Lecture 3: Kleene's Theorem and Closure Properties

Date: August 29, 2023.

Theorem 1. For any two DFAs, M_1 and M_2 , there is a DFA M such that $L(M) = L(M_1) \cup L(M_2)$. $M_1 = (Q_1, \Xi, S_1, S_1, F_1)$ $L_1 = L(M_1)$ $L_1 \cup L_2$: Given infant W. $M_2 = (Q_2, \Xi, S_2, S_2, F_2)$ $L_2 = L(M_2)$ Answer Yes if $W \in L_1 \cup L_2$ if $W \in L_2$ if $W \in L_1 \cup L_2$ if $W \in L_2 \cup U \in L_2$ if $W \in L_1 \cup L_2$ if $W \in L_2 \cup U \in L_2$ if $W \in L_1 \cup L_2$ if $W \in L_2 \cup U \in L_2$ if $W \in L_1 \cup L_2$ if $W \in L_2 \cup U \in L_2$ if $W \in L_1 \cup L_2$ if $W \in L_1$

NFA with ϵ -transitions is a NFA that can take change its state without reading an input symbol. Transitions taken without reading an input symbol are called " ϵ -transitions". Formally, it is a tuple $N=(Q,\Sigma,\Delta,S,F)$ where Q,Σ,S , and F are the states, input alphabet, set of start states and final states (as for NFAs) and the transition function $\Delta: Q\times (\Sigma\cup\{\epsilon\})\to 2^Q$.

A run of N on input x is a sequence $a_1, a_2, \dots a_n$ and a sequence of states $q_0, q_1, \dots q_n$ such that (a) $a_i \in \Sigma \cup \{\epsilon\}$ for each i, (b) $x = a_1 a_2 \cdots a_n$, (c) $q_0 \in S$, and (d) $q_{i+1} \in \Delta(q_i, a_i)$ for every $i \geq 0$. An accepting run is one where $q_n \in F$. And an input x is accepted if N has some accepting run on x. L(N) is the collection of all strings accepted by N.

Theorem 2. For every NFA with ϵ -transitions N, there is an NFA M such that $\mathbf{L}(N) = \mathbf{L}(M)$.

Theorem 3. For any two NFAs M_1, M_2

1. there is an NFA with ϵ -transitions N such that $\mathbf{L}(N) = \mathbf{L}(M_1)\mathbf{L}(M_2)$, and

2. there is an NFA with ϵ -transitions N such that $L(N) = (L(M_1))^*$.

M1= (Q1, E, D1, S1, F1) M2= (025, 02, 52, F2) $L_1 = L(M_1)$, $L_2(M_2)$

LILZ: Input W

Li: Input w. Ju, v. uel, & VELZ Ju,, uz. un. u, 42. 4n=W +u; €L,

MI

Gues where to divide the string into 2 parts and chuck that the first part EL, & secon part 662.

Theorem 4 (Kleene). A language is regular if and only if it is recognized by a DFA (NFA, UFA, 2DFA).

(=>) Regular languages are inductively built from [\$, {e3, {a3}} voing contationation, union and Kleene Electric.

F NFA with 6- transitions that solves my regular.

(Proof Lecture 9 of the book.

Homomorphism: A function $h: \Sigma^* \to \Gamma^*$ is a homomorphism if and only if $h(\epsilon) = \epsilon$, and for every $x, y \in \Sigma^*, h(xy) = h(x)h(y).$

Proposition 5. Consider homomorphisms $h_1, h_2 : \Sigma^* \to \Gamma^*$. $h_1 = h_2$ if and only if for all $a \in \Sigma$,

(=) Obvious

(Assume h, (n) = h2(n) + a & E. Good: Brove tw & Et h, (w) = h2(w) By induction on [N].

 $h_1(u \cdot a) = h_1(u) \cdot h_1(a) = h_2(u) h_2(a) = h_2(u a)$

Homomorphic and Inverse Homomorphic Images: Let $h: \Sigma^* \to \Gamma^*$ be a homomorphism, $A \subseteq \Sigma^*$, and $B \subseteq \Gamma^*$. Then,

$$h(A) = \{h(w) \mid w \in A\}$$

 $h^{-1}(B) = \{w \mid h(w) \in B\}$

Example: Let $\Sigma = \{0,1\}$ and $\overline{\Sigma} = \{\overline{0},\overline{1}\}$. Consider homomorphisms unbar and rembar defined as

1. $unbar(\overline{10}10) = 1010$ $rembar(\overline{10}10) = 10$

$$2. \ \operatorname{unbar}(\Sigma^*\overline{11}\Sigma^*) = \mathbf{Z^*} \ \mathsf{II} \mathbf{Z^*}$$

$$\operatorname{rembar}(\Sigma^*\overline{11}\Sigma^*) = \mathbf{Z}^*$$

3.
$$unbar^{-1}(\{10\}) = \begin{cases} 10, 10, 10, 10 \end{cases}$$

4. $rembar^{-1}(\{10\}) = \begin{cases} 2 & 12 \end{cases}$

4.
$$rembar^{-1}(\{10\}) = \sum_{k=1}^{k} \sum_{k=0}^{k} \sum_{k=1}^{k} \sum_{k=0}^{k} \sum_{k=1}^{k} \sum_{k=0}^{k} \sum_{k=1}^{k} \sum_{k=1}^{k} \sum_{k=0}^{k} \sum_{k=1}^{k} \sum_{k=$$

Theorem 6. Regular languages are closed under both homomorphic and inverse homomorphic images.

If Lie regular and his homomorphism then h(L) & h'(L) are regular.