
CS 476 Homework #5 Due 10:45am on 9/29

Note: Answers to the exercises listed below in typewritten form (latex formatting preferred) as well as code
solutions should be emailed by the above deadline to nishant2@illinois.edu.

1. In the slides for Lecture 6, given an equational theory (Σ, E) the joinability relation t ↓~E t′ is defined by the
equivalence:

t ↓~E t′ ⇔ (∃w) (t→∗~E w ∧ t′ →∗~E w).

That is, t ↓~E t′ holds iff t and t′ can both be rewritten to a common term w (the more general modulo B case
for t ↓ ~E/B

t′ is defined in Lecture 6 in the same way; but in this exercise we will stick to the case without

axioms (B = ∅)).
Prove the Church-Rosser Theorem (also stated in Lecture 5) in the following form:

If (Σ, E) is a kind-complete order-sorted equational theory such that the rules ~E are confluent, then for any
two Σ-terms t, t′ whose sorts are in the same connected component we have the equivalence:

t =E t′ ⇔ t ↓~E t′.

Hint: Use induction on the length of the proof of t =E t′.

2. This problem is a good example of the motto:

Declarative Maude Programming = Computable Mathematical Modeling

In this case, the goal is to define a mathematical model of the set Pfin(N) of finite subsets of the set N of
natural numbers in Peano notation and some commonly used set-theoretic functions on that powerset.

Since your mathematical model should be the canonical term algebra CΣ/E,B of the functional module fmod

(Σ, E ∪B) endfm that you will specify, you should not use any built-in features of Maude. In particular,

No use should be made of the built-in equality predicate == in any equations.

The built-in equality predicate == is very convenient. But by using it you are not giving a full mathematical
definition. Here you are asked to give a full mathematical definition of all the functions involved in an algebra
of (finite) sets of natural numbers, which should at the same time be a correct program to compute all those
operations in such an algebra.

Finite sets of natural numbers are defined as expected, using a binary associative and commutative set union
constructor , with mt (the empty set) as its identity element. Since our model is of sets and not of multisets,
there is a set idempotency equation —restricted to numbers to avoid non-termination: see Lecture 5— already
provided for you in the skeleton below. You are asked to write equations defining the following functions ( ∪
has already been defined for you in the template below by the assoc, comm and id: mt axioms, and the
idempotency equation):

(a) ∪ set union

(b) = (as predicate on N)

(c) ∈ (membership predicate)

(d) \ (set difference, written − in STACS )

(e) ⊆ (subset predicate)
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(f) = (as predicate on Pfin(N))

(g) ∩ set intersection

(h) | | cardinality of a (finite) set.

Some example tests are included for your convenience, and you should further check the correctness of your
function definitions with other tests.

Hints:

• The built-in module NAT is included for your convenience because: (i) it supports decimal notation and
also Peano notation: 3 can be written both as 3 and as s(s(s(0))), which is very convenient: you can, for
example, define the equality predicate between naturals just using the Peano notation; (ii) it imports the
BOOL module, so you have at your disposal all the Boolean operations, which can be useful when defining
some of the predicates; and (iii) BOOL itself imports the if-then-else-fi operator: this, again, can be helpful
when defining some functions.

• The order in which the functions are introduced gives you a hint that some functions earlier in the list
may be useful as auxiliary functions for defining other functions later down the list.

• Programming modulo axioms such as associativity, commutativity and identity is very powerful and allows
writing very short programs. For example, the eight functions in this example can be defined with just 18
equations. However, with this power come also some risks: (1) some equations may be non-terminating
due to unexpected applications of the id: axiom for ∅ as identity for ∪ , (2) losing sufficient completeness:
you may forget some cases in your equations if you are not careful, or, even worse, (3) loss of confluence,
so that a function may have two or more different results, depending on the order in which equations are
applied, and therefore is not a function at all!

This last risk (3) is the highest: if you rely on the order in which you have written your equations, there is a
pretty good chance that you may have written some nonsense and you have not defined a function at all. This
last error can be quite nasty, since you may not be able to detect it by testing : Maude’s red command follows
a fixed evaluation strategy, so you will only see one result for a test. Therefore, you have to ask yourself:
could I get a different result if the equations are applied in a different order? For example, you may write your
equations implicitly assuming that the sets a function is applied to have no repeated elements (i.e., implicitly
assuming that the equation N,N = N has already been applied exhaustively to the function’s arguments). Then,
you may happily proceed to write nonsense equations that will give you different values for the same input,
depending on how they are applied; but you may not notice this fatal mistake just by testing. The tests cases
included below include evaluations of functions whose arguments are sets with repeated elements. They are
meant not just as test cases, but also to help you check your equational definitions “in your head,” that is, by
checking on a piece of paper if some weird order of applying the equations could lead to a different result.

Note that, although this is a relatively simple example, the standard of quality in programming is a high one:
you are supposed to define exactly the mathematical model of finite sets of natural numbers —as would be
defined in, say, the STAC notes— just by writing a handful of equations E, so that the canonical term algebra
CΣ/E,B for your module, up to the slight (bijective) change of representation:

• ∅ versus mt

• {n1, . . . , nk} versus n1, . . . , nk

exactly defines the algebra of finite sets of natural numbers, with sorts Nat and Set respectively interpreted as
N and Pfin(N), and CΣ/E,B

interpreting the module’s function symbols (in exactly that order) as the functions
(a)–(h) mentioned above, and having the mathematical meaning exactly defined for them in STACS.

fmod SET-ALGEBRA is

protecting NAT .

sort Set .

subsort Nat < Set .
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op mt : -> Set [ctor] . *** empty set

op _,_ : Set Set -> Set [ctor assoc comm id: mt] . *** set union

vars N M : Nat . vars U V W : Set .

eq N,N = N . *** set idempotency

op _~_ : Nat Nat -> Bool [comm] . *** equality predicate on naturals

*** write your equations here, using Peano notation, i.e., 0 and s(N)

op _in_ : Nat Set -> Bool . *** set membership

*** write your equations here

op _\_ : Set Set -> Set . *** set difference

*** write your equations here

op _C=_ : Set Set -> Bool . *** set containment

*** write your equations here

op _~_ : Set Set -> Bool [comm] . *** equality predicate on sets

*** write your equations here

op _/\_ : Set Set -> Set . *** set intersection

*** write your equations here

op |_| : Set -> Nat . *** cardinality function

*** write your equations here

endfm

*** all tests below should come out "true"

red 5 ~ 12 == false .

red 15 ~ 15 == true .

red 4 in (3,3,4,4,7) == true .

red 9 in (3,3,4,4,7) == false .

red (3,3,4,4,4,2,2,9) \ (3,3,3,4,2,7) == 9 .

red (4,4,4,2,2,7) \ (3,3,3,4,2,7) == mt .

red (3,3,4,4,4,2,2,9) C= (3,3,3,4,2,7) == false .

red (3,3,4,4,2,2,9,9) C= (3,4,2,7,9) == true .

red (3,3,4,4,4,2,2,7) ~ (3,3,3,4,2,7) == true .
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red (3,3,3,4,2,2,7) ~ (3,3,3,4,2,2) == false .

red (3,3,3,4,4,4,2,2,7,9) /\ (3,3,4,4,2,7,7,1) == 2,3,4,7 .

red | 3,3,4,4,4,2,2,9 | == 4 .

You can retrieve this module as a “skeleton” on which to give your answer from the course web page. Also,
send a file with your module and tests to nishant2@illinois.edu.
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