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Construction of the Initial Algebra TΣ/E

TΣ is initial in the class AlgΣ of all Σ-algebras. To give a
mathematical, initial algebra semantics to Maude functional
modules of the form fmod(Σ, E)endfm we need an initial algebra in
the class Alg(Σ,E) of all (Σ, E)-algebras, with Σ sensible, kind
complete, and with nonempty sorts, denoted TΣ/E .

We shall define TΣ/E and show that it initial in Alg(Σ,E), i.e., (i)
TΣ/E |= E, and (ii) for any (Σ, E)-algebra A there is a unique
Σ-homomorphism _E

A : TΣ/E −→ A.

If the equations E are sort-decreasing, confluent, terminating and
sufficiently complete, will show that there is an isomorphism
TΣ/E

∼= CΣ/E . That is, the mathematical semantics of
fmod(Σ, E)endfm (TΣ/E) and its operational semantics (CΣ/E)
coincide.
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Construction of TΣ/E (II)

We construct TΣ/E out of the provability relation (Σ, E) ⊢ t = t′;
that is, out of the relation t =E t′. But, by definition
t =E t′ ⇔ (Σ,

−→
E ∪

←−
E ) ⊢ t→∗ t′. Therefore, =E , besides being

reflexive and transitive is symmetric, and therefore is an
equivalence relation on terms. But since if t =E t′, then there is a
connected component [s] such that t, t′ ∈ TΣ,[s], in particular =E is
also an equivalence relation on TΣ,[s]. Therefore, we have a quotient
set TΣ/E,[s] = TΣ,[s]/=E .

We can then define the S-indexed family of sets
TΣ/E = {TΣ/E,s}s∈S , where, by definition,

TΣ/E,s = {[t] ∈ TΣ/E,[s] | (∃t′) t′ ∈ [t] ∧ t′ ∈ TΣ,s},

where [t], or [t]E , abbreviate [t]=E
.
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Construction of TΣ/E (III)

To make TΣ/E into a Σ-algebra TΣ/E = (TΣ/E ,_TΣ/E
), interpret a

constant a : nil −→ s in Σ by its equivalence class [a].

Similarly, given f : s1 . . . sn → s in Σ, and given [ti] ∈ TΣ/E,si ,
1 ≤ i ≤ n, define

fs1...sn,s
TΣ/E

([t1], . . . , [tn]) = [f(t′1, . . . , t
′
n)],

where t′i ∈ [ti] ∧ t′i ∈ TΣ,si , 1 ≤ i ≤ n.

Checking that the above definition does not depend on either: (1)
the choice of the t′i ∈ [ti], or (2) the choice of the subsort-overloaded
operator f : s1 . . . sn → s in Σ, so that it is well-defined and indeed
defines an order-sorted Σ-algebra is left as an easy exercise.
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Initiality Theorem for TΣ/E

Theorem: For (Σ, E) with Σ sensible, kind complete, and with
nonempty sorts, TΣ/E |= E. Furthermore, TΣ/E is initial in the
class Alg(Σ,E). That is, for any A ∈ Alg(Σ,E) there is a unique
Σ-homomorphism _E

A : TΣ/E −→ A.

Proof: We first need to show that TΣ/E |= E, i.e., that
TΣ/E |= t = t′ for each (t = t′) ∈ E. That is, for each assignment
a : X −→ TΣ/E we must show that t a = t′ a.

But the unique Σ-homomorphism _TΣ/E
: TΣ −→ TΣ/E guaranteed

by TΣ initial is just the passage to equivalence classes:
[_]E : TΣ ∋ t 7→ [t]E ∈ TΣ/E (this has an easy proof by induction on
the tree depth of t), and is therefore surjective.
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Initiality Theorem for TΣ/E (II)

Therefore, since by the Axiom of Choice any surjective function is a
right inverse (STACS, Ch. 10, Thm. 9, pg. 80), we can always
choose a substitution θ : X −→ TΣ such that a = θ;_TΣ/E

.
Therefore, by the Freeness Corollary we have _a = _θ;_TΣ/E

(see
diagram next page).

Therefore, t a = t′ a is just the equality [tθ]E = [t′θ]E , which holds
iff tθ =E t′θ, which itself holds by (t = t′) ∈ E and the Lemma in
the proof of the Soundness Theorem. Therefore, TΣ/E |= E.
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Lifting of a to a Substitution θ

X

TΣ/E

TΣ

TΣ(X)

����������������1

PPPPPPPPPPPPPPPPq

-

?

