CS 476 Homework \#4 Due 10:45am on $9 / 22$

Note: Answers to the exercises listed below (in typewritten form, preferably using Latex) as well as the Maude code for Problem 2, should be emailed by the above deadline to nishant2@illinois.edu.

1. The addition function on the natural numbers:

$$
+_{\mathbb{N}}: \mathbb{N}^{2} \rightarrow \mathbb{N}
$$

is a relation, and therefore a subset $+_{\mathbb{N}} \subset \mathbb{N}^{2} \times \mathbb{N}$. In decimal notation this subset cannot be explicitly described without invoking the decimal addition algorithm to specify the set defined by this function. However, a nice feature of the Peano representation of the naturals is that $+_{\mathbb{N}}$ can be explicitly described as a set. It is the set:

$$
+_{\mathbb{N}}=\left\{((n, 0), n) \in \mathbb{N}^{2} \times \mathbb{N} \mid n \in \mathbb{N}\right\} \cup\left\{\left((n, s(m)), s^{s(m)}(n)\right) \in \mathbb{N}^{2} \times \mathbb{N} \mid n, m \in \mathbb{N}\right\}
$$

where, by definition, $s^{s(0)}(n)=s(n)$, and $s^{s(m)}(n)=s\left(s^{m}(n)\right)$, for $m>s(0)$.
Consider now the following Maude functional module (in prefix notation):

```
fmod NATURAL is
    sort Nat .
    op 0 : -> Nat [ctor] .
    op s : Nat -> Nat [ctor] .
    op + : Nat Nat -> Nat .
    vars N M : Nat .
    eq +(N,O) = N .
    eq +(N,s(M)) = s(+(N,M)).
endfm
```

Adopting the Peano notation, any natural number $n \in \mathbb{N}$ is exactly a constructor term in the above module, i.e., n is either 0 , or has the form $s^{k}(0)$ for some $k \geq 1$.

You are asked to do two things:
(A). Prove the following theorem:

Theorem. For any $n, m \in \mathbb{N}$ in Peano notation, the term $+(n, m)$ has a unique terminating sequence of equality steps:

$$
+(n, m)=t_{1}=t_{2}=\ldots=u
$$

such that each step in the sequence is obtained by applying one of the two equations in NATURAL from left to right as a simplification rule. ${ }^{1}$ Furthermore, the term u in which the sequence terminates is precisely the constructor term $+_{\mathbb{N}}(n, m) \in \mathbb{N}$, where $+_{\mathbb{N}}$ is the addition function on natural numbers in Peano notation specified set-theoretically above as a binary relation $+_{\mathbb{N}} \subset \mathbb{N}^{2} \times \mathbb{N}$.
Hint. Use induction!
(B). Use the above theorem [plus the (correct) assumption that NATURAL satisfies all the executability conditions needed for it to define a canonical term algebra] to show that for (Σ, E) the equational theory specified by the above module NATURAL, its canonical term algebra $\mathbb{C}_{\Sigma / E}$ is exactly what one would expect: the algebra of the natural numbers \mathbb{N} in Peano notation, with the standard interpretation for the symbols $\{0, s,+\}$ in \mathbb{N}.

[^0]2. This exercise is about using lists of naturals to represent sets of naturals [in an obviously non-unique way, since lists can have repeated elements, and, even if they do not, list elements may appear in different orders]. Specifically, you are asked to define functions:

- insert to insert a number into a set.
- a predicate _in_ to test whether a number belongs to a set.
- _U_ to compute the union of two sets.
- simplify to obtain a list representation of a set that has no repeated elements.
- _ \bigwedge_{-}to compute the intersection of two sets.
- _-_ to compute the difference of two sets.
- equal-sets to test whether or not two lists represent the same set.

You can do so by adding the needed equations defining such functions [plus those for any other auxiliary functions that you may need] to the module below, which imports NAT, the built-in naturals. This ensures that you have various functions, such as if_then_else_fi, order comparison between numbers, Boolean operations, and the built-in equality predicate $=={ }_{-}$(for both numbers and lists) already available to you.

```
fmod LIST-REPRESENTATION-OF-SETS is
    protecting NAT .
    sort List .
    op nil : -> List [ctor] .
    op _;_ : Nat List -> List [ctor] .
    vars N M : Nat . vars L L1 L2 : List .
    op insert : Nat List -> List . *** inserts a number into a list viewed as a "set"
    *** add your equations here
    op _in_ : Nat List -> Bool . *** checks if a number is in the list viewed as a "set"
    *** add your equations here
    op _U_ : List List >> List . *** computes a list representing "set" union
    *** add your equations here
    op simplify : List -> List . *** returns a list representing the set with no repetitions
    *** add your equations here
    op _/\_ : List List -> List . *** computes a list representing "set" intersection
    *** add your equations here
    op _-_ : List List -> List . *** computes a list representing "set" difference
    *** add your equations here
    op equal-sets : List List -> Bool . *** checks if two lists represent the same set
    *** add your equations here
endfm
```

Since many different lists can represent the same set, there are of course different ways of defining the above functions. For example, both $2 ; 3 ; 3 ; 1 ;$ nil and $2 ; 3 ; 1 ;$ nil are correct representations of the set union of the "sets" $2 ; 3 ;$ nil and $3 ; 1 ;$ nil. You just need to make sure that your definition of each function corresponds to one of the possible ways of correctly representing that set-theoretic function.
You can retrieve from the course web page this module as a "skeleton" on which to give your answer. Also, send a file with your module and tests cases to nishant2@illinois.edu.

[^0]: ${ }^{1}$ What this means is intuitively obvious: we have seen various examples. But, in any case, this process of left-to-right simplification has been formally defined as term rewriting with the rules $+(N, 0) \rightarrow N$ and $+(N, s(M)) \rightarrow s(+(N, M))$ in Lecture 5 .

