Note: Answers to the exercises listed below and all Maude code should be emailed to nishant2@illinois.edu.

1. Recall that, since the readers-and-writers protocol specification discussed in Lecture 18 (slightly modified to avoid use of the built-in module NAT),

\[
\text{set include BOOL off .}
\]

\[
\text{mod R&W is}
\]

\[
\text{sorts Nat Config .}
\]

\[
\text{op 0 : -> Nat [ctor] .}
\]

\[
\text{op s : Nat -> Nat [ctor] .}
\]

\[
\text{op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers}
\]

\[
\text{vars R W : Nat .}
\]

\[
\text{rl < 0, 0 > => < 0, s(0) > .}
\]

\[
\text{rl < R, s(W) > => < R, W > .}
\]

\[
\text{rl < R, 0 > => < s(R), 0 > .}
\]

\[
\text{rl < s(R), W > => < R, W > .}
\]

\[\text{endm}\]

is infinite-state, in Lecture 18 we were only able to perform bounded model checking of the three invariants desired for this module, namely: (i) mutual exclusion, (ii) one writer, and (iii) deadlock freedom. In this problem you are asked to verify invariants (i)–(ii) by narrowing-based symbolic model checking. Problem 2 will deal with the symbolic verification of the deadlock freedom invariant.

However, symbolically verifying invariants (i)–(ii) is not entirely trivial for two reasons: (a) the initial state is \(< 0, 0 >\) and it is not entirely clear how to generalize it to a symbolic initial state, and (ii) as remarked in pg. 14 of Lecture 20, for ground terms narrowing coincides with rewriting. That is, from \(< 0, 0 >\) narrowing search would just be performing a search equivalent to the standard search command in Maude, which can only be used effectively in a bounded search manner.

Hint. There is however an alternative possibility to verify invariants (i)–(ii) by narrowing-based symbolic model checking, namely, by the method described in Appendix 2 to Lecture 20.

Caveats: (1) The Maude command to use in order to perform narrowing with folding of the narrowing tree into a graph, is the \texttt{fvu-narrow} command; it is documented in §15.6.2 of the Maude 3.2.1 manual, available at \texttt{maude-manual}. (2) recall from pg. 11 of Lecture 20 that, as explained also in the Maude 3.2.1 manual, to perform narrowing-based model checking all rules in the module must be declared with the \texttt{[narrowing]} attribute.

2. Prove that \texttt{R&W} satisfies the deadlock freedom invariant.

Hint. You may find it useful to understand Method 1 in Appendix 3 to Lecture 20.