CS 476 Homework \#6 Due 10:45am on 10/6

Note: Answers to the exercises listed below and the code solution for Exercise 2 should be emailed in typewritten form (latex formatting preferred) by the deadline mentioned above to nishant2@illinois.edu.

1. Note that we can think of a relation $R \subseteq A \times B$ as a "nondeterministic function from A to B." That is, given an element $a \in A$, we can think of the result of applying R to a, let us denote it $R\{a\}$, as the set of all b 's such that $(a, b) \in R$. Unlike for functions, the set $R\{a\}$ may be empty, or may have more than one element.
Note that the powerset $\mathcal{P}(B)$ allows us to view the "non-deterministic mapping" $a \mapsto R\{a\}$ as a normal function from A to $\mathcal{P}(B)$. More precisely, we can define ${ }^{1} R\{-\}$ as the function:

$$
R\{-\}: A \ni a \mapsto\{b \in B \mid(a, b) \in R\} \in \mathcal{P}(B) .
$$

But since this can be done for any relation $R \subseteq A \times B$, the mapping $R \mapsto R\{-\}$ is itself a function:

$$
-\{-\}: \mathcal{P}(A \times B) \ni R \mapsto R\{-\} \in[A \rightarrow \mathcal{P}(B)] .
$$

One can now ask an obvious question: are the notions of a relation $R \in \mathcal{P}(A \times B)$ and of a function $f \in$ $[A \rightarrow \mathcal{P}(B)]$ essentially the same? That is, can we go back and forth between these two supposedly equivalent representations of a relation? But note that the idea of "going back and forth" between two equivalent representations is precisely the idea of a bijection.

Prove that the function ${ }_{-}\{-\}: \mathcal{P}(A \times B) \ni R \mapsto R\{-\} \in[A \rightarrow \mathcal{P}(B)]$ is bijective.
2. This problem is a good example of the motto:

$$
\text { Declarative Programming }=\text { Mathematical Modeling }
$$

Specifically, of how you can model discrete mathematics in a computable way by functional programs in Maude, so that what you get is a computable mathematical model of discrete mathematics. Furthermore, it will allow you to obtain a computable mathematical model of arrays and array lookup as a special case of your model.
Recall the function:

$$
-\{-\}: \mathcal{P}(A \times B) \ni R \mapsto R\{-\} \in[A \rightarrow \mathcal{P}(B)]
$$

from Problem 1 above. Note that we then also have a function:

$$
-\{-\}: \mathcal{P}(A \times B) \times A \ni(R, a) \mapsto R\{a\} \in \mathcal{P}(B)
$$

that applies the function $R\{-\}$ to an element $a \in A$ to get its image set under R.
Define this latter function in Maude for $A=\mathbf{N}$ the set of natural numbers, and $B=\mathbf{Q}$ the set of rational numbers, and for finite relations $R \subset \mathbf{N} \times \mathbf{Q}$ by giving recursive equations for it in the functional module below.

Define also in the same functional module the auxiliary functions: dom, which assigns to each finite relation $R \subset \mathbf{N} \times \mathbf{Q}$ the set $\operatorname{dom}(R)=\{n \in \mathbf{N} \mid \exists(n, r) \in R\}$, and the predicate pfun, which tests wether a relation $f \subset \mathbf{N} \times \mathbf{Q}$ is a partial function. That is, whether f satisfies the uniqueness condition:

$$
(\forall n \in \mathbf{N})(\forall p, q \in \mathbf{R})[(n, p) \in f \wedge(n, q) \in f] \Rightarrow p=q .
$$

[^0]defined in STACS, namely, by the equation: $R\{a\}=R[\{a\}]$. We are using a different notation ($R\left\{{ }_{-}\right\}$and $\left.R[-]\right)$ to distinguish them.

In Computer Science a finite partial function $f \subset \mathbf{N} \times \mathbf{Q}$ is called an array of rational numbers, or sometimes a map. Note that when f is an array, the result $f\{n\}$ is either a single rational number, or, if f is not defined for the index n, then mt. That is, $f\{n\}$ is exactly array lookup, which usually would be denoted $f[n]$ instead. In summary, the function $\left\{_{-}\right\}$that you will define includes as a special case the array lookup function for arrays of rational numbers of arbitrary size.
Note: Notice Maude's built-in module RAT contains NAT as a submodule, and has a subsort relation Nat < Rat. You can use the automatically imported module BOOL and its built-in equality predicate $==$ and if-then-else if_then_else_fi as auxiliary functions.

```
fmod RELATION-APPLICATION is protecting RAT .
    sorts Pair NatSet RatSet Rel .
    subsort Pair < Rel .
    subsort Nat < NatSet < RatSet .
    subsort Rat < RatSet .
    op [_,_] : Nat Rat -> Pair [ctor] . *** Pair is cartesian product Nat x Rat
    op mt : -> NatSet [ctor] . *** empty set of naturals
    op null : -> Rel [ctor] . *** empty relation
    op _,_ : NatSet NatSet -> NatSet [ctor assoc comm id: mt] . *** union
    op _,_ : RatSet RatSet -> RatSet [ctor assoc comm id: mt] . *** union
    op _,_ : Rel Rel -> Rel [ctor assoc comm id: null] . *** union
    op _in_ : Nat NatSet -> Bool . *** membership
    op _{_} : Rel Nat -> RatSet . *** relation application to a number
    op dom : Rel -> NatSet . *** domain of a relation
    op pfun : Rel -> Bool . *** partial function predicate
    vars n m : Nat . var r : Rat . var P : Pair . var S : NatSet . var R : Rel .
    eq n,n = n . *** idempotency
    eq P,P = P . *** idempotency
    eq n in mt = false . *** membership
    eq n in (m,S) = ( n == m) or n in S . *** membership
    *** your equations defining the functions _{_}, dom, and pfun here
    *** if you need to declare any other variables or auxiliary
    *** functions besides those above, you can also do so
endfm
```

You can retrieve this module as a "skeleton" on which to give your answer from the course web page. Also, send a file with your module to nishant2@illinois.edu.

[^0]: ${ }^{1}$ Note that the function $R\left\{{ }_{-}\right\}$is closely related to the function

 $$
 R[-]: \mathcal{P}(A) \ni A^{\prime} \mapsto\left\{b \in B \mid a \in A^{\prime} \wedge \in(a, b) \in R\right\} \in \mathcal{P}(B)
 $$

