Appendix to Lecture 13: Proof of the Completeness Theorem

José Meseguer, CS Department, UIUC

Equation Sets. For $\Sigma=((S, \leq), \Sigma)$ and order-sorted signature, define the set of Σ-equations in the obvious way (where X has a countably infinite set X_{s} of variables for each sort $s \in S$):

$$
\Sigma . E q=\left\{u=v \mid \exists s, s^{\prime} \in S . u \in T_{\Sigma}(X)_{s} \wedge v \in T_{\Sigma}(X)_{s^{\prime}} \wedge[s]=\left[s^{\prime}\right]\right\}
$$

Provable Theorems and Theorems. Given any set of Σ-equations $E \subseteq \Sigma . E q$, define the set of its provable theorems as:

$$
\operatorname{PThm}(E)=\left\{u=v \in \Sigma . E q \mid u={ }_{E} v\right\} .
$$

Likewise, for any $E \subseteq \Sigma . E q$, define the set of its (semantically true) theorems as:

$$
\operatorname{Thm}(E)=\left\{u=v \in \Sigma \cdot E q\left|\forall \mathbb{A} \in \operatorname{Alg}_{(\Sigma, E)}, \mathbb{A}\right|=u=v\right\}
$$

The Soundness Theorem for equational logic states the inclusion $\operatorname{PThm}(E) \subseteq \operatorname{Thm}(E)$, and the Completeness Theorem states the opposite inclusion $\operatorname{Thm}(E) \subseteq P \operatorname{Thm}(E)$. The goal of this Addendum is to prove the Completeness Theorem.

For any Σ-algebra \mathbb{A} define its set of semantic theorems (i.e., equations that are true in \mathbb{A}) as:

$$
\operatorname{Thm}(\mathbb{A})=\{u=v \in \Sigma . E q \mid \mathbb{A} \models u=v\}
$$

Note that for each Σ-algebra \mathbb{A} such that $\mathbb{A} \in \operatorname{Alg}_{(\Sigma, E)}$ we have the inclusions:
$(\dagger) \operatorname{PThm}(E) \subseteq \operatorname{Thm}(E) \subseteq \operatorname{Thm}(\mathbb{A})$
since the first inclusion is the already proved Soundness Theorem, and the second follows for the definitions of $\operatorname{Thm}(E)$ and $\operatorname{Thm}(\mathbb{A})$, plus the fact that $\mathbb{A} \in \mathbf{A l g}_{(\Sigma, E)}$.

Theorem (Completeness of Equational Logic). For Σ sensible, kind complete, and with nonempty sorts, and (Σ, E) an equational theory, we have the inclusion ${ }^{1} \operatorname{Thm}(E) \subseteq \operatorname{PThm}(E)$.

Proof. The two inclusions in (\dagger) will collapse into equalities, thus proving the Theorem, if we can find a (Σ, E)-algebra \mathbb{A} such that $\operatorname{Thm}(\mathbb{A}) \subseteq P \operatorname{Thm}(E)$. But such a (Σ, E)-algebra \mathbb{A} can be chosen to be $\mathbb{T}_{\Sigma / E}(X)$, where, by definition, $\mathbb{T}_{\Sigma / E}(X)=\left.\mathbb{T}_{\Sigma(X) / E}\right|_{\Sigma}$, and X has a countably infinite set X_{s} of variables for each sort $s \in S$. Since we have proved that initial (Σ, E)-algebras satisfy the equations E, in particular this holds for initial $(\Sigma(X), E)$-algebras. Therefore, $\mathbb{T}_{\Sigma / E}(X)$ does satisfy the equations E. We just need to prove the inclusion $\operatorname{Thm}\left(\mathbb{T}_{\Sigma / E}(X)\right) \subseteq$ $\operatorname{PThm}(E)$. Suppose $\mathbb{T}_{\Sigma / E}(X) \vDash u=v$. This means that for each assignment $a \in[X \rightarrow$ $T_{\Sigma / E}(X)$] we have $u a=v a$. But for any such a we can find a substitution $\theta: X \rightarrow T_{\Sigma}(X)$ such that for each $x \in X$ we have $a(x)=[x \theta]_{E}$. That is, any $a \in\left[X \rightarrow T_{\Sigma / E}(X)\right]$ can be expressed as a composition $a=\theta ;[]_{E}$, where $[-]_{E}: \mathbb{T}_{\Sigma(X)} \rightarrow \mathbb{T}_{\Sigma(X) / E}: t \mapsto[t]_{E}$ is the unique $\Sigma(X)$-homomorphism ${ }^{2}$ from the $\Sigma(X)$-term algebra to the initial $(\Sigma(X), E)$-algebra. But by the Freeness Corollary we then have:

$$
{ }_{-} a={ }_{-} \theta ;[-]_{E}
$$

[^0]In particular this holds for the assignment $b=\eta_{X} ;[]_{E}$, where, as usual, η_{X} denotes the identity substitution. Therefore, we have:

$$
u b=\left[u \eta_{X}\right]_{E}=[u]_{E}=[v]_{E}=\left[v \eta_{X}\right]_{E}=v b
$$

But this exactly means that $u={ }_{E} v$ and therefore that $u=v \in P \operatorname{Thm}(E)$. q.e.d.

[^0]: ${ }^{1}$ This inclusion, i.e., the Completenes Theorem, only depends on the assumption that Σ is sensible. The other assumptions allow a simpler proof and are added for that reason.
 ${ }^{2}$ That the mapping $t \mapsto[t]_{E}$ is indeed a $\Sigma(X)$-homomorphism from $\mathbb{T}_{\Sigma(X)}$ to $\mathbb{T}_{\Sigma(X) / E}$ follows easily from the definition of $\mathbb{T}_{\Sigma(X) / E}$. Uniqueness then follows from the initiality of $\mathbb{T}_{\Sigma(X)}$.

