, E) ≡ind (Σ, E′). But in general
(Σ, E) ≡ind (Σ, E′) does not imply (Σ, E) ≡ (Σ, E′).
For example, as explained in Lecture 13, For Σ = {0, s,_ + _} and
E = {x+ 0 = x, x+ s(y) = s(x+ y)}, TΣ/E |= x+ y = y + x. Thus,
by the Lemma Internalization Theorem 1 and Ex.14.2 we have
(Σ, E) ≡ind (Σ, E ∪{x+ y = y+x}). But we saw in Lecture 13 that
E ̸⊢ x+ y = y + x, and therefore (Σ, E) ̸≡ (Σ, E ∪ {x+ y = y + x}).

5

Semantic Equivalence of Equational Programs

In Program Verification a fundamental question is:

When are two different programs semantically equivalent?

The most obvious answer for admissible equational programs fmod
(Σ, E) endfm and fmod (Σ, E′) endfm is:

When they compute the same recursive functions,

which mathematically just means: when CΣ/E⃗ = CΣ/E⃗′ .

For example, we shall prove that for Σ = {0, s,_ + _},
E = {x+ 0 = x, x+ s(y) = s(x+ y)} and
E′ = {0 + x = x, s(x) + y = s(x+ y)}, fmod (Σ, E) endfm and fmod
(Σ, E′) endfm are equivalent equational programs: both compute
the standard addition function on natural numbers +N.

Let us give a more precise (and more general) definition.

6

Admissible and Comparable programs

Call fmod (Σ, E ∪B) endfm admissible iff (i) Σ is B-preregular,
with non-empty sorts, (ii) E⃗ is sort-decreasing, and ground
confluent and terminating modulo B, and (iii) it is sufficiently
complete w.r.t. a constructor subsignature Ω.
Call (Σ, E ∪B) satisfying (i)–(ii) ground convergent modulo B.
Given a constructor subsignature Ω ⊆ Σ, Ω+ denotes the signature
that extends Ω by adding all non-constructor operator typings that
are subsort-overloaded with some operator in Ω. Call two
admissible equational programs fmod (Σ, E ∪B) endfm and fmod
(Σ, E′ ∪B′) endfm comparable iff: (i) E = E0 ⊎ EΩ+ and
E′ = E′

0 ⊎ E′
Ω+ , with EΩ+ ∪ E′

Ω+ Ω-equations, and each rule in
E⃗0 ∪ E⃗′

0 of the form f(u1, . . . , un)→ v, with f in Σ \ Ω+, and (ii)
B = B0 ⊎BΩ+ and B′ = B′

0 ⊎BΩ+ , with BΩ+ A ∨ C ∨ U

Ω+-axioms, and B0 ∪B′
0 A ∨ C (Σ \ Ω+)-axioms.

7

Semantic Equivalence of Equational Programs (II)

Admissible and comprable programs fmod (Σ, E ∪B) endfm and
fmod (Σ, E′ ∪B′) endfm are called semantically equivalent, denoted
fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E′ ∪B′) endfm iff
CΣ/E⃗,B = CΣ/E⃗′,B′ .

Since the axioms in B0 ∪B′
0 are A ∨ C (Σ \ Ω+)-axioms, for any

u, v ∈ TΩ+ , u =B v (resp. u =B′ v) forces u =BΩ+ v. Therefore, the
unique Σ-homomorphisms [_!E⃗/B]B : TΣ → CΣ/E⃗,B and
[_!E⃗′/B′]B′ : TΣ → CΣ/E⃗′,B′ can more precisely be described as
[_!E⃗/B]BΩ+ : TΣ → CΣ/E⃗,B and [_!E⃗′/B′]BΩ+ : TΣ → CΣ/E⃗′,B′ .

Ex.14.3. Prove that for admissible and comparable fmod (Σ, E ∪B)

endfm and fmod (Σ, E′ ∪B′) endfm, fmod (Σ, E ∪B) endfm ≡sem

fmod (Σ, E′ ∪B′) endfm iff ∀t ∈ TΣ, t!E⃗/B =BΩ+ t!E⃗′/B′ . I.e., if
Maude’s red command gives the same result for both modulo BΩ+ .

