CS476 Last Comprehensive Homework
Due at 11:59pm on Monday 12/12

Important Notes: (1) In consideration of the fact that you may be involved in various final exams, you are given a
full week to solve this Comprehensive Homework. Given the very ample time you have available, except for a major,
verifiable emergency, like a grave illness, there will be no extensions possible: any solutions emailed after 11:59pm
on Monday 12/12 will get 0 points. Your solutions, as well as all Maude code for exercises requiring it, should be
emailed to nishant2@illinois.edu. In addition, your screenshots for interactions with tools should be present in
the same pdf containing your answers to the homework’s problems. (2) All Maude code for the different exercises
can be obtained from the Latex file for this Comprehensive Homework, also available in the CS 476 web page.

1. Let h: A — B be a Y-isomorphism, and u = v a ¥-equation. Prove that

AEu=v & BEu=w.

For Extra Credit. You can earn 10 more points (out of the total of 10 for this exercise) if you also prove
that the above equivalence generalizes to one of the form:

AEe & BEe.
for ¢ a quantifier-free X-formula (recall the Appendix on First-Order Logic to Lecture 14).

2. Consider the definition of binary trees with natural numbers on the leaves given in Lecture 16. Complete
the module NAT-TREE+AC given below by defining with confluent and terminating equations the two functions
called leaves and inner, that count, respectively, the number of leaf nodes of a tree, and the number of
nodes in a tree that are not leaf nodes. For example, for the tree ((0 = s(0)) ~ 0) ~ s(0) there are 4 leaf
nodes (namely 0, s(0), 0, and s(0), and 3 inner nodes (corresponding to the 3 different occurrences of the ~
operator).

set include BOOL off

fmod PEANO+AC is sort Nat
op 0 : -> Nat [ctor metadata "0"]
op s : Nat -> Nat [ctor metadata "4"]

op _*+_ : Nat Nat -> Nat [assoc comm metadata "8"]
vars N M : Nat .
eq N+ 0=N.
eq N + s(M) = s(N +M
endfm

fmod NAT-TREE+AC is protecting PEANO+AC .

sort Tree . subsort Nat < Tree .

op _"_ : Tree Tree -> Tree [ctor metadata "6"]

op inner : Tree -> Nat [metadata "10"] . ***x counts inner nodes
op leaves : Tree -> Nat [metadata "12"] . *** counts tree leaves

vars N M : Nat . vars Tl T2 : Tree .
*** add equations for leaves and inner here
endfm



Once you have defined and tested your definitions for leaves and inner do the following, including screenshots
for each tool used in your solutions for this homework:

e check that NAT-TREE+AC is confluent using the Church-Rosser Checker

e check that NAT-TREE+AC is terminating using the MTA with the RPO order specified by the metadata
annotations

e check that NAT-TREE+AC is sufficiently complete using the SCC tool

e state a theorem, in the form of an equation, that gives a general law stating, for any tree T, the exact
relation between the numbers leaves(T) and inner(T)

e give a mechanical proof of that theorem using Maude’s NulTP.

3. The asynchronous and unordered communication protocol between sender and receiver objects in the COMM
module below is a variant of the example protocol in Lecture 17.

fmod NAT-LIST is protecting NAT .

sort List

subsorts Nat < List

op nil : -> List

op _;_ : List List -> List [assoc id: nil]
op length : List -> Nat

var L : List

var N : Nat

eq length(nil) =
eq length(N ; L)
endfm

0 .
= s(length(L))

mod COMM is protecting NAT-LIST . protecting QID .
sorts 0id Class Object Msg Msgs Att Atts Configuration State .
subsort Qid < 0id .
subsort Att < Atts . *xx Atts is set of attribute-value pairs
subsort Object < Configuration .
subsorts Msg < Msgs < Configuration .

op none : -> Msgs [ctor]

op __ : Configuration Configuration -> Configuration
[ctor config assoc comm id: none]

op __ : Msgs Msgs —-> Msgs

[ctor config assoc comm id: none]
op null : -> Atts

op _,_ : Atts Atts -> Atts [ctor assoc comm id: null]
op buff:_ : List -> Att [ctor]

op snd:_ : 0id -> Att [ctor]

op rec:_ : 0id -> Att [ctor]

op cnt:_ : Nat -> Att [ctor]

op ack-w:_ : Bool -> Att [ctor]

ops Sender Receiver : -> Class [ctor]

op <_:_|_> : 0id Class Atts -> Object [ctor]

msg to_from_val_cnt_ : 0id 0id Nat Nat -> Msg [ctor]
msg to_from_ack_ : 0id 0id Nat -> Msg [ctor]

op {_} : Configuration -> State [ctor]

op init : 0id 0id List -> State .

