LECTURE 24: Ruzz0’s THEOREM

Date: November 16, 2023.

Boolean Circuits: A Boolean circuit C with n inputs is a directed acyclic graph with n vertices of in-degree
0, a single vertex of out-degree 0, and whose internal vertices are all labeled with A, V, or =. A vertex labeled
with A, V, or = computes the logical and, or, or negation of its inputs, respectively. We assume that vertices
labeled with A or V have two children and vertices labeled with — have one child. On input z € {0,1}", the
output of C'is given by the value of the vertex of out-degree 0 and is denoted by C(z).

The size of C' is the number of gates in C. The depth of C is the length of the longest path from an input
vertex to the output vertex.

Solving Problems using Families of Circuits: A family of circuits {Cp}nen of size S(n) is a collection
of Boolean circuits where for all n, C,, has n inputs and size at most S (n). A language L is in SIZE(S(n)) if
there is a family of Boolean circuits {Cy, }nen of size S(n) such that for all z € {0,1}", z € L iff Cp(z) = 1.

Uniform Circuit Classes: A family of Boolean circuits {Cr}nen is logspace-uniform if there is a logspace-
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NC: A language L is in NC" if there exists a logspace uniform family of circuits {Chr}nen where C,, has
poly(n) size, O((logn)*) depth, and for all z € {0,1}"*, z € L iff Cr(z) = 1.
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Proposition 1. Let A and B be n x n Boolean matrices. There is a logspace-uniform circuit family of
poly(n) size and O(logn) depth that computes the Boolean matriz product AB.

Reflexive and Transitive Relations: Recall that a relation on a set S is a set RCSxS Wesay R
is reflexive if for all a € S, we have (a,a) € R. We say R is transitive if for all a,b,c € 3, (a, b) € R and
(b,c) € R implies (a,c) € R.

Reflexive-Transitive Closure: The reflezive transitive closure R* of R is the smallest reflexive and
transitive relation containing R. Alternatively, if Rl is a reflexive transitive relation and R C R!, then
R* C Rt

Proposition 2. Let S be a set of size n and let R C Sx S be a relation on S. There exists a logspace-uniform
circuit family of poly(n) size and O(log? n) depth that computes the reflexive transitive closure R* of R.

|

Bounding Time, Space, and Alternations: The class STA(S(n), T(n), A(n)) is the class of all languages
accepted by a Turing machine which is simultaneously S (n)-space-bounded, T'(n)-time-bounded, and uses
at most A(n) alternations. A « in a slot means no bound is imposed on that resource. We write Y A(n) or
IIA(n) to indicate that the alternations should start with V or A, respectively.
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We can establish the following relations.
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