Appendix to Lecture 13: Proof of the Completeness Theorem

José Meseguer, CS Department, UIUC

Equation Sets. For $\Sigma = ((S, \leq), \Sigma)$ and order-sorted signature, define the set of Σ -equations in the obvious way (where X has a countably infinite set X_s of variables for each sort $s \in S$):

$$\Sigma.Eq = \{ u = v \mid \exists s, s' \in S. \ u \in T_{\Sigma}(X)_s \land v \in T_{\Sigma}(X)_{s'} \land [s] = [s'] \}.$$

Provable Theorems and Theorems. Given any set of Σ -equations $E \subseteq \Sigma . Eq$, define the set of its *provable theorems* as:

$$PThm(E) = \{ u = v \in \Sigma . Eq \mid u =_E v \}.$$

Likewise, for any $E \subseteq \Sigma Eq$, define the set of its (semantically true) theorems as:

$$Thm(E) = \{ u = v \in \Sigma . Eq \mid \forall \mathbb{A} \in \mathbf{Alg}_{(\Sigma, E)}, \ \mathbb{A} \models u = v \}.$$

The **Soundness Theorem** for equational logic states the inclusion $PThm(E) \subseteq Thm(E)$, and the **Completeness Theorem** states the opposite inclusion $Thm(E) \subseteq PThm(E)$. The goal of this Addendum is to prove the **Completeness Theorem**.

For any Σ -algebra \mathbb{A} define its set of *semantic theorems* (i.e., equations that are *true* in \mathbb{A}) as:

$$Thm(\mathbb{A}) = \{ u = v \in \Sigma. Eq \mid \mathbb{A} \models u = v \}.$$

Note that for each Σ -algebra \mathbb{A} such that $\mathbb{A} \in \mathbf{Alg}_{(\Sigma, E)}$ we have the inclusions:

(†)
$$PThm(E) \subseteq Thm(E) \subseteq Thm(\mathbb{A})$$

since the first inclusion is the already proved **Soundness Theorem**, and the second follows for the definitions of Thm(E) and $Thm(\mathbb{A})$, plus the fact that $\mathbb{A} \in \mathbf{Alg}_{(\Sigma, E)}$.

Theorem (Completeness of Equational Logic). For Σ sensible, kind complete, and with nonempty sorts, and (Σ, E) an equational theory, we have the inclusion¹ $Thm(E) \subseteq PThm(E)$.

Proof. The two inclusions in (†) will collapse into equalities, thus proving the Theorem, if we can find a (Σ, E) -algebra \mathbb{A} such that $Thm(\mathbb{A}) \subseteq PThm(E)$. But such a (Σ, E) -algebra \mathbb{A} can be chosen to be $\mathbb{T}_{\Sigma/E}(X)$, where, by definition, $\mathbb{T}_{\Sigma/E}(X) = \mathbb{T}_{\Sigma(X)/E}|_{\Sigma}$, and X has a countably infinite set X_s of variables for each sort $s \in S$. Since we have proved that initial (Σ, E) -algebras satisfy the equations E, in particular this holds for initial $(\Sigma(X), E)$ -algebras. Therefore, $\mathbb{T}_{\Sigma/E}(X)$ does satisfy the equations E. We just need to prove the inclusion $Thm(\mathbb{T}_{\Sigma/E}(X)) \subseteq PThm(E)$. Suppose $\mathbb{T}_{\Sigma/E}(X) \models u = v$. This means that for each assignment $a \in [X \to T_{\Sigma/E}(X)]$ we have ua = va. But for any such a we can find a substitution $\theta : X \to T_{\Sigma}(X)$ such that for each $x \in X$ we have $a(x) = [x\theta]_E$. That is, any $a \in [X \to T_{\Sigma/E}(X)]$ can be expressed as a composition $a = \theta$; [-] $_E$, where [-] $_E : \mathbb{T}_{\Sigma(X)} \to \mathbb{T}_{\Sigma(X)/E} : t \mapsto [t]_E$ is the unique $\Sigma(X)$ -homomorphism² from the $\Sigma(X)$ -term algebra to the initial $(\Sigma(X), E)$ -algebra. But by the Freeness Corollary we then have:

$$a = -\theta; [-]_E$$

¹This inclusion, i.e., the Completenes Theorem, only depends on the assumption that Σ is sensible. The other assumptions allow a simpler proof and are added for that reason.

²That the mapping $t \mapsto [t]_E$ is indeed a $\Sigma(X)$ -homomorphism from $\mathbb{T}_{\Sigma(X)}$ to $\mathbb{T}_{\Sigma(X)/E}$ follows easily from the definition of $\mathbb{T}_{\Sigma(X)/E}$. Uniqueness then follows from the initiality of $\mathbb{T}_{\Sigma(X)}$.

In particular this holds for the assignment $b = \eta_X$; [-]_E, where, as usual, η_X denotes the identity substitution. Therefore, we have:

$$ub = [u \eta_X]_E = [u]_E = [v]_E = [v \eta_X]_E = vb$$

But this exactly means that $u =_E v$ and therefore that $u = v \in PThm(E)$. q.e.d.