vars N M : Nat . var L : List . vars A B : 0id . var C : Configuration .

rl [snd] : {< A : Sender | buff: (N ; L), rec: B, cnt: M, ack-w: false > C}
=>



{(to B from A val N cnt M)
< A : Sender | buff: L, rec: B, cnt: M, ack-w: true > C} .

rl [rec] : {< B : Receiver | buff: L, snd: A, cnt: M >
(to B from A val N cnt M) C}
=>
{< B : Receiver | buff: (L ; N), snd: A, cnt: s(M) >
(to A from B ack M) C} .

rl [ack-rec] : {< A : Sender | buff: L, rec: B, cnt: M, ack-w: true >
(to A from B ack M) C}
=>
{< A : Sender | buff: L, rec: B, cnt: s(M), ack-w: false > C} .

eq init(A,B,L) = {< A : Sender | buff: L, rec: B, cnt: 0, ack-w: false >
< B : Receiver | buff: nil, snd: A, cnt: 0 >} .
endm

rew init(’a,’b,(1 ; 2 ; 3))
rew init(’a,’b,(1 ; 2 ; 3 ; 4))
rew init(’a,’b,(1 ; 2 ; 3 ; 4 ; 5))

The only differences are: (1) the buffers now are not separate objects: they are attributes of sender and receiver
objects; (2) the sender, before sending the next item in its buffer, awaits until after receiving an ack from the
receiver for the previous item; and (3) to facilitate the definition of state predicates, the entire configuration
of objects and messages in enclosed in curly braces as a term of sort State. You may want to run a few tests
cases. For example, those given in the rewrite commands after the COMM module, to get a better feeling for how
this protocol works. If you wish to see a detailed trace of the executions, you can type in Maude:

Maude> set trace on .

The point about this exercise is to increase your familiarity with parametric state predicates and their model
checking verification. Parametric state predicates are very useful for both verifying invariants with the search
command (the case in this exercise), and to perform LTL model checking of parametric properties. The key
idea is that we may be interested in verifying properties that depend on the initial state; but not for a single
initial state init, but, instead, for a parametric family of initial states, defined using and operator:

op init : S1 ... Sn -> State .

and giving appropriate equations, were the sorts S1 ... Sn are its parameter sorts. But then, some property
P, which we want to verify is an invariant for all these initial states, may also be itself parametric in the exact
same sense, i.e., be a Boolean-valued state predicate of the form:

op P : State S1 ... Sn -> Bool .

If ut ... un are ground terms of the parameter sorts S1 ... Sn, then we can model check property P as an
invariant from the initial state init(ul ... un) by failing to get any solutions for the search command:

search init(ul ... un) =>*% X:State s.t. P(X:State,ul,...,un) =/= true .
Specifically, you are asked to correctly define an (unparametric) state predicate [which is not an invariant], and

two parametric state predicates [corresponding to two invariants], whose operator declarations are given in the
COMM-PREDS module below. The state predicates are the following;:



e Enabled: a state is not a deadlock state and can therefore transition to some other state.

e In-Order (Communication). Any initial state of the form init(A,B,L) satisfies the parametric state
predicate In-Order (X:State,A,B,L) (which you are asked to define) as an invariant, where
In-Order(X:State,A,B,L) essentially states that if in state X:State L1 is the list in the buffer of the
receiver B, then the list L1 is a prefiz sublist of the list L. This means that the protocol achieves in-order-
communication in spite of being asynchronous.

e Succcess (of the Communication). Any initial state of the form init(A,B,L) satisfies the paramet-
ric state predicate Success(X:State,A,B,L) (which you are asked to define) as an invariant, where
Success(X:State,A,B,L) essentially states that either X:State is Enabled, or B holds L in its buffer.
Since this protocol is terminating, this invariant ensures that, not only it delivers data in order, but the
protocol does indeed succeed in always delivering all the data initially stored in the sender’s buffer.

You can define these predicates by giving your definition [and that of any auxiliary functions you may need]
in the following module importing COMM. You can make use the the [owise] feature in Maude to define the
false case for each predicate.

mod COMM-PREDS is
protecting COMM .

op Enabled : State -> Bool .
ops In-Order Success : State 0id 0id List -> Bool .

var MS : Msgs . var C : Configuration . wvars L L1 L2 : List .
vars AB : 0id . vars NM : Nat . var T : Bool . var S : State .

