
CS 476 Homework #11 Due 10:45am on 11/10

Note: Answers to the exercises listed below and all Maude code should be emailed to nishant2@illinois.edu.

1. In this problem you are asked to define a sorting algorithm for lists of natural numbers, not with equations,
but with (transition) rules that rewrite a list to another list with the same multiset of elements but “closer” to
the sorted version of the list. If L is the initial state, there should be a single final state, namely, the sorted
version of L. You then can just compute such a sorted version of L by typing in Maude:

rewrite L .

However, since the passing from a list L to its sorted version is a deterministic process having a single answer,
as a sanity check to test your rules, you should check that they are correct by checking that you always get a
single final state for each initial state L. To help you do that, some sample search commands have also been
included.

Write your solution by specifying the (possibly conditional) rule or rules needed to sort a list in the system
module below, so that for each list L the single final state will the its sorted version.

Note. Remark that all operators in this module are constructors. This is because no equations are used at all,
so that all terms in the module are already in normal form by the (non-existent) equations. All computations
are performed by the rule or rules that you are asked to specify, not by equations (except, perhaps, for the use
made of some equations in NAT for checking an equational condition in a rule).

Hint. A single conditional rule is enough to solve this problem.

mod SORTING is

protecting NAT .

sort List .

subsort Nat < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [ctor assoc id: nil] .

vars N M : Nat . vars L Q : List .

*** include here your rule or rules

endm

*** testing by search that your rule or rules are DETERMINISTIC (yield a single final result)

search 5 ; 4 ; 3 ; 2 ; 1 ; 0 =>! L . *** SINGLE solution should be 0 ; 1 ; 2 ; 3 ; 4 ; 5

search 3 ; 4 ; 3 ; 5 ; 1 ; 0 =>! L . *** SINGLE solution should be 0 ; 1 ; 3 ; 3 ; 4 ; 5

search 3 ; 4 ; 3 ; 5 ; 1 ; 4 =>! L . *** SINGLE solution should be 1 ; 3 ; 3 ; 4 ; 4 ; 5

search 3 ; 4 ; 3 ; 4 ; 1 ; 4 =>! L . *** SINGLE solution should be 1 ; 3 ; 3 ; 4 ; 4 ; 4

*** testing that your rules yield the correct result

rewrite 5 ; 4 ; 3 ; 2 ; 1 ; 0 . *** should be 0 ; 1 ; 2 ; 3 ; 4 ; 5

rewrite 3 ; 4 ; 3 ; 5 ; 1 ; 0 . *** should be 0 ; 1 ; 3 ; 3 ; 4 ; 5

1

rewrite 3 ; 4 ; 3 ; 5 ; 1 ; 4 . *** should be 1 ; 3 ; 3 ; 4 ; 4 ; 5

rewrite 3 ; 4 ; 3 ; 4 ; 1 ; 4 . *** should be 1 ; 3 ; 3 ; 4 ; 4 ; 4

For Extra Credit. You can earn 5 more points in Problem 1 if you correctly solve the following variant of
the above sorting problem using a different representation of the natural numbers with 0 and 1 as constructors
and with + as ACU constructor with 0 as unit element (also called “neutral” element when additive notation,
as here, is used). The point is that in this representation of numbers you can solve the problem with a single
unconditional rule. Furthermore, you do not need to define any auxiliary functions or anything : you just need
to write the appropriate rewrite rule. The key point is that, in this representation of the natural numbers, you
do not need to restrict the application of the sorting rule by checking a condition: the rule’s lefhand side can
do that thanks to the remarkable expressive power of rewriting modulo ACU .

mod SORTING-UNCONDITIONAL is

sorts Nat List .

subsort Nat < List .

ops 0 1 : -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .

op nil : -> List [ctor] .

op _;_ : List List -> List [ctor assoc id: nil] .

vars N M : Nat . vars L Q : List .

*** include here your UNCONDITIONAL rule

endm

*** testing by search that your rule is DETERMINISTIC (has a single final result)

search (1 + 1 + 1);(1 + 1) ; 1 ; 0 =>! L .

*** SINGLE solution should be 0 ; 1 ; (1 + 1);(1 + 1 + 1)

search (1 + 1 + 1);(1 + 1);(1 + 1 + 1) ; 1 ; 0 =>! L .

