LECTURE 24: RUZZO'S THEOREM

Date: November 16, 2023.

All NOT gates are only applied to input

Boolean Circuits: A Boolean circuit C with n inputs is a directed acyclic graph with n vertices of in-degree 0, a single vertex of out-degree 0, and whose internal vertices are all labeled with \land , \lor , or \neg . A vertex labeled with \land , \lor , or \neg computes the logical and, or, or negation of its inputs, respectively. We assume that vertices labeled with \land or \lor have two children and vertices labeled with \neg have one child. On input $x \in \{0,1\}^n$, the output of C is given by the value of the vertex of out-degree 0 and is denoted by C(x).

The size of C is the number of gates in C. The depth of C is the length of the longest path from an input vertex to the output vertex.

Solving Problems using Families of Circuits: A family of circuits $\{C_n\}_{n\in\mathbb{N}}$ of size S(n) is a collection of Boolean circuits where for all n, C_n has n inputs and size at most S(n). A language L is in SIZE(S(n)) if there is a family of Boolean circuits $\{C_n\}_{n\in\mathbb{N}}$ of size S(n) such that for all $x\in\{0,1\}^n$, $x\in L$ iff $C_n(x)=1$.

Uniform Circuit Classes: A family of Boolean circuits $\{C_n\}_{n\in\mathbb{N}}$ is logspace-uniform if there is a logspace-bounded Turing machine that outputs the circuit C_n on input 0^n . \rightarrow 0 years of the gradient of the edges.

NC: A language L is in NCⁱ if there exists a logspace uniform family of circuits $\{C_n\}_{n\in\mathbb{N}}$ where C_n has poly(n) size, $O((\log n)^i)$ depth, and for all $x \in \{0,1\}^n$, $x \in L$ iff $C_n(x) = 1$.

$$NC = \bigcup_{i \geq 0} NC^i$$
.

Proposition 1. Let A and B be $n \times n$ Boolean matrices. There is a logspace-uniform circuit family of poly(n) size and $O(\log n)$ depth that computes the Boolean matrix product AB.

Reflexive and Transitive Relations: Recall that a relation on a set S is a set $R \subseteq S \times S$. We say R is reflexive if for all $a \in S$, we have $(a, a) \in R$. We say R is transitive if for all $a, b, c \in S$, $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$.

Reflexive-Transitive Closure: The reflexive transitive closure R^* of R is the smallest reflexive and transitive relation containing R. Alternatively, if R^{\dagger} is a reflexive transitive relation and $R \subseteq R^{\dagger}$, then $R^* \subseteq R^{\dagger}$.

Proposition 2. Let S be a set of size n and let $R \subseteq S \times S$ be a relation on S. There exists a logspace-uniform circuit family of poly(n) size and $O(\log^2 n)$ depth that computes the reflexive transitive closure R^* of R.

Bounding Time, Space, and Alternations: The class STA(S(n), T(n), A(n)) is the class of all languages accepted by a Turing machine which is simultaneously S(n)-space-bounded, T(n)-time-bounded, and uses at most A(n) alternations. A * in a slot means no bound is imposed on that resource. We write $\Sigma A(n)$ or $\Pi A(n)$ to indicate that the alternations should start with \vee or \wedge , respectively.

Convention: O-alternations - ATM is deterministic

We can establish the following relations.

```
NL = STA (log n, *, Zi)
                                L = STA(\log n, *, 0)
                                                               ≤ STA(logn, *, (logn)oti))
                               NL = STA(\log n, *, \Sigma 1)
                                P = STA(\log n, *, *) = STA(*, n^{O(1)}, 0)
                               NP = STA(*, n^{O(1)}, \Sigma 1)
                                                                SSTA(bgn, *, *)
                                \Sigma_k^{\mathsf{p}} = \mathrm{STA}(*, n^{O(1)}, \Sigma k)
                               \Pi_k^{\mathsf{p}} = \mathrm{STA}(*, n^{O(1)}, \Pi k)
                           PSPACE = STA(*, n^{O(1)}, *) = STA(n^{O(1)}, *, 0)
                                                                NL G NG GP
      Theorem 3 (Ruzzo '81). NC = STA(\log n, *, (\log n)^{O(1)}).
  (=) AENC. I {Cn3nein where size(Cn) \left\( \text{boly}(n)\) and difth (Cn) \left\( \text{frly(lign})\)
         and Ecn3ner polices A. and Ecn3 is logspace uniform
        Good: Find ATM M that solves A.
                  Gwen 2
                       -> Computing C/21(2)
    Assume & Reduced to computing value of gate of Gin on input se.
                   - Name of gate d is binary string of length O(log n)
                        (Stored logspace).
                    - Compute the type of gate d -> Run the logspore
                                 TM that computes Cini.
                    (a) If d is an input gate then value is the appropriate
  Spore ruded
= memory to
remember d
                        bit q e.
                    (b) If d is a NOT gate then find the input wire to d
                         and flip the appropriate bit of x.
  memory to
                    (c) If die 1 gate (V gate) then we find the two
   run TM
                         incoming wires into die, (c,d), (c',d)
                         then using 1-branching (V-branching) compute
                         & value of c and value of c'.
     # atternations = depth (Cn) \le \text{foly(log n)}
```

