Program Verification: Lecture 11

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign

Unsorted Homomorphisms

Given unsorted Σ-algebras $\mathbb{A}=\left(A, \mathbb{A}_{\mathbb{A}}\right)$ and $\mathbb{B}=\left(B, __{\mathbb{B}}\right)$, a Σ-homomorphism h from \mathbb{A} to \mathbb{B}, written $h: \mathbb{A} \rightarrow \mathbb{B}$, is a function $h: A \rightarrow B$ that preserves the operations Σ, i.e.,

- for each constant $a: \epsilon \rightarrow s$ in $\Sigma, h\left(a_{\mathbb{A}}\right)=a_{\mathbb{B}}$ (preservation of constants)
- for each $f: s . \stackrel{n}{.} s \rightarrow s$ in $\Sigma, n \geq 1$, and each $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, we have $h\left(f_{\mathbb{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{\mathbb{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ (preservation of (non-constant) operations).

Example of Unsorted Homomorphism

Ex.11.1. The natural numbers \mathbb{N}, and the natural numbers modulo n, \mathbb{N}_{n} (for any $n \geq 1$) are all $\Sigma_{\text {Nat-mixfix-algebras (Lecture 3 }}$, pages $3-4$). Prove in detail that (for any $n \geq 1$) we have a $\Sigma_{\text {NAT-PREFIX-homomorphism: }}$

$$
\operatorname{res}_{n}: \mathbb{N} \longrightarrow \mathbb{N}_{n}
$$

where $r e s_{n}$ sends each number to its residue after dividing by n. For example, $\operatorname{res}_{7}(23)=2$, and $\operatorname{res}_{5}(23)=3$.

Note that $\Sigma_{\text {nat-mixfix }}=\{0, s,+, *\}$. So you have to prove the $\Sigma_{\text {NAT-PREFIX }}$-homomorphism property of res s_{n} for 0 and for the operations $\{s,+, *\}$.

Examples of Unsorted Homomorphisms (II)

Ex.11.2. Recall (Lecture 3, pgs. 6-8) the powerset algebra $\mathbb{P}(X)=\left(\mathcal{P}(X), \mathbb{P}_{(X)}\right)$ over the Boolean signature $\Sigma_{B O O L}$. Let X and Y be any sets, and let $f: X \longrightarrow Y$ be any function. Prove in detail that the function:

$$
f^{-1}\left[_\right]: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)
$$

defined for any $A \subseteq Y$ by: $f^{-1}[A]=\{x \in X \mid f(x) \in A\}$, is a $\Sigma_{B O O L}$-homomorphism $f^{-1}\left[_\right]: \mathbb{P}(Y) \rightarrow \mathbb{P}(X)$. Consider also a function $g: Y \longrightarrow Z$. Prove that we have the identity $(f ; g)^{-1}\left[_\right]=g^{-1}\left[_\right] ; f^{-1}\left[_\right]$, and therefore that $g^{-1}\left[_\right] ; f^{-1}\left[_\right]: \mathcal{P}(Z) \longrightarrow \mathcal{P}(X)$ is also a $\Sigma_{B O O L}$-homomorphism from $\mathbb{P}(Z)$ to $\mathbb{P}(X)$.

Many-Sorted Homomorphisms

Given (many-sorted) Σ-algebras $\mathbb{A}=\left(A, \bigwedge_{\mathbb{A}}\right)$ and $\mathbb{B}=(B, \mathbb{B})$, a Σ-homomorphism h from \mathbb{A} to \mathbb{B}, written $h: \mathbb{A} \longrightarrow \mathbb{B}$, is an S-indexed family of functions $h=\left\{h_{s}: A_{s} \rightarrow B_{s}\right\}_{s \in S}$ such that:

- for each constant $a: \epsilon \rightarrow s, h_{s}\left(a_{\mathbb{A}}^{n i l, s}\right)=a_{\mathbb{B}}^{n i l, s}$ (preservation of constants)
- for each $f: w \rightarrow s$ with $w=s_{1} \ldots s_{n}, n \geq 1$, and each $\left(a_{1}, \ldots, a_{n}\right) \in A^{w}$, we have $h_{s}\left(f_{\mathbb{A}}^{w, s}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{\mathbb{B}}^{w, s}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)$ (preservation of (non-constant) operations).

