
CS 476 Homework #6 Due 10:45am on 10/6

Note: Answers to the exercises listed below and the code solution for Exercise 2 should be emailed in typewritten
form (latex formatting preferred) by the deadline mentioned above to nishant2@illinois.edu.

1. Note that we can think of a relation R ⊆ A×B as a “nondeterministic function from A to B.” That is, given
an element a ∈ A, we can think of the result of applying R to a, let us denote it R{a}, as the set of all b’s such
that (a, b) ∈ R. Unlike for functions, the set R{a} may be empty, or may have more than one element.

Note that the powerset P(B) allows us to view the “non-deterministic mapping” a 7→ R{a} as a normal function
from A to P(B). More precisely, we can define1 R{ } as the function:

R{ } : A 3 a 7→ {b ∈ B | (a, b) ∈ R} ∈ P(B).

But since this can be done for any relation R ⊆ A×B, the mapping R 7→ R{ } is itself a function:

{ } : P(A×B) 3 R 7→ R{ } ∈ [A→P(B)].

One can now ask an obvious question: are the notions of a relation R ∈ P(A × B) and of a function f ∈
[A→P(B)] essentially the same? That is, can we go back and forth between these two supposedly equivalent
representations of a relation? But note that the idea of “going back and forth” between two equivalent
representations is precisely the idea of a bijection.

Prove that the function { } : P(A×B) 3 R 7→ R{ } ∈ [A→P(B)] is bijective.

2. This problem is a good example of the motto:

Declarative Programming = Mathematical Modeling

Specifically, of how you can model discrete mathematics in a computable way by functional programs in Maude,
so that what you get is a computable mathematical model of discrete mathematics. Furthermore, it will allow
you to obtain a computable mathematical model of arrays and array lookup as a special case of your model.

Recall the function:
{ } : P(A×B) 3 R 7→ R{ } ∈ [A→ P(B)]

from Problem 1 above. Note that we then also have a function:

{ } : P(A×B)×A 3 (R, a) 7→ R{a} ∈ P(B)

that applies the function R{ } to an element a ∈ A to get its image set under R.

Define this latter function in Maude for A = N the set of natural numbers, and B = Q the set of rational
numbers, and for finite relations R ⊂ N×Q by giving recursive equations for it in the functional module below.

Define also in the same functional module the auxiliary functions: dom, which assigns to each finite relation
R ⊂ N ×Q the set dom(R) = {n ∈ N | ∃(n, r) ∈ R}, and the predicate pfun, which tests wether a relation
f ⊂ N×Q is a partial function. That is, whether f satisfies the uniqueness condition:

(∀n ∈ N) (∀p, q ∈ R) [(n, p) ∈ f ∧ (n, q) ∈ f]⇒ p = q.

1Note that the function R{ } is closely related to the function

R[] : P(A) 3 A′ 7→ {b ∈ B | a ∈ A′∧ ∈ (a, b) ∈ R} ∈ P(B)

defined in STACS, namely, by the equation: R{a} = R[{a}]. We are using a different notation (R{ } and R[]) to distinguish them.

1

In Computer Science a finite partial function f ⊂ N×Q is called an array of rational numbers, or sometimes a
map. Note that when f is an array, the result f{n} is either a single rational number, or, if f is not defined for
the index n, then mt. That is, f{n} is exactly array lookup, which usually would be denoted f [n] instead. In
summary, the function { } that you will define includes as a special case the array lookup function for arrays
of rational numbers of arbitrary size.

Note: Notice Maude’s built-in module RAT contains NAT as a submodule, and has a subsort relation Nat < Rat.
You can use the automatically imported module BOOL and its built-in equality predicate == and if-then-else
if_then_else_fi as auxiliary functions.

fmod RELATION-APPLICATION is protecting RAT .

sorts Pair NatSet RatSet Rel .

subsort Pair < Rel .

subsort Nat < NatSet < RatSet .

subsort Rat < RatSet .

op [_,_] : Nat Rat -> Pair [ctor] . *** Pair is cartesian product Nat x Rat

op mt : -> NatSet [ctor] . *** empty set of naturals

op null : -> Rel [ctor] . *** empty relation

op _,_ : NatSet NatSet -> NatSet [ctor assoc comm id: mt] . *** union

op _,_ : RatSet RatSet -> RatSet [ctor assoc comm id: mt] . *** union

op _,_ : Rel Rel -> Rel [ctor assoc comm id: null] . *** union

op _in_ : Nat NatSet -> Bool . *** membership

op _{_} : Rel Nat -> RatSet . *** relation application to a number

op dom : Rel -> NatSet . *** domain of a relation

op pfun : Rel -> Bool . *** partial function predicate

vars n m : Nat . var r : Rat . var P : Pair . var S : NatSet . var R : Rel .

eq n,n = n . *** idempotency

eq P,P = P . *** idempotency

eq n in mt = false . *** membership

eq n in (m,S) = (n == m) or n in S . *** membership

*** your equations defining the functions _{_}, dom, and pfun here

*** if you need to declare any other variables or auxiliary

*** functions besides those above, you can also do so

endfm

You can retrieve this module as a “skeleton” on which to give your answer from the course web page. Also, send a
file with your module to nishant2@illinois.edu.

2