8

Semantic Equivalence of Equational Programs (III)

Note that CΣ/E⃗,B = CΣ/E⃗′,B′ and the Lemma in pg. 2 force
TΣ/E∪B = TΣ/E′∪B′ . Therefore, by Ex.14.2, fmod (Σ, E ∪B) endfm
≡sem fmod (Σ, E′ ∪B′) endfm implies (Σ, E ∪B) ≡ind (Σ, E′ ∪B′).
But the converse implication does not hold in general.

For example, for Σ = {a, b, c}, E = {a = b}, and E′ = {b = a}, of
course (Σ, E) ≡ (Σ, E′) and therefore (Σ, E) ≡ind (Σ, E′); but
although E⃗ and E⃗′ are both convergent, they have different
constructors Ω = {b, c} and Ω′ = {a, c}, so that CΣ/E⃗ ̸= CΣ/E⃗′ .
Therefore, fmod (Σ, E ∪B) endfm ̸≡sem fmod (Σ, E′ ∪B′) endfm.

Theorem (Program Equivalence Theorem) For admissible and
comparable fmod (Σ, E ∪B) endfm and fmod (Σ, E′ ∪B′) endfm,
fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E′ ∪B′) endfm iff
(Σ, E ∪B) ≡ind (Σ, E′ ∪B′).

9

Semantic Equivalence of Equational Programs (IV)

Proof : The (⇒) implication has already been shown. To prove the
(⇐) implication, by Ex.14.3. we just need to show that ∀t ∈ TΣ,
t!E⃗/B =BΩ+ t!E⃗′/B′ . But we have ground proofs
t!E⃗/B =E∪B t =E′∪B′ t!E⃗′/B′ , and by Ex.14.2, a ground proof
t!E⃗/B =E∪B t!E⃗′/B′ , which, by (Σ, E ∪B) ground convergent
modulo B, the ground Church-Rosser Theorem modulo B, and
sufficient completeness, forces t!E⃗/B =BΩ+ (t!E⃗′/B′)!E⃗/B . Note that,
by program comparability, both terms are E⃗Ω+/B-irreducible.
Furthermore, by B0 A ∨ C (Σ \ Ω+)-axioms and lefthand sides of
rule in E⃗0 not Ω+-terms, if u ∈ TΩ, any proof u =B v must be a
proof u =BΩ+ v, and therefore with v ∈ TΩ. Since the lefthand
sides of rules in E⃗0 are not Ω+-terms, this means that t!E⃗′/B′ is
also E⃗0/B-irreducible, and therefore (t!E⃗′/B′)!E⃗/B = t!E⃗′/B′ , giving
us t!E⃗/B =BΩ+ t!E⃗′/B′ , as desired. q.e.d

10

Internalizing Lemmas in Equational Programs

Theorem (Lemma Internalization Theorem 2) Let fmod
(Σ, E ∪B) endfm be an admissible program with constructors Ω

satisfying the extra requirements on E and B allowing it to be
comparable to other programs, and let G be a finite set of
Σ-equations such that (Σ, E ∪B) |=ind G. If the equations G can
be oriented (left-to right or right to left) as sort-decreasing rules G⃗

of the form f(u1, . . . , un)→ w with f in Σ \ Ω+ and so that E⃗ ∪ G⃗

are terminating modulo B, then fmod (Σ, E ∪G′ ∪B) endfm (with
G⃗′ = G⃗) is admissible and (Σ, E ∪B) endfm ≡sem fmod
(Σ, E ∪G′ ∪B) endfm.

Proof : We first prove that (Σ, E ∪G′ ∪B) is ground convergent
modulo B. Then, fmod (Σ, E ∪G′ ∪B) endfm will also be
admissible and comparable to fmod (Σ, E ∪B) endfm. To prove the
Theorem, using Ex.14.3, we then need to also show that

11

t!E⃗/B =BΩ+ t!E⃗∪G⃗/B for any t ∈ TΣ.