Examples of Many-Sorted Homomorphisms

Ex.11.3. Recall the module NAT-LIST in Lecture 2, and the two $\Sigma_{\text {NAT-LISt-algebras, }}$ let us call them \mathbb{A} and \mathbb{B}, defined on pages $4-5$ of Lecture 4 , namely $\mathbb{A}=$ lists of natural numbers and $\mathbb{B}=$ (finite) sets of natural numbers. Show that there cannot be any
$\Sigma_{\text {NAT-LIST-homomorphim }} h: \mathbb{A} \longrightarrow \mathbb{B}$.

Ex.11.4. For Σ the signature in picture 4.1, consider the first family of algebras for it described in point 1, pages 5-6 of Lecture 4, namely n-dimensional vector spaces on the rational, the real, or the complex numbers. Let us be specific and fix the reals. Let \mathbb{A} be the 3 -dimensional real vector space, and \mathbb{B} the 2 -dimensional real vector space. What is then a Σ-homomorphism $h: \mathbb{A} \longrightarrow \mathbb{B}$? Prove that any such homomorphism h can be completely described by a 2×3 matrix M_{h} with real coefficients, so that applying to a

3-dimensionsl vector \vec{v} the homomorphims h, that is, computing $h(\vec{v})$ exactly corresponds to computing the matrix multiplication $\vec{v} \circ M_{h}$. Generalize this to \mathbb{A} and \mathbb{B} real vector spaces of arbitrary finite dimensions n and m. Generalize it further to rational, resp. complex, vector spaces of any pair of finite dimensions n and m.

Now generalize this even further to characterize by means of matrices all Σ-homomorphims between Σ-algebras in cases $2-3$ in page 6 of Lecture 4 . Give for each of these cases specific examples of $h: \mathbb{A} \longrightarrow \mathbb{B}$ showing how this works and how h is thus applied to specific elements in the corresponding algebra \mathbb{A}.

Order-Sorted Homomorphisms

For $\Sigma=((S,<), F, \Sigma)$ an order-sorted signature, and \mathbb{A} and \mathbb{B} order-sorted Σ-algebras, a Σ-homomorphism h from \mathbb{A} to \mathbb{B}, written $h: \mathbb{A} \rightarrow \mathbb{B}$, is an S-indexed family of functions $h=\left\{h_{s}: A_{s} \rightarrow B_{s}\right\}_{s \in S}$ such that:

- $h: \mathbb{A} \rightarrow \mathbb{B}$ is a many-sorted (S, F, Σ)-homomorphism; and
- if $[s]=\left[s^{\prime}\right]$ and $a \in A_{s} \cap A_{s^{\prime}}$, then $h_{s}(a)=h_{s^{\prime}}(a)$ (agreement on data in the same connected component)

Examples of Order-Sorted Homomorphisms

Ex.11.5. Consider the order-sorted signature Σ of the NAT-LIST-II exampe in Lecture 2, the two algebras on such a signature, let us call them \mathbb{A} and \mathbb{B}, defined on page 8 of Lecture 4 , with \mathbb{A} case (1), and \mathbb{B} case (2). Show that there is exactly one order-sorted Σ-homomorphim $h: \mathbb{A} \rightarrow \mathbb{B}$. Describe such a homomorphism h in complete detail. Show that there cannot be any other Σ-homomorphims $h^{\prime}: \mathbb{A} \rightarrow \mathbb{B}$ with $h \neq h^{\prime}$.

What is a Pocket Calculator?

Consider a pocket calculator for expressions on the signature $\Sigma=\left\{0,1,{ }_{-}+_{\ldots},{ }_{-}^{*}\right\}$, evaluated on the integers $\mathbb{Z}=\left(\mathbb{Z}, Z_{\mathbb{Z}}\right)$.