?

�

_aθ

_TΣ/E

a

ηX _θ

�

7



Initiality Theorem for TΣ/E (III)

Let us now show that for each A ∈ Alg(Σ,E) there is a unique
Σ-homomorphism _E

A : TΣ/E −→ A.

We first prove uniqueness. Suppose that we have two
homomorphisms h, h′ : TΣ/E −→ A. Then, composing with
_TΣ/E

: TΣ −→ TΣ/E on the left we get,
_TΣ/E

;h,_TΣ/E
;h′ : TΣ −→ A, and by the initiality of TΣ we must

have, _TΣ/E
;h = _TΣ/E

;h′ = _A. But recall that
_TΣ/E

: TΣ −→ TΣ/E is surjecive, and therefore (Ex.10.8) epi,
which forces h = h′, as desired.
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Initiality Theorem for TΣ/E (IV)

To show existence of _E
A : TΣ/E −→ A, given [t] ∈ TΣ/E,s, define

[t]EA,s = t′A,s, where t′ ∈ [t] ∧ t′ ∈ TΣ,s. Then show (exercise) that:

• [t]EA,s is independent of the choice of t′ because of the
hypothesis A |= E and the Soundness Theorem; and

• the family of functions _E
A = {_E

A,s}s∈S thus defined is indeed
a Σ-homomorphism.

q.e.d.
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The Mathematical and Operational Semantics Coincide

As stated in pg. 2, the semantics of a Maude functional module
fmod(Σ, E)endfm is an initial algebra semantics, given by TΣ/E .
Let us call TΣ/E the module’s mathematical semantics. This
sematics does not depend on any executability assumptions about
fmod(Σ, E)endfm: it can be defined for any equational theory
(Σ, E).

Call fmod(Σ, E)endfm admissible if the equations E are (ground)
confluent, sort-decreasing, terminating and sufficiently complete
w.r.t. constructors Ω. Under these executabilty requirements we
have another semantics for fmod(Σ, E)endfm: the canonical term
algebra CΣ/E defined in Lecture 4. This is the most intuitive
computational model for fmod(Σ, E)endfm. Call it its operational
semantics. But both semantics coincide!

10



The Canonical Term Algebra is Initial

Theorem: If the rules E⃗ are sort-decreasing, confluent, terminating
and sufficiently complete, then, CΣ/E is isomorphic to TΣ/E and is
therefore initial in Alg(Σ,E).

Proof: An easy generalization of Ex.10.10 shows that if I is initial
for a given class of algebras closed under isomorphisms and J is
isomorphic to I, then J is also initial for that class. Since (Ex.11.2)
Alg(Σ,E) is closed under isomorphisms, we just have to show
TΣ/E

∼= CΣ/E .

Define _!E = {_!E,s : TΣ/E,s −→ CΣ/E,s}s∈S by, [t]!E,s = t!E . This
is independent of the choice of t, since t =E t′ iff E ⊢ t = t′ iff (by E

confluent) t ↓E t′, iff t!E = t′!E . _!E,s is surjective by construction
and injective by these equivalences; therefore _!E is bijective.
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The Canonical Term Algebra is Initial (II)

Let us see that _!E : TΣ/E −→ CΣ/E is a Σ-homomorphism.
Preservation of constants is trivial. Let f : s1 . . . sn → s in Σ, and
[ti] ∈ TΣ/E,si , 1 ≤ i ≤ n. We must show,

fs1...sn,s
TΣ/E

([t1], . . . , [tn])!E,s = fs1...sn,s
CΣ/E

(t1!E , . . . , tn!E).

The key observation is that ti!E ∈ TΣ,si , 1 ≤ i ≤ n. This is because:

• by definition of [ti] there must be a t′i ≡E ti with t′i ∈ TΣ,si ,
1 ≤ i ≤ n; and

• by the sort-decreasingness assumption for E, since
t′i

∗−→E t′i!E = ti!E , if t′i ∈ TΣ,si , 1 ≤ i ≤ n, then ti!E ∈ TΣ,si ,
1 ≤ i ≤ n.
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The Canonical Term Algebra is Initial (III)

Therefore, we have:

fs1...sn,s
TΣ/E

([t1], . . . , [tn])!E = [f(t1!E , . . . , tn!E)]!E

(by definition of fs1...sn,s
TΣ/E

)

= f(t1!E , . . . , tn!E)!E (by definition of _!E)

= fs1...sn,s
CΣ/E

(t1!E , . . . , tn!E)

(by definition of fs1...sn,s
CΣ/E

)

as desired.