*x** include here your equational definition of Enabled(S)

*x*x include here your equational definition of In-Order(S,A,B,L)
*x** include here your equational definition of Success(S,A,B,L)
endm

After you have defined [hopefully correctly] the above state predicates, you are asked to verify in Maude
the two parametric invariants In-Order(S,A,B,L) and Success(S,A,B,L) for three initial states of the form
init(A,B,L) where A is ’a, Bis ’b, and L is, respectively: (1 ; 2 ; 3),(1 ; 2 ; 3 ; 4),and (1 ; 2 ; 3
; 45 5).

The entire template to be filled in, containing all the modules for this problem is, therefore:

fmod NAT-LIST is protecting NAT .

sort List .

subsorts Nat < List .

op nil : -> List .

op _;_ : List List -> List [assoc id: nil]
op length : List -> Nat .

var L : List .
var N : Nat .

eq length(nil) = 0 .
eq length(N ; L) = s(length(L))
endfm

o

mod COMM is protecting NAT-LIST . protecting QID .
sorts 0id Class Object Msg Msgs Att Atts Configuration State .



subsort Qid < 0id .

subsort Att < Atts . *xx Atts is set of attribute-value pairs
subsort Object < Configuration .

subsorts Msg < Msgs < Configuration .

op none : —> Msgs [ctor]

op __ : Configuration Configuration -> Configuration
[ctor config assoc comm id: none]

op __ : Msgs Msgs -> Msgs

[ctor config assoc comm id: none]
op null : -> Atts
op _,_ : Atts Atts -> Atts [ctor assoc comm id: null]

op buff:_ : List -> Att [ctor]

op snd:_ : 0id -> Att [ctor]

op rec:_ : 0id -> Att [ctor]

op cnt:_ : Nat -> Att [ctor]

op ack-w:_ : Bool -> Att [ctor]

ops Sender Receiver : -> Class [ctor]

op <_:_|_> : 0id Class Atts -> Object [ctor]

msg to_from_val_cnt_ : 0id 0id Nat Nat -> Msg [ctor]

msg to_from_ack_ : 0id 0id Nat -> Msg [ctor]
op {_} : Configuration -> State [ctor]
op init : 0id 0id List -> State .

vars NM : Nat . var L : List . vars A B : 0id . var C : Configuration .

rl [snd] : {< A : Sender | buff: (N ; L), rec: B, cnt: M, ack-w: false > C}
=>
{(to B from A val N cnt M)
< A : Sender | buff: L, rec: B, cnt: M, ack-w: true > C} .

rl [rec] : {< B : Receiver | buff: L, snd: A, cnt: M >
(to B from A val N cnt M) C}
=>
{< B : Receiver | buff: (L ; N), snd: A, cnt: s(M) >
(to A from B ack M) C} .

rl [ack-rec] : {< A : Sender | buff: L, rec: B, cnt: M, ack-w: true >
(to A from B ack M) C}
=>
{< A : Sender | buff: L, rec: B, cnt: s(M), ack-w: false > C} .

eq init(A,B,L) = {< A : Sender | buff: L, rec: B, cnt: 0, ack-w: false >
< B : Receiver | buff: nil, snd: A, cnt: 0 >} .

endm

rew init(’a,’b,(1 ; 2 ; 3))

rew init(’a,’b,(1 ; 2 ; 3 ; 4))

rew init(’a,’b,(1 ; 2 ; 3 ; 4 ; 5))

mod COMM-PREDS is
protecting COMM .

op Enabled : State -> Bool .



ops In-Order Success : State 0id 0id List -> Bool

var MS : Msgs . var C : Configuration . vars L L1 L2 : List
vars AB : 0id . vars NM : Nat . var T : Bool . var S : State .

***x include here your equational definition of Enabled(S)
x** include here your equational definition of In-Order(S,A,B,L)
*x** include here your equational definition of Success(S,A,B,L)

endm

. The following example is a simplified version of Lamport’s bakery protocol, of which several versions have been
presented in CS 476 lectures. A simple Maude specification for the case of two processes is as follows:

set include BOOL off

fmod NAT-ACU is

sort Nat

ops 0 1 : -> Nat [ctor]

op _+’_ : Nat Nat -> Nat [ctor assoc comm id: O]
endfm

mod BAKERY is
protecting NAT-ACU .

sorts Mode BState

ops sleep wait crit : -> Mode [ctor]
op <_,_,_,_> : Mode Nat Mode Nat -> BState [ctor]
op initial : -> BState

vars P Q : Mode .
vars X Y : Nat

eq initial = < sleep, O, sleep, 0 > .