Q: What is a pocket calculator as a computable function?
A: A function, say, $\mathbb{Z}_{\mathbb{Z}}: T_{\Sigma} \rightarrow \mathbb{Z}$. Call it evaluation in \mathbb{Z}.
Q: What is the recursive definition of $__{\mathbb{Z}}: T_{\Sigma} \rightarrow \mathbb{Z}$?
A: It is defined by the recursive equations: $0_{\mathbb{Z}}=0,1_{\mathbb{Z}}=1$, $\left(t+t^{\prime}\right)_{\mathbb{Z}}=t_{\mathbb{Z}}+_{\mathbb{Z}} t_{\mathbb{Z}}^{\prime},\left(t * t^{\prime}\right)_{\mathbb{Z}}=t_{\mathbb{Z}} *_{\mathbb{Z}} t_{\mathbb{Z}}^{\prime}$.

Q: What is the essential property of the function $\mathcal{Z}_{\mathbb{Z}}: T_{\Sigma} \rightarrow \mathbb{Z}$?
A: It is a Σ-homomorphism $\underset{\mathbb{Z}}{ }: \mathbb{T}_{\Sigma} \rightarrow \mathbb{Z}$ because, for example,

$$
\left(0_{\mathbb{T}_{\Sigma}}\right)_{\mathbb{Z}}=(0)_{\mathbb{Z}}=0_{\mathbb{Z}}=0, \quad\left(t+\mathbb{T}_{\Sigma} t^{\prime}\right)_{\mathbb{Z}}=\left(t+t^{\prime}\right)_{\mathbb{Z}}=t_{\mathbb{Z}}+\mathbb{Z} t_{\mathbb{Z}}^{\prime}
$$

What is a Pocket Calculator? (II)

In the same way we also have pocket calculators for the ground terms of $\Sigma=\left\{0,1, \ldots+\ldots,{ }_{\sim}^{*}\right\}$, evaluated on the natural numbers $\mathbb{N}=\left(\mathbb{N}, \mathbb{N}^{*}\right)$, the natural numbers modulo $k \geq 1, \mathbb{N}_{k}=\left(\mathbb{N}_{k}, \mathbb{N}_{k}\right)$, or the rational numbers $\mathbb{Q}=(\mathbb{Q}, \ldots \mathbb{Q})$.

More generally, we shall see shortly, that for Σ a sensible order-sorted signature and any order-sorted Σ-algebra $\mathbb{A}=(A, \ldots \mathbb{A})$ there is a unique pocket calculator evaluating the terms T_{Σ} in \mathbb{A}, that is, a unique Σ-homomorphism _- $: \mathbb{T}_{\Sigma} \rightarrow \mathbb{A}$, defined by the recursive equations:

- $(a)_{\mathbb{A}}=a_{\mathbb{A}}$ for each constant a in Σ, and
- $f\left(t_{1}, \ldots, t_{n}\right)_{\mathbb{A}}=f_{\mathbb{A}}\left(t_{1 \mathbb{A}}, \ldots, t_{n \mathbb{A}}\right)$ for each $f: s_{1} \ldots s_{n} \rightarrow s$ in Σ.

Term Algebras on Sensible Signatures

If a signature is sensible, then different terms denote different things. In the argot of algebraic specifications, this is expressed by saying that the term algebra \mathbb{T}_{Σ} has no confusion.

Furthermore, the term algebra \mathbb{T}_{Σ} is in some sense minimal, since it has only the elements it needs to have to be an algebra: the constants, and the terms needed so that the operations can yield a result; that is why this minimality is expressed saying that it has no junk.