All now reduces to proving the following easy lemma, which is left
as an exercise:

Lemma. The bijective S-sorted map _!−1
E : CΣ/E → TΣ/E is a

Σ-homomorphism _!−1
E : CΣ/E → TΣ/E .

q.e.d
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Math. Sems. = Operatl. Sems.: An Example

The canonical term algebra CΣ/E is in some sense the most
intuitive representation of the initial algebra from a computational
point of view. Let us see in a simple example what the coincidence
beteen mathematical and operational semantics means.

For example, the equations ENATURAL in the NATURAL module are
confluent and terminating. Its canonical forms are the natural
numbers in Peano notation. And its operations are the successor
and addition functions.

Indeed, given two Peano natural numbers n,m the general
definition of fs1...sn,s

CΣ/E
specializes for f = _ + _ to the definition of

addition, n+CNATURAL m = (n+m)!ENATURAL , so that _ +CNATURAL _ is the
addition function.
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Math. Sems. = Operatl. Sems.: An Example (II)

TΣNATURAL/ENATURAL

�

�

�

… … … …
ppss0 s0 + 0 ss0 + 0

0 + 0 0 + s0 s0 + s0

ps0 pss0 psss0

0 s0 ss0 …
���� CΣNATURAL/ENATURAL
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All Generalizes Modulo Axioms B

More generally, we are interested in the agreement between the
mathematical and operational semantics of an admissible Maude
module of the form fmod(Σ, E ∪B)endfm, with B a (possibly
empty) set of associativity, commutativity, and identity axioms.
The, following, easy but nontrivial, generalization of the above
theorem is left as an exercise.

Theorem: Let the equations E in (Σ, E ∪B) be sort-decreasing,
confluent, terminating and sufficiently complete modulo B; and let
Σ be preregular modulo B. Then, CΣ,E/B is isomorphic to TΣ/E∪B

and is therefore initial in Alg(Σ,E∪B).
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The Completeness Theorem for Equational Logic

The construction of the initial algebra TΣ/E together with the
Freeness Theorem proved in Lecture 12 are the two ingredients
allowing a very short (less than one page) proof of The
Completeness Theorem:

Teorem (Completeness). For any equational theory (Σ, E) and
Σ-equation u = v, the following implication holds:

E |= u = v ⇒ E ⊢ u = v

That is, any theorem of (Σ, E) is provable in equational logic.

The short proof of this important theorem can be found in an
Appendix to this lecture.
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Provable Theorems and Theorems of an Equational Theory (Σ, E)

For Σ = ((S,≤),Σ) and order-sorted signature, define the set of
Σ-equations in the obvious way (where X has a countably infinite
set Xs of variables for each sort s ∈ S):

Σ.Eq = {u = v | ∃s, s′ ∈ S. u ∈ TΣ(X)s ∧ v ∈ TΣ(X)s′ ∧ [s] = [s′]}.

Given any set of Σ-equations E ⊆ Σ.Eq , define the set of its
provable theorems as:

PThm(E) = {u = v ∈ Σ.Eq | u =E v}.

Likewise, for any E ⊆ Σ.Eq , define the set of its theorems as:

Thm(E) = {u = v ∈ Σ.Eq | ∀A ∈ Alg(Σ,E), A |= u = v}.

The Soundness and Completeness Theorems show that we have:

PThm(E) = Thm(E).

18



Inductive Theorems of an Equational Theory (Σ, E)

Given any Σ-algebra A, define its set of theorems as:

Thm(A) = {u = v ∈ Σ.Eq | A |= u = v}.

Then, given an equational theory (Σ, E) define its set of inductive
theorems IndThm(Σ, E) by the set-theoretic equality:

IndThm(Σ, E) =def Thm(TΣ/E).

In particular, when a functional module fmod(Σ, E ∪B)endfm is
(ground) confluent, terminating and sufficiently complete w.r.t.
constructors Ω, since TΣ/E∪B

∼= CΣ,E/B , and by Ex.12.2 we know
that Thm(TΣ/E) = Thm(CΣ,E/B), in this case IndThm(Σ, E) are
the equational properties satisfied by the program
fmod(Σ, E ∪B)endfm. Thus IndThm(Σ, E) is a crucial concept in
program verification.
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Inductive Theorems of an Equational Theory (Σ, E) (II)

By definition, given a Σ-equation u = v, we write E |=ind u = v

and say that u = v is an inductive consequence of E iff
(u = v) ∈ IndThm(Σ, E).

