LECTURE 11: HARDNESS, COMPLETENESS AND RICE'S THEOREM

Date: September 28, 2023.

Important Decision Problems:

1.
$$K = \{\langle M \rangle \mid \langle M \rangle \in \mathbf{L}(M)\}\$$

2. MP =
$$\{\langle M \rangle \# \langle x \rangle \mid x \in \mathbf{L}(M)\}$$

3. HP =
$$\{\langle M \rangle \# \langle x \rangle \mid M \text{ halts on } x\}$$

4. EMPTY =
$$\{\langle M \rangle \mid \mathbf{L}(M) = \emptyset\}$$

5. FIN =
$$\{\langle M \rangle \mid \mathbf{L}(M) \text{ is a finite set}\}$$

Recursive/Recursively Enumerable Languages: We can define the following collections of decision problems.

1. RE =
$$\{L \mid \exists M. \ L = \mathbf{L}(M)\}.$$

2. REC =
$$\{L \mid \exists M. M \text{ decides } L\}.$$

3.
$$\text{co-RE} = \{L \mid \overline{L} \in \text{RE}\} + \overline{RE}$$
 MPE coRE

RE 1 coré = REC MPE coré equivalent

Proposition 1. 1. $L \in \text{REC } iff \{L, \overline{L}\} \subseteq \text{RE}.$

2.
$$\overline{K} \notin RE$$
.

3.
$$MP \in RE$$
.

Computable Functions: A function $f: \Sigma^* \to \Sigma^*$ is computable if there is total TM M such that on input x, M halts with f(x) written on its tape.

Reductions: For $A, B \subseteq \Sigma^*$, we say A many-one reduces to B (denoted $A \leq_m B$) if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that

$$x \in A \text{ iff } f(x) \in B.$$

We often drop "many-one" and just say A reduces to B.

Proposition 2. 1. If $A \leq_m B$ and B is recursively enumerable (recursive) then A is recursively enumerable (recursive).

2. If
$$A \leq_m B$$
 then $\overline{A} \leq_m \overline{B}$.

3. If
$$A \leq_m B$$
 and $B \leq_m C$ then $A \leq_m C$.

Proposition 3. 1. $K \leq_m MP$

2. MP
$$\leq_m$$
 HP

Problem 1. Prove that $\overline{K} \leq_m EMPTY$. EMPTY

<m7 ~> <m'> ≤m'> ≤EMPTY = L(M') = p M: Input or

ZM7 & L(M') = \$ = > < m> < EMPTY Run M on < M7</pre>

<M7 & L(M) => L(M) = Z*> <M7 & EMPTY If M accepts
return accepts

f is compertable

else return rijects

EMPTY & R.E

EMPTY & RE

(3 KM7 | L(M) + \$3

Problem 2. Prove that $\overline{K} \leq_m FIN$ and $\overline{K} \leq_m \overline{FIN}$. $\overrightarrow{FIN} \notin RE \cup GRE$ $\overline{K} \notin FIN \text{ because } C$

E EmfIN because same reduction as R EEMPTY

K of FIN <m7 <m7 & S.t. <m7 & K iff <m'7 & FIN

<M7\$L(m) if L(m') is infinite.

\[
\lambda M \neq L(m) \rightarrow \forall M \quad \text{ Input \sec.} \\
\text{Run M}
\]
\[
\text{L(m')} = \text{\forall m \text{ don \text{ Any}} \\
\text{Y M \text{ doesn't half on \text{ Any}} \\
\text{3f M \text{ a}}
\]

Run M on LM7 for |21 steps If M acapts Then

The state of the section of the

⇒ <M'> ∈ FIN

Definition 1. A language L is RE-hard (co-RE-hard) if for every $A \in RE$ ($A \in co-RE$), $A \leq_m L$. A language L is RE-complete (co-RE-complete) if $L \in RE$ ($L \in co-RE$) and L is RE-hard (co-RE-hard).

Problem 3. Prove that MP is RE-complete.

MPERE because of universal TM. To prove: FAGRE, ASM MP. AGRE, FTM M s.t. A=L(M). f(n) = <M>#x n GA (n G L(M) () <M7#n EMP

Problem 4. Prove that HP is RE-complete.

HPERE: On input <M7#2, run Monn and accept if M halto. HPERE-hord: YAERE, A = m HP.

MP Sm HP. + AERE, ASM MP.

> HAERE A EMHP.

Proposition: 96 AEmB and A is RE-hard (A is coRE-hord) then B is RE-hard (io RE-hard)

Problem 5. If L is RE-hard then $L \notin REC$.

Lis RE hard. (HP is RE-hard). HPERE HPEML, LAREC because HPAREC.

Problem 6. If L is RE-hard then \overline{L} is co-RE-hard.

Definition 2. A property of languages is a set of languages. We say a language L satisfies a property \mathbb{P} if $L \in \mathbb{P}$.

• For a property $\mathbb P$ of languages, define $L_{\mathbb P}=\{\langle M\rangle\,|\,\mathbf L(M)\in\mathbb P\}.$ $L_{\mathsf{PFIN}}=\mathsf{FIN}=\mathsf{FIN}$

Problem 7. Which of the following languages are "properties of languages"?

- 1. REG = $\{\langle M \rangle \mid \mathbf{L}(M) \text{ is regular}\}.$
- 2. $T_{>32} = \{\langle M \rangle \mid M \text{ has at least } 32 \text{ transitions} \}$
- 3. $L^1_{odd} = \{\langle M \rangle \mid M \text{ has an odd number of states}\}$
- 4. $L^2_{odd} = \{\langle M \rangle \mid \exists N. \ N \text{ has an odd number of states and } \mathbf{L}(M) = \mathbf{L}(N)\}$

Definition 3. A property \mathbb{P} is **trivial** if either $L_{\mathbb{P}} = \emptyset$ or $L_{\mathbb{P}} = \{0, 1\}^*$

• If \mathbb{P} is trivial then $L_{\mathbb{P}}$ is decidable.

Theorem 4 (Rice). If \mathbb{P} is non-trivial then $L_{\mathbb{P}}$ is undecidable.