The key intuition of why there is a unique pocket calculator $\mathcal{A}^{\mathbb{A}}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{A}$ for any Σ-algebra \mathbb{A}, is that: (i) no junk ensures uniqueness of $__{\mathbb{A}}$, and (ii) no confusion ensures the existence of \qquad

No Pocket Calculators for Term Algebras on Non-sensible Signatures

The intuition that no confusion ensures the existence of $-\mathbb{A}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{A}$ suggests that confusion/ambiguity in \mathbb{T}_{Σ}, i.e., Σ non-sensible, will prevent/block the existence of $\mathcal{A}_{\mathbb{A}}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{A}$. Let us see an example.

For example, $__{\mathbb{K}}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{K}$ cannot be defined for Σ the non-sensible signature we showed in pg. 16 of Lecture 4 and the Σ-algebra $\mathbb{K}=\left(K, __{\mathbb{K}}\right)$ with: $K_{A}=\{a\}, K_{B}=\{b\}, K_{C}=\{c\}, K_{D}=\left\{d, d^{\prime}\right\}$, and with $f_{\mathbb{K}}^{A, B}(a)=b, f_{\mathbb{K}}^{A, C}(a)=c, g_{\mathbb{K}}^{B, D}(b)=d$, and $g_{\mathbb{K}}^{C, D}(c)=d^{\prime}$. Indeed, there in no Σ-homomorphism $h: \mathbb{T}_{\Sigma} \longrightarrow \mathbb{K}$ at all, since $h_{D}\left(g(f(a))\right.$ must be either d or d^{\prime}. But if $h_{D}(g(f(a))=d$, then h fails to preserve the operation $g: C \longrightarrow D$, and if $h_{D}\left(g(f(a))=d^{\prime}\right.$, then h fails to preserve the operation $g: B \longrightarrow D$.

Initiality of the Term Algebra \mathbb{T}_{Σ} when Σ Sensible

In summary, the claim is that, if Σ is sensible, then for any Σ-algebra \mathbb{A} there is a unique pocket calculator for \mathbb{A}, i.e., a unique Σ-homomorphism_- $: \mathbb{T}_{\Sigma} \longrightarrow \mathbb{A}$. This is called the initiality property of \mathbb{T}_{Σ}. This unique Σ-homomorphism _्A is the obvious evaluation function, mapping each term t to the result of evaluating it in \mathbb{A}. As already mentioned, $\mathbb{A}_{\mathbb{A}}$ is defined inductively as follows:

- for a constant a we define $(a)_{\mathbb{A}}=a_{\mathbb{A}}$, and
- for a term $f\left(t_{1}, \ldots, t_{n}\right)$ we define

$$
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathbb{A}}=f_{\mathbb{A}}\left(\left(t_{1}\right)_{\mathbb{A}}, \ldots,\left(t_{n}\right)_{\mathbb{A}}\right)
$$

Let us prove it in detail.

Theorem. If Σ is a sensible order-sorted signature, then \mathbb{T}_{Σ} satisfies the initiality property.

Proof of the Initiality Theorem

Proof: For \mathbb{A} any Σ-algebra Let us first prove the uniqueness of ${ }_{-} \mathbb{A}$, and then its existence.

Proof of uniqueness. Let us suppose that we have two different homomorphisms $h, h^{\prime}: \mathbb{T}_{\Sigma} \rightarrow \mathbb{A}$. We can prove that $h=h^{\prime}$ by induction on the depth of the terms.

For terms of depth 0 let a be a constant in $T_{\Sigma, s}$. That means that there is a sort $s^{\prime} \leq s$ with an operator declaration $a: n i l \longrightarrow s^{\prime}$ and therefore, by h and h^{\prime} being Σ-homomorphisms we must have $h_{s}(a)=h_{s}^{\prime}(a)=a_{\mathbb{A}}^{n i l, s^{\prime}}$.