But since IndThm(Σ, E) = Thm(TΣ/E) and TΣ/E |= E, we have an
inclusion Thm(E) ⊆ IndThm(Σ, E), and therefore an implication:

E |= u = v ⇒ E |=ind u = v

In general, however, the converse implication does not hold: there
are theories (Σ, E) and Σ-equations u = v such that TΣ/E |= u = v

but E ̸|= u = v, so that, by Soundness and Completeness,
E ̸⊢ u = v. Let us see some examples.
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Can have TΣ/E |= u = v but E ̸⊢ u = v

Consider the unsorted signature Σ = {0, s,_ + _} with
E = {x+ 0 = x, x+ s(y) = s(x+ y)}. We have already proved that
E⃗ is confluent and terminating, and (in a Homework assignment)
that CΣ,E/B is the addition function on the natural numbers, which
is well-known to be associative and commutative. Therefore,
TΣ/E |= x+ y = y + x, and TΣ/E |= (x+ y) + x = x+ (y + z).
However,

E ̸⊢ x+ y = y + x and E ̸⊢ (x+ y) + z = x+ (y + z)

since, by the Church-Rosser Theorem, x+ y =E y + x iff
(x+ y)!E⃗ = (y + x)!E⃗ , and (x+ y) + z =E x+ (y + z) iff
((x+ y) + z)!E⃗ = (x+ (y+ z))!E⃗ . But, those canonical forms are all
different, because the terms involved, x+ y, y + x, (x+ y) + z and
x+ (y + z) are all in E⃗-canonical form: no E⃗ rules apply to them.
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Characterizing the Inductive Theorems of (Σ, E)

Can we say something about when (u = v) ∈ IndThm(Σ, E)? Yes,
we can characterize all inductive theorems as follows:

Theorem (Characterization of Inductive Theorems):

1. (u = v) ∈ IndThm(Σ, E) iff ∀θ ∈ [X → TΣ], E ⊢ uθ = vθ, where
X = vars(u) ∪ vars(v).

2. If, in addition, the rules E⃗ are ground confluent, terminating
and sufficiently complete w.r.t. Ω, then
(u = v) ∈ IndThm(Σ, E) iff ∀ρ ∈ [X → TΩ], E ⊢ uρ = vρ.

Proof Hints: The proof of (1) follows from the notion of
satisfaction TΣ/E |= u = v, since any assignment a ∈ [X → TΣ/E ] is
of the form a = θ; [_]E for some θ ∈ [X → TΣ]. The proof of (2) is
a variant of that of (1) using the (ground) Church-Rosser Theorem
and sufficient completeness.
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Exercises

Ex.13.1 Give your own algebraic specification of the Booleans in
Maude (use a sort, say Truth, and constants tt, ff, to avoid any
confusion with the built-in module BOOL in Maude) with
disjunction, conjunction, and negation, and prove that the standard
Booleans are isomorphic to the initial algebra of your specification.

Ex.13.2. Prove in detail the theorem characterizing the inductive
theorems of a theory (Σ, E) stated in pg. 22 of this lecture.
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Exercises (II)

Ex.13.3. Consider the equational theory (Σ, E) defined by the
functional module:

fmod PEANO-p is
sorts NzNat Nat . subsorts NzNat < Nat .
op 0 : -> Nat [ctor] .
op s : Nat -> NzNat [ctor] .
op p : NzNat -> Nat .
eq p(s(N:Nat)) = N:Nat .
endfm

which defines the predecessor function p. Do the following:

1. Prove that (Σ, E⃗) is sort-decreasing, confluent, terminating,
and sufficiently complete w.r.t. Ω = {0, s} by either using tools
in Maude’s Formal Environment, or giving a hand proof.
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2. Prove that E ̸⊢ s(p(y :NzNat)) = y :NzNat .

3. Prove that (Σ, E) |=ind s(p(y :NzNat)) = y :NzNat by applying
Part (2) of the theorem characterizing the inductive theorems
of a theory (Σ, E) stated in pg. 22 of this lecture.
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