
CS 476 Homework #10 Due 10:45am on 11/3

Note: Answers to the exercises listed below should be given in typewritten form (latex formatting preferred) by
the deadline mentioned above. You should email your answers and also all the Maude code and all screenshots of
your tool interactions to nishant@illinois.edu.

1. Consider the following module PEANO+RxR defining addition and multiplication of numbers in Peano notation:

set include BOOL off .

fmod PEANO+RxR is

sort Nat .

op 0 : -> Nat [ctor metadata "0"] .

op s : Nat -> Nat [ctor metadata "1"] .

op _+_ : Nat Nat -> Nat [metadata "2"] .

op _*_ : Nat Nat -> Nat [metadata "3"] .

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

eq N * 0 = 0 .

eq N * s(M) = N + (N * M) .

endfm

You are asked to prove, using the NuITP, that multiplication is both left- and right-distributive over addition,
i.e., the two inductive theorems:

Z:Nat * (X:Nat + Y:Nat) = (Z:Nat * X:Nat) + (Z:Nat * Y:Nat)

(X:Nat + Y:Nat) * Z:Nat = (X:Nat * Z:Nat) + (Y:Nat * Z:Nat)

As pointed out in Lecture 16, you can use the NuITP in a dumb way, or in a smart way, requiring much fewer
proof steps. Since you can use any results already proved about natural number addition, such as that + is
AC as proved in Lecture 16, and since proving properties about multiplication will be much easier using the
knowledge that + is AC, the first things that a smart user of the NuITP would do would be to use the program
equivalence PEANO+RxR ≡sem PEANO+ACxR to begin instead the proof with the equivalent program:

fmod PEANO+ACxR is

sort Nat .

op 0 : -> Nat [ctor metadata "0"] .

op s : Nat -> Nat [ctor metadata "1"] .

op _+_ : Nat Nat -> Nat [assoc comm metadata "2"] .

op _*_ : Nat Nat -> Nat [metadata "3"] .

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .
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eq N * 0 = 0 .

eq N * s(M) = N + (N * M) .

endfm

where the fact of + being AC has been internalized. If you have understood well enough the ideas in Lecture
16, you should be able to give a quite short proof of left- and right-distributivity: two applications of gsi! are
enough if the appropriate choices of auxiliary properties and internalization are made. You can earn an extra
credit of 5 extra points (that is, you can score a maximum of 15 points instead of a maximum of 10 on this
problem) if you manage to prove left- and right-distributivity with just two applications of gsi!.

Additional Extra Credit. You can earn 5 more extra points on this problem if you can prove that multipli-
cation is AC. Internalizing previously proved results about multiplication, this has also a short, “smart” proof:
a single application of gsi! followed by a single application of eq! are enough to prove multiplication AC.

Advice. A more robust new alpha version of the NuITP (Alpha 14) is now available on the course web page.
You wil minimize the chances of getting some strange behavior in the tool by using this latest version.

2. Consider the following system module, whose purpose is to generate all permutations of a list L as the final
states reachable by rewriting with the rules in the module the initial state perm(L). Note that all functions in
the module are constructors. In particular, perm is also a constructor term. This is because the permutations
of L are not computed by “evaluating” perm(L) with some equations, but by changing instead the initial state
perm(L) to other states by rewrite rules.

You are asked to specify the rewrite rules (two rules are actually enough) that will make it the case that the
final states reachable from perm(L) are exactly the permutations of L. Some sample search computations and
the number of solutions you should get in each case are included for your convenience. Note that if a list has
length n and all its elements are different, then there are n! permutations of it.

*** if perm(L) is the initial state, then each final state is a permutations of L

mod PERMUTATIONS is protecting QID .

sort List .

subsort Qid < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [ctor assoc id: nil] .

op perm : List -> List [ctor] . *** perm(L) initial state, final states: all L’s permutations

var I : Qid . vars L Q : List .

*** define here the transitions from perm(L) by some rules, so that the final

*** states reachable from perm(L) are exactly the permutations of L

endm

search perm(nil) =>! L . *** 1 solution

search perm(’a) =>! L . *** 1 solution

search perm(’a ; ’b) =>! L . *** 2 solutions

search perm(’a ; ’b ; ’c) =>! L . *** 6 solutions

search perm(’a ; ’b ; ’c ; ’d) =>! L . *** 24 solutions

search perm(’a ; ’b ; ’c ; ’d ; ’d) =>! L . *** 60 solutions

search perm(’a ; ’b ; ’c ; ’d ; ’e) =>! L . *** 120 solutions
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