Proof of the Initiality Theorem (II)

Assume that the equality $h=h^{\prime}$ holds for terms of depth less or equal to n, and let $f\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma, s}$ have depth $n+1$. That means that there is an operator declaration $f: s_{1} \ldots s_{n} \rightarrow s^{\prime}$ with $s^{\prime} \leq s$ and $t_{i} \in T_{\Sigma, s_{i}}, 1 \leq i \leq n$. Again, by h and h^{\prime} being Σ-homomorphisms we must have:
$h_{s}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=$
$=f_{\mathbb{A}}^{s_{1} \ldots s_{n}, s^{\prime}}\left(h_{s_{1}}\left(t_{1}\right), \ldots, h_{s_{n}}\left(t_{n}\right)\right)\left(h\right.$ homomorphism and $\left.s^{\prime} \leq s\right)$
$=f_{\mathbb{A}}^{s_{1} \ldots s_{n}, s^{\prime}}\left(h_{s_{1}}^{\prime}\left(t_{1}\right), \ldots, h_{s_{n}}^{\prime}\left(t_{n}\right)\right)$ (induction hypothesis)
$=h_{s}^{\prime}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)\left(h^{\prime}\right.$ homomorphism and $\left.s^{\prime} \leq s\right)$.

Proof of the Initiality Theorem (III)

Proof of Existence. We can both define $\quad _\mathbb{A}$ and show that it is a Σ-homomorphism by induction on the (tree) depth of ground terms. For terms of depth 0 , let $a \in T_{\Sigma, s}$ be a constant. That means that there is a sort $s^{\prime} \leq s$ with an operator declaration $a:$ nil $\longrightarrow s^{\prime}$; we then define $(a)_{\mathbb{A}_{s}}=a_{\mathbb{A}}^{n i l, s^{\prime}}$.

Note that the constant a could be subsort-overloaded (cannot be ad-hoc overloaded, since this is ruled out by Σ being sensible) but the above assignment is well-defined (does not depend on the particular declaration $a: \epsilon \rightarrow s^{\prime}$ chosen), because by our definition of order-sorted Σ-algebra the interpretations of all subsort overloaded versions of a constant a must coincide in the algebra \mathbb{A}. Furthermore, $_\mathbb{A}$ preserves constants, so it is a Σ-homomorphism for ground terms of depth 0 .

Proof of the Initiality Theorem (IV)

Assume that $\underset{\mathbb{A}}{ }$ has already been defined and is a Σ-homomorphism for ground terms of depth less or equal to n, and let $f\left(t_{1}, \ldots, t_{n}\right) \in T_{\Sigma, s}$ be a term of depth $n+1$. That means that there is an operator declaration $f: s_{1} \ldots s_{n} \rightarrow s^{\prime}$ with $s^{\prime} \leq s$ and $t_{i} \in T_{\Sigma, s_{i}}, 1 \leq i \leq n$. We define
$\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathbb{A}}=f_{\mathbb{A}}^{s_{1} \ldots s_{n}, s^{\prime}}\left(\left(t_{1}\right)_{\mathbb{A}}, \ldots,\left(t_{n}\right)_{\mathbb{A}}\right)$.
Note that, by the induction hypothesis, _-A has already been defined for terms of depth less or equal to n and is an order-sorted Σ-homomorphism on those terms.

Note also that, by the Proof of the Lemma on sensible signatures, for any other $f: s_{1}^{\prime} \ldots s_{n}^{\prime} \rightarrow s^{\prime \prime}$ such that $t_{i} \in T_{\Sigma, s_{i}^{\prime}}, 1 \leq i \leq n$, we must have, $\left[s_{i}\right]=\left[s_{i}^{\prime}\right], 1 \leq i \leq n$, and $\left[s^{\prime}\right]=\left[s^{\prime \prime}\right]$.