*** SINGLE solution should be 0 ; 1 ; (1 + 1);(1 + 1 + 1);(1 + 1 + 1)

*** testing that your rule yields the correct result

rewrite (1 + 1 + 1);(1 + 1) ; 1 ; 0 . *** should be 0 ; 1 ; (1 + 1);(1 + 1 + 1)

rewrite (1 + 1 + 1);(1 + 1);(1 + 1 + 1) ; 1 ; 0 .

*** should be 0 ; 1 ; (1 + 1);(1 + 1 + 1);(1 + 1 + 1)

These two, closely related examples illustrate the expressiveness of concurrent rewriting as a general semantic
framework for concurrency: the single sorting rule (conditional in the first case, and unconditional in the second
representation) can be applied in parallel in different places of a list to achieve the parallel sorting of the list.

2. Consider the following dining philosophers example, that you can retrieve from the course web page:

fmod NAT/4 is

protecting NAT .

sort Nat/4 .

op [_] : Nat -> Nat/4 .

op _+_ : Nat/4 Nat/4 -> Nat/4 .

op _*_ : Nat/4 Nat/4 -> Nat/4 .

op p : Nat/4 -> Nat/4 .

vars N M : Nat .

ceq [N] = [N rem 4] if N >= 4 .

2

eq [N] + [M] = [N + M] .

eq [N] * [M] = [N * M] .

ceq p([0]) = [N] if s(N) := 4 .

ceq p([s(N)]) = [N] if N < 4 .

endfm

mod DIN-PHIL is

protecting NAT/4 .

sorts Oid Cid Attribute AttributeSet Configuration Object Msg .

sorts Phil Mode .

subsort Nat/4 < Oid .

subsort Attribute < AttributeSet .

subsort Object < Configuration .

subsort Msg < Configuration .

subsort Phil < Cid .

op __ : Configuration Configuration -> Configuration

[assoc comm id: none] .

op _‘,_ : AttributeSet AttributeSet -> AttributeSet

[assoc comm id: null] .

op null : -> AttributeSet .

op none : -> Configuration .

op mode‘:_ : Mode -> Attribute [gather (&)] .

op holds‘:_ : Configuration -> Attribute [gather (&)] .

op <_:_|_> : Oid Cid AttributeSet -> Object .

op Phil : -> Phil .

ops t h e : -> Mode .

op chop : Nat/4 Nat/4 -> Msg [comm] .

op init : -> Configuration .

op make-init : Nat/4 -> Configuration .

vars N M K : Nat .

var C : Configuration .

ceq init = make-init([N]) if s(N) := 4 .

ceq make-init([s(N)])

= < [s(N)] : Phil | mode : t , holds : none > make-init([N]) (chop([s(N)],[N]))

if N < 4 .

ceq make-init([0]) =

< [0] : Phil | mode : t , holds : none > chop([0],[N]) if s(N) := 4 .

rl [t2h] : < [N] : Phil | mode : t , holds : none > =>

< [N] : Phil | mode : h , holds : none > .

crl [pickl] : < [N] : Phil | mode : h , holds : none > chop([N],[M])

=> < [N] : Phil | mode : h , holds : chop([N],[M]) > if [M] = [s(N)] .

rl [pickr] : < [N] : Phil | mode : h , holds : chop([N],[M]) >

chop([N],[K]) =>

< [N] : Phil | mode : h , holds : chop([N],[M]) chop([N],[K]) > .

rl [h2e] : < [N] : Phil | mode : h , holds : chop([N],[M])

chop([N],[K]) > => < [N] : Phil | mode : e ,

holds : chop([N],[M]) chop([N],[K]) > .

rl [e2t] : < [N] : Phil | mode : e , holds : chop([N],[M])

chop([N],[K]) > => chop([N],[M]) chop([N],[K])

< [N] : Phil | mode : t , holds : none > .

3

endm

There are four philosophers, that you can imagine eating in a circular table. Initially they are all in thinking
mode (t), but they can go into hungry mode (h), and after picking the left and right chopsticks (they eat
Chinese food) into eating mode (e), and then can return to thinking.

The identities of the philosophers are naturals modulo 4, with contiguous philosophers arranged in increasing
order from left to right (but wrapping around to 0 at 4). The chopsticks are numbered, with each chopstick
indicating the two philosophers next to it.

Prove, by giving appropriate search commands from the initial state init, the following properties:

• (contiguous mutual exclusion): it is never the case that two contiguous philosophers are eating simulta-
neously.

• (mutual non-exclusion): it is however possible for two philosophers to eat simultaneously.

• (three exclusion): it is impossible for three philosophers to eat simultaneously.

• (deadlock) the system can deadlock.

4