To prove (Σ, E ∪G′ ∪B) ground convergent modulo B we only
need consider the joinability of all pairs: (i) u E⃗/B← t→G⃗/B v and
(ii) u G⃗/B← t→G⃗/B v with t ∈ TΣ. Since →E⃗/B⊆→E⃗∪G⃗/B , it is
enough to show joinability with →E⃗/B . Let us show joinability for
case (i); case (ii) is left as an exercise. By the Theorem’s
hypothesis, the Lemma Internalization 1 Theorem, and Ex.14.2, we
have (=E∪B ∩T 2

Σ) = (=E∪G∪B ∩T 2
Σ). Since u G⃗/B← t is a ground

proof u =G∪B t, we then also have a ground proof u =E∪B t, and
by (Σ, E ∪B) ground convergent modulo B, the ground
Church-Rosser Theorem modulo B and sufficient completeness we
must have u!E⃗/B =BΩ+ t!E⃗/B , showing the pair joinable.
To prove t!E⃗/B =BΩ+ t!E⃗∪G⃗/B for any t ∈ TΣ, note that, using
(=E∪B ∩T 2

Σ) = (=E∪G∪B ∩T 2
Σ) again, we have a ground proof of

the form t!E⃗/B =E∪B t!E⃗∪G⃗/B , which by (Σ, E ∪B) ground

12

convergent modulo B, the ground Church-Rosser Theorem modulo
B, and sufficient completeness forces t!E⃗/B =BΩ+ (t!E⃗∪G⃗/B)!E⃗/B .
But since t!E⃗∪G⃗/B is obviously E⃗/B-irreducible, we get
(t!E⃗∪G⃗/B)!E⃗/B = t!E⃗∪G⃗/B , and therefore t!E⃗/B =BΩ+ t!E⃗∪G⃗/B , as
desired. q.e.d.

13

Internalizing Lemmas in Equational Programs (II)

Theorem (Lemma Internalization Theorem 3) Let fmod (Σ, E ∪B)

endfm be an admissible program with constructors Ω satisfying the
extra requirements on E and B to be comparable to other
programs, and let G be a finite set of A ∨ C Σ \ Ω+-axioms general
enough to declare all subsort-overloaded versions of some binary
operators in Σ \ Ω+ A ∨ C and making Σ (B ∪G)-preregular, and
such that (Σ, E ∪B) |=ind G. Then, if the rules E⃗ can be proved
terminating modulo B ∪G, fmod (Σ, E ∪B ∪G) endfm is
admissible and (Σ, E ∪B) endfm ≡sem fmod (Σ, E ∪B ∪G) endfm.

Proof : We first need to show (Σ, E ∪B ∪G) ground convergent
modulo B ∪G, i.e., the joinability of all pairs
u E⃗/B∪G← t→E⃗/B∪G v with t ∈ TΣ. Since →E⃗/B⊆→E⃗/B∪G, it is
enough to show joinability with →E⃗/B . But by the Theorem’s
hypothesis, the Lemma Internalization 1 Theorem, and Ex.14.2, we

14

have (=E∪B ∩T 2
Σ) = (=E∪G∪B ∩T 2

Σ). Furthermore, the pair
u E⃗/B∪G← t→E⃗/B∪G v gives us a ground proof
u =E∪B∪G t =E∪B∪G v, and therefore a ground proof
u =E∪B t =E∪B v. But by (Σ, E ∪B) ground convergent modulo
B, the ground Church-Rosser Theorem modulo B and sufficient
completness we must have u!E⃗/B =BΩ+ t!E⃗/B =BΩ+ v!E⃗/B , showing
the pair joinable.

We will be done if we show that t!E⃗/B =BΩ+ t!E⃗/B∪G. But, using
(=E∪B ∩T 2

Σ) = (=E∪G∪B ∩T 2
Σ) again, we have a ground proof

t!E⃗/B =E∪B t!E⃗/B∪G, which by (Σ, E ∪B) ground convergent
modulo B, the ground Church-Rosser Theorem modulo B and
sufficient completeness forces t!E⃗/B =BΩ+ (t!E⃗/B∪)!E⃗/B . But since
t!E⃗/B∪G is obviously E⃗/B-irreducible, we get
(t!E⃗/B∪G)!E⃗/B = t!E⃗/B∪G, and therefore t!E⃗/B =BΩ+ t!E⃗/B∪G, as
desired. q.e.d.

15

Formal Verification of Equational Programs

We shall consider two main problems in the formal verification of
equational programs:

1. Proofs of Program Equivalence, that is, of equivalences of the
form: fmod (Σ, E ∪B) endfm ≡sem fmod (Σ, E′ ∪B′) endfm for
admissible and comparable programs.

2. Proofs of Program Properties, which in their most general form,
for an admissible program fmod (Σ, E ∪B) endfm, just means
proofs of properties of the form CΣ/E⃗,B |= φ or, equivalently,
TΣ/E∪B |= φ, for φ a first-order logic (FOL) Σ-formula.