Proof of the Initiality Theorem (V)

Since we have $\left[s_{i}\right]=\left[s_{i}^{\prime}\right], 1 \leq i \leq n$, by definition of order-sorted Σ-homomorphism this then forces, $\mathbb{A}_{s_{i}}\left(t_{i}\right)=\mathbb{A}_{s_{i}^{\prime}}\left(t_{i}\right), 1 \leq i \leq n$.
But since \mathbb{A} is a Σ-algebra, all its subsort overloaded operators must agree on common data, we must have,

$$
f_{\mathbb{A}}^{s_{1} \ldots s_{n}, s^{\prime}}\left(\left(t_{1}\right)_{\mathbb{A}}, \ldots,\left(t_{n}\right)_{\mathbb{A}}\right)=f_{\mathbb{A}}^{s_{\mathbb{1}}^{\prime} \ldots s_{n}^{\prime}, s^{\prime \prime}}\left(\left(t_{1}\right)_{\mathbb{A}}, \ldots,\left(t_{n}\right)_{\mathbb{A}}\right) .
$$

Therefore, the definition of
$\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{\mathbb{A}}=f_{\mathbb{A}}^{s_{1} \ldots s_{n}, s^{\prime}}\left(\left(t_{1}\right)_{\mathbb{A}}, \ldots,\left(t_{n}\right)_{\mathbb{A}}\right)$ does not depend on the choice of the subsort overloaded operator f. As a consequence, the extension of $__{\mathbb{A}}$ to the step $n+1$ is well-defined and, by construction, it is a Σ-homorphism for ground terms of depth less or equal to $n+1$. Therefore, we have inductively proved the existence of the Σ-homomorphism _A. q.e.d.

The Pocket Calculator of a Canonical Term Algebra

Ex.11.6. Recall the canonical term algebra
$\mathbb{C}_{\Sigma / E, B}=\left(C_{\Sigma / E, B}, __{\Sigma / E, B}\right)$, defined in page 17 of Lecture 6 for a functional fmod $(\Sigma, E \cup B)$ endfm, where Σ is B-preregular and satisfies the Unique Termination, Sufficient Completeness and Sort Preservation requirements. ${ }^{\text {a }}$ What is the pocket calculator of $\mathbb{C}_{\Sigma / E, B} ?$
By the Initiality Theorem, it is the unique Σ-homomorphism $\mathcal{C}_{\Sigma / E, B}: \mathbb{T}_{\Sigma} \longrightarrow \mathbb{C}_{\Sigma / E, B}$. Prove that, as an S-sorted function on S-sorted sets, $\mathbb{C}_{\Sigma / E, B}: T_{\Sigma} \rightarrow C_{\Sigma / E, B}$ is exactly the S-sorted function: $\left\{T_{\Sigma, s} \ni t \mapsto\left[t!_{E / B}\right] \in C_{\Sigma / E, B, s}\right\}_{s \in S}$ (what Maude's red command implements!!), which we used in defining $\mathbb{C}_{\Sigma / E, B}$.

[^0]
More on Homomorphisms

Ex.11.7. Prove that homomorphisms compose. That is, if $h: \mathbb{A} \rightarrow \mathbb{B}$ and $g: \mathbb{B} \rightarrow \mathbb{C}$ are Σ-homomorphisms, then $h ; g=\left\{h_{s} ; g_{s}\right\}_{s \in S}$ is a Σ-homomorphism $h ; g: \mathbb{A} \rightarrow \mathbb{C}$.

Ex.11.8. Prove that identities are homomorphisms. That is, given a Σ-algebra $\mathbb{A}=(A, \ldots \mathbb{A})$, the family of identity functions $i d_{A}=\left\{i d_{A_{s}}\right\}$ is a Σ-homomorphim $i d_{A}: \mathbb{A} \rightarrow \mathbb{A}$.

More on Homomorphisms (II)

A Σ-homomorphim $h: \mathbb{A} \rightarrow \mathbb{B}$ is called an isomorphim if there is another Σ-homomorphism $g: \mathbb{B} \rightarrow \mathbb{A}$ such that $h ; g=i d_{A}$ and $g ; h=i d_{B}$. We then may use the notation $g=h^{-1}$ and $h=g^{-1}$.

We call a Σ-homomorphism $h: \mathbb{A} \rightarrow \mathbb{B}$

- injective (resp. surjective) if for each sort $s \in S$ the function h_{s} is injective (resp. surjective)
- a monomorphism if for any pair of Σ-homomorphisms $g, q: \mathbb{C} \rightarrow \mathbb{A}$, if $g ; h=q ; h$ then $g=q$
- an epimorphism if for any pair of Σ-homomorphisms $g, q: \mathbb{B} \rightarrow \mathbb{C}$, if $h ; g=h ; q$ then $g=q$.