rl [pl_sleep] : < sleep, X, Q, Y > => < wait, Y+’ 1, Q, Y > .
rl [pl_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 >

rl [pl_wait] : < wait, X, Q, X+’ Y > => < crit, X, Q, Y +> X > .
rl [pil_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y >

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, X +> 1 >
rl [p2_wait] P, 0, wait, Y > => < P, 0, crit, Y >
rl [p2_wait] P, X+ Y+ 1, wait, Y > => <P, X+ Y +> 1, crit, Y > .
rl [p2_crit] P, X, crit, Y > => < P, X, sleep, 0 > .
endm

AN N A

B

In this module, states are represented by terms of sort BState, which are constructed by a 4-tuple operator
<_,_,_,_>; the first two components describe the status of the first process (the mode it is currently in, and
its priority as given by the number according to which it will be served), and the last two components the
status of the second process. The rules describe how each process passes from being sleeping to waiting, from
waiting to its critical section, and then back to sleeping.

The problem, of course, is that, even in this simpler version, BAKERY is infinite-state.



We would like to verify three LTL properties about this protocol, namely:

e mutual exclusion, that is, the two processes are never simultaneously in their critical mode

e non-starvation of process 1. If process 1 is in its waiting mode infinitely often, then it will be in its critical
mode infinitely often

e non-starvation of process 2. If process 2 is in its waiting mode infinitely often, then it will be in its critical
mode infinitely often.

Since the set of states reachable from initial is infinite, we cannot use Maude’s explicit-state LTL model
checker to verify these properties. We can, however, use Maude’s Logical LTL Model Checker to verify that
these three properties hold from an even more general symbolic initial state of the form:

< sleep , X:Nat , sleep, X:Nat >
To perform this verification, you first need to equationally define state predicates 1wait, 2wait, lcrit and
2crit, corresponding to the case when process 1 (resp. process 2) is in its wait, resp. crit mode. Of course,
the equations D defining these predicates should be FVP. But if the righthand sides of all equations are either
true or false and you have specified the equations D correctly, so that they are confluent ad sufficiently
complete, they will be FVP.
To facilitate your work and the use of Maude’s Logical LTL Model Checker you just need to: (1) fill in the
remaining equations to fully define the above for predicates in an FVP manner in the template below; (2) enter
the full template into the special version of Maude running the Maude’s Logical LTL Model Checker; and (3)
give three commands of the form:

( lfmc < sleep , X:Nat , sleep, X:Nat > |= formulal ) .)

( 1fmc < sleep , X:Nat , sleep, X:Nat > |= formula2 ) .)

( 1fmc < sleep , X:Nat , sleep, X:Nat > |= formula3 ) .)
where formulai expresses in LTL property i for i = 1,2,3.

set include BOOL off

fmod NAT-ACU is

sort Nat .

ops 0 1 : -> Nat [ctor]

op _+’_ : Nat Nat -> Nat [ctor assoc comm id: O]
endfm

mod BAKERY is
protecting NAT-ACU .

sorts Mode BState .
ops sleep wait crit : -> Mode [ctor]
op <_,_,_,_> : Mode Nat Mode Nat -> BState [ctor]

op initial : -> BState .

vars P Q : Mode .
vars X Y : Nat

eq initial = < sleep, 0, sleep, 0 > .

rl [pl_sleep] : < sleep, X, Q, Y > => < wait, Y+’ 1, Q, Y > .



rl [pl_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .
rl [pl_wait] : < wait, X, Q, X +’ Y > => < crit, X, Q, Y +> X > .
rl [pl_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .

\'4

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, X +> 1 >
rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .
rl [p2_wait] : <P, X+’ Y +> 1, wait, Y > => <P, X +> Y +> 1, crit, Y > .
rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .
endm

load symbolic-checker
( mod BAKERY-PREDS is
extending SYMBOLIC-CHECKER .

protecting BAKERY .

subsort BState < State
ops lwait 2wait lcrit 2crit : -> Prop [ctor]

vars P Q : Mode .
vars X Y : Nat

eq < wait, X, Q, Y > |= 1lwait = true [variant]

***x give here the remaining equations fully defining

*x* lwait, 2wait, 1lcrit, and 2crit

*** remember to include the [variant] attribute in all equations

endm )

Detailed instructions on how to run the Maude LTL Logical Model Checker can be found in the CS 476 web
page. Furthermore, a tool tutorial/manual can be found in:

https://maude.cs.uiuc.edu/tools/1lmc/manual.pdf
The tutorial uses various examples available in:

https://maude.cs.uiuc.edu/tools/1lmc/