16

Formal Verification of Equational Programs (II)

Regarding proofs of program equivalence, we have three theorems,
namely, the Program Equivalence Theorem, and the Lemma
Internalization Theorems 2 and 3, which in essence reduce all such
proofs to proofs of inductive consequences of the form
(Σ, E ∪B) |=ind G, for G a finite set of equations.

Regarding proofs of program properties, since equational logic is a
sublogic of first-order logic, we can just generalize the |=ind relation
to first-order logic Σ-formulas φ by stating that (Σ, E ∪B) |=ind φ

holds by definition iff TΣ/E∪B |= φ.

This requires explaining the syntax and semantics of first-order
logic, including the satisfaction relation A |= φ between a Σ-algebra
A and a first-order logic Σ-formula φ. The Appendix to this lecture
explains these topics in sufficient detail for our present purposes.

17

The Need for an Inductive Logic

Therefore, the task of equational program verification, both in
proving program equivalences and program properties, boils down
to proving inductive consequences of the form (Σ, E ∪B) |=ind φ

(in the case of a set of equations G = {u1 = v1, . . . , un = vn},
φ = (u1 = v1 ∧ . . . ∧ un = vn)). But, by definition, proving
(Σ, E ∪B) |=ind φ exactly means proving that TΣ/E∪B |= φ, which
is a semantic relation between the initial algebra TΣ/E∪B and a
FOL formula φ.

For this, we need correct reasoning principles unambiguously
embodied in a formal system of inference rules which we can rightly
call an inductive logic, denoted ⊢ind , allowing us to prove the
semantic property (Σ, E ∪B) |=ind φ by proving (Σ, E ∪B) ⊢ind φ.

18

The Need for an Inductive Logic (II)

Of course, saying that the inductive logic ⊢ind provides “correct
reasoning principles” for this task exactly means that ⊢ind is sound.
That is, that for any (Σ, E ∪B) and φ we have an implication:

(Σ, E ∪B) ⊢ind φ ⇒ (Σ, E ∪B) |=ind φ

Can ⊢ind be complete, so that the reverse implication holds?

The answer is no. To explain why not, we need to observe that the
set PThm⊢ind

(Σ, E ∪B) of theorems of a theory (Σ, E ∪B)

provable by an inference system ⊢ind defined by inference rules that
syntactically manipulate formulas (where the theory’s “axioms”
E ∪B are a finite or recursively enumerable set) must be a
recursively enumerable set (r.e. set). This is so because we can
implement ⊢ind by a computer program that generates the set
PThm⊢ind

(Σ, E ∪B), so that PThm⊢ind
(Σ, E ∪B) must be r.e.

19

Göedel for Dummies

Let (Σ, E) be the equational theory of the Maude program:
fmod NAT+x is sort Nat .
op 0 : -> Nat [ctor] . op s: Nat -> Nat [ctor] .
ops (_+_) (_*_) : Nat Nat -> Nat . vars N M : Nat .
eq N + 0 = N . eq N * 0
eq N + s(M) = s(N + M) . eq N * s(M) = N + (N * M) .

Theorem (Göedel’s Incompleteness of Arithmetic). For the above
theory (Σ, E), the set

Thm |=ind
(Σ, E) = {φ ∈ FormFOL(Σ) | TΣ/E |=ind φ} = ThmFOL(TΣ/E)

is not r.e.

Therefore for any sound inductive logic ⊢ind in general we will have
a strict containment PThm⊢ind

(Σ, E ∪B) ⊂ Thm |=ind
(Σ, E ∪B),

making ⊢ind necessarily incomplete.

20

The Inference System ⊢ind of Maude’s NuITP

To prove both equational program equivalences and equational
program properties we shall use Maude’s New Inductive Theorem
Prover (NuITP), which mechanizes the inference rules of a sound
inductive logic ⊢ind .

The formulas that ⊢ind , and therefore Maude’s NuITP, proves are
quantifier-free multiclauses, which, as the Appendix to this lecture
on FOL explains, are formulas of the form:

(w1 = w′
1∧. . .∧wk = w′

k) ⇒ ((u1
1 = v11∨. . .∨u1

m1
= v1m1

)∧. . .∧(uk
1 = vk1∨. . .∨uk

mk
= vkmk

).)

21