More on Homomorphisms (III)

For example, if $\mathbb{N}_{b i n}$, resp. $\mathbb{N}_{\text {dec }}$, denote the natural numbers with 0 , successor, and addition in binary, resp. decimal, representation, we have an obvious binary-to-decimal isomorphism $b 2 d: \mathbb{N}_{b i n} \rightarrow \mathbb{N}_{\text {dec }}$ preserving all operations, whose inverse is the decimal-to-binary isomorphism, $d 2 b: \mathbb{N}_{b i n} \rightarrow \mathbb{N}_{\text {dec }}$. Of course, $d 2 b ; b 2 d=i d_{\mathbb{N}_{\text {dec }}}$, and $b 2 d ; d 2 b=i d_{\mathbb{N}_{b i n}}$.

For \mathbb{N}_{n} the residue classes modulo n, the reminder function $\mathbb{N} \xrightarrow{r e m_{n}} \mathbb{N}_{n}$ is a surjective homomorphism for Σ containing, say, 0,1 , ,$+ \times$.

Similarly, for $\mathbb{Z}_{d e c}$ the integers in decimal notation, the inclusion $j: \mathbb{N}_{\text {dec }} \hookrightarrow \mathbb{Z}_{\text {dec }}$ is an injective homomorphism preserving all shared operations: $0,1,+, \times$, etc.

Theorem: All Initial Algebras Are Isomorphic

Proof: Suppose \mathbb{I} and \mathbb{J} are Σ-algebras and both satisfy the initiality property of having a unique Σ-homomorphism to any other Σ-algebra. In particular, we have unique homomorphisms,

$$
h: \mathbb{I} \longrightarrow \mathbb{J} \quad g: \mathbb{J} \longrightarrow \mathbb{I}
$$

and therefore a composed homomorphism

$$
\mathbb{I} \xrightarrow{h} \mathbb{J} \xrightarrow{g} \mathbb{I}
$$

but we also have the identity homomorphism $i d_{\mathbb{I}}$, which by uniqeness forces $h ; g=i d_{\mathbb{I}}$. Interchanging the role of \mathbb{I} and \mathbb{J} we also get, $g ; h=i d_{J}$. q.e.d.

Evaluating Program Expressions

Q1: Can we model the evaluation of expressions in a programming language using initial algebras?

A1: We first of all need a signature Σ of operations.

For example, Σ could be a signature for integer operations, and/or Boolean operations, and/or real number operations (typically using a floating point representation).

Assume, for example, a programming language in which we only have integers and integer operations (note that we can encode true and false as, respectively, 0 and 1). In this case Σ can be unsorted and have two constants, 0 and 1 , and three binary function

Evaluating Program Expressions (II)

Q2: What else do we need?

A2: We need a set X of variables appearing on our expressions. This means that we need to extend Σ to $\Sigma(X)$, so that our program expressions will be terms $t \in T_{\Sigma(X)}$.

Q3: And what else do we need if we want to evaluate such expressions?

A3: We of course need a Σ-algebra in which they will be evaluated. For integers expressions the most natural choice is the algebra $\mathbb{Z}=\left(\mathbb{Z}, \mathbb{Z}_{\mathbb{Z}}\right)$ of the integers, with the standard interpretation \mathbb{Z} for $+, *,-, 0,1$.

Evaluating Program Expressions (III)

Q4: And what else do we need?

A4: Since expression evaluation depends on the memory state, we need to model mathematically memory states.

Q5: And how can we model memory states?

A5: Assuming programs with just global variables, a memory state for arithmetic expressions is just a function $m: X \rightarrow \mathbb{Z}$. This is a special instance of the general notions of an assignment of values to variables in an algebra.

