LECTURE 11: HARDNESS, COMPLETENESS AND RICE’S THEOREM

Date: September 28, 2023.

Important Decision Problems:
1. K = {(M)| (M) € L(M)}
2. MP = {(M)#(z) | = € L(M)}
3. HP = {(M)#(z) | M halts on z}
4. EMPTY = {(M) | L(M) = 0}
5. FIN = {(M) | L(M) is a finite set}
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Recursive/Recursively Enumerable Languages: We can define the following collections of decision
problems.

1. RE={L|3M. L =L(M)}. BE N ok =REC
2. REC = {L |3M. M decides L}.

3. coRE={L|T e RE}-?.L. RE Mre coKE/ equbin
Proposition 1. 1. L € REC iff {L, T} C RE.

2. K ¢ RE.

3. MP € RE.

Computable Functions: A function f : ¥* — I* is computable if there is total TM M such that on
input =, M halts with f(z) written on its tape.

Reductions: For A, B C ¥*, we say A many-one reduces to B (denoted A <,,, B) if there is a computable
function f : ¥* — ¥* such that
ze Aiff f(z)e B

We often drop “many-one” and just say A reduces to B.

Proposition 2. 1. If A <, B and B is recursively enumerable (recursive) then A is recursively enu-
merable (recursive).

2. IfA <,, Bthen 4 <,, B.

3 IfA <, Band B <,, C then A <,,, C.
Proposition 3. 1. K <,, MP

2. MP <, HP



Problem 1. Prove that K <,, EMPTY.
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Problem 2. Prove that K <,, FIN and K <,, FIN. "l FIN 4,12&
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Definition 1. A language L is RE-hard (co-RE-hard) if for every A € RE (A € co-RE), A <,, L. A
language L is RE-complete (co-RE-complete) if L € RE (L € co-RE) and L is RE-hard (co-RE-hard).

Problem 3. Prove that MP is RE-complete.
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Problem 4. Prove that HP is RE-complete. - | ( (;
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Problem 5. If L is RE-hard then L ¢ REC.

Lin RE had- (BP & Re-hend) HPeRe
HP Loy 1 ; L41§e(} becomoe HEP EREC.

Problem 6. If L is RE-hard then L is co-RE-hard.
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Definition 2. A property of languages is a set of languages. We say a language L satisfies a property P

o For a property P of languages, define Lp = {(M) | L(M) € P}. L {l N
Gw ~

Problem 7. Which of the following languages are “properties of languages”?
1. REG = {(M) | L(M) is regular}.

2. Ts3z = {(M) | M has at least 32 transitions}
3. L%,y = {(M)| M has an odd number of states}
4. L2, = {(M)|3N. N has an odd number of states and L(}M) = L(N)}

Definition 3. A property P is trivial if either Lp = @ or Lp = {0,1}*
e If P is trivial then Lp is decidable.

Theorem 4 (Rice). If P is non-trivial then Lp is undecidable.
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