Assignments

Given variables in $X=\left\{X_{s}\right\}$ we will often be interested in assignments (also called valuations) of data elements in a given Σ-algebra $\mathbb{A}=(A, \ldots \mathbb{A})$ to those variables. Of course, if $x \in X_{s}$ then the value, say $a(x)$, assigned to x should be an element of A_{s}. That is the assignments should be well-sorted. This can be made precise by defining an assignment to the variables X in a Σ-algebra $\mathbb{A}=\left(A, \mathbb{A}_{\mathbb{A}}\right)$ to be an S-indexed family of functions, $a=\left\{a_{s}: X_{s} \longrightarrow A_{s}\right\}_{s \in S}$, denoted $a: X \longrightarrow A$.

Often what we want to do with such assignments is to extend them from variables to terms on such variables in the obvious, homomorphic way. This is what expression evaluation is all about.

Evaluating Program Expressions (VI)

Q6: Now that we have everything we need, how can evaluation of arithmetic expressions be precisely defined relative to a memory (state) $m: X \rightarrow \mathbb{Z}$?

A6: As a function $__{(\mathbb{Z}, m)}: T_{\Sigma(X)} \rightarrow \mathbb{Z}$ defined inductively by:

1. $x_{(\mathbb{Z}, m)}=m(x)$ for $x \in X$
2. $0_{(\mathbb{Z}, m)}=0 \in \mathbb{Z}, 1_{(\mathbb{Z}, m)}=1 \in \mathbb{Z}$
3. $f\left(t, t^{\prime}\right)_{(\mathbb{Z}, m)}=f_{\mathbb{Z}}\left(t_{(\mathbb{Z}, m)}, t_{(\mathbb{Z}, m)}^{\prime}\right)$ for $f \in\{+, *,-\}$.

Evaluating Program Expressions (VII)

Q7: Conditions (2)-(3) show that $__{(\mathbb{Z}, m)}$ is a Σ-homomorphism. What about condition (1)?

A7: Condition (1) plus (2)-(3) show that it is a $\Sigma(X)$-homomorphism, when we extend the algebra \mathbb{Z} of the integers with the additional constants X, where each $x \in X$ is interpreted in \mathbb{Z} as $m(x)$. Therefore, the extension of \mathbb{Z} to a $\Sigma(X)$-algebra is just $\left(\mathbb{Z}, \mathbb{Z}_{\uplus}{ }_{m}\right)$, which we abbreviate to: (\mathbb{Z}, m). Then the evaluation of arithmetic expressions is the unique $\Sigma(X)$-homomorphism:

$$
-(\mathbb{Z}, m): \mathbb{T}_{\Sigma(X)} \rightarrow(\mathbb{Z}, m)
$$

to the $\Sigma(X)$-algebra (\mathbb{Z}, m) (extending the Σ-algebra \mathbb{Z} with memory m) ensured by the initiality of $\mathbb{T}_{\Sigma(X)}$.

Exercises

Ex.11.9. Show that a homomorphism is injective iff it is a monomorphism. Prove that every surjective homomorphism is an epimorphism. Construct an epimorphism that is not surjective.

Ex.11.10. Show that any many-sorted Σ-homomorphism that is surjective and injective is an isomorphism.

Construct an order-sorted homomorphism that is surjective and injective but is not an isomorphism. Give a sufficient condition on the poset (S, \leq) (more general of course than being a discrete poset, since that is the many-sorted case) so that h is an isomorphism iff h is surjective and injective.

Exercises (II)

Ex.11.11. Prove that if an algebra \mathbb{J} is isomorphic to an initial algebra \mathbb{I}, then \mathbb{J} itself is initial.

Ex.11.12. Show that the natural numbers in Peano notation (zero and successor) and in base 2 are isomorphic Σ-algebras (both initial) for Σ the signature with one sort Natural and zero and successor operations.

[^0]: ${ }^{\text {a }}$ Which of course can be checked by checking sort-decreasingness, local confluence and termination of \vec{E} modulo B, and sufficient completeness w.r.t. the constructors Ω.

