LECTURE 1: DECISION PROBLEMS AND REGULAR LANGUAGES

Date: August 22, 2023.

Decision Problem is a computational problem that expects a Boolean answer on each input.

L⊆Inputs (Determine of WEL.

JWEL. $f: \mathsf{Inputs} \to \{ \top, \bot \}$ Inputs encoded as strings over some set of symbols.

Strings:

- 1. An alphabet is a finite set of symbols. For example $\Sigma = \{0, 1\}, \Sigma = \{a, b, c, \dots, z\},$ $\Sigma = \{\langle \text{movefcrward} \rangle, \langle \text{moveback} \rangle \}$ are alphabets.
- 2. A string/word over Σ is a finite sequence of symbols over Σ . For example, '0101001', 'string', $\langle \text{moveback} \rangle \langle \text{rotate 90} \rangle$
- 3. ϵ is the empty string.
- 4. The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3, $|\epsilon| = 0$, $|\langle \text{moveback} \rangle \langle \text{rotate } 90 \rangle| = 2$.
- 5. Σ^* is the set of all strings over Σ ; $\Sigma^n = \{w \in \Sigma^* \mid |w| = n\}$
- 6. Concatenation of two strings x and y, denoted either $x \cdot y$ or simply xy, is the unique string containing the symbols of x in order, followed by the symbols in y in order.
- the symbols of x in order, followed by the symbols in y in order. $x = \{0, y = 0\}$ $y = \{0, y = 0\}$ 7. y is a substring of w if there are strings x, z such that $w = x \cdot y \cdot z$. If $x = \epsilon$ then y is a prefix of w. If $z = \epsilon$ then y is a suffix of w.

Language over Σ is a set $L \subseteq \Sigma^*$. Examples include $\{\epsilon\}$, $\{w \mid |w| > 5\}$.

• For languages $A, B \subseteq \Sigma^*$, the concatenation of A and B is

$$AB = A \cdot B = \{ u \cdot v \mid u \in A \text{ and } v \in B \}$$

- For languages $A, B \subseteq \Sigma^*$, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$.
- For $A \subseteq \Sigma^*$, the **complement** of A is $\overline{A} = \Sigma^* \setminus A$.

Powers and Kleene Closure: For a language $L \subseteq \Sigma^*$ and $n \in \mathbb{N}$, define L^n inductively as follows.

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L_{\bullet}(L^{n-1}) & \text{if } n > 0 \end{cases}$$

And define $L^* = \bigcup_{n \geq 0} L^n$, and $L^+ = \bigcup_{n \geq 1} L^n$.

Alternatively, L^n set of all strings formed by concatenating n strings from L, L^* is the set of all strings formed by concatenating some (finite) number of strings from L.

Problem 1. Answer the following questions taking $\Sigma = \{0, 1\}$.

- 1. What is Σ^0 ? $\{\epsilon\}$
- 2. How many elements are there in Σ^3 ? $\left| \begin{cases} 000, 001, \dots \\ 111 \end{cases} \right| = 2^3 = 8$.
- 3. How many elements are there in Σ^n ?
- 4. For what values of n, is $\Sigma^n \subseteq \Sigma^{n+1}$? Never. $\Xi^2 = \frac{2}{3}$ 00,01,10,11 $\frac{3}{3}$
- 5. For what values of n, is $\Sigma^n \subseteq \Sigma^*$? Aways
- 6. Let u be an arbitrary string Σ^* . What is $\epsilon \cdot u$? What is $u \cdot \epsilon$? $\epsilon \cdot u = u \cdot \epsilon = u$.

Problem 2. Consider languages over $\Sigma = \{0,1\}$.

1. What is \emptyset^0 ? $\{\varepsilon\}$ 2. Let $L \subseteq \Sigma^*$. What is $|L^*|$? Is it finite? Infinite? $|L| = \{\varepsilon\}$ $|L^*| = \{\varepsilon\} = 1$ $|L^*| = \{\varepsilon\} = 1$ $|L^*| = \{\varepsilon\} = 1$ In all other cases $|L^*|$ in finite. \ 3. What is \emptyset^+ , $\{\epsilon\}^+$? $\phi^+ = \emptyset$, $\{\epsilon\}^+ = \{\epsilon\}$.

For set A, |A| = # elements in A.

Regular Languages over alphabet Σ are inductively defined as follows.

- Ø is a regular language
- $\{\epsilon\}$ is a regular language
- $\{a\}$ is a regular language for every $a \in \Sigma$
- If A, B are regular languages then $A \cup B$ is regular
- If A, B are regular then AB is regular
- If A is regular then A^* is regular

L(a) = {a}

L((21)) = (L(11))*

Regular Expression Conventions: To avoid excessive use of parenthesis, the following notational convention will be adopted.

- Precedence order: *, •, +. For example $r + s^*t$ denotes $(r + ((s^*)t))$
- Associativity: r + s + t = ((r + s) + t) = (r + (s + t)) and rst = ((rs)t) = (r(st)).

\$: Given Input w Answer no.

Problem 3. Prove the following statements.

- 1. For any $w \in \Sigma^*$, $L = \{w\}$ is a regular language.
- 2. For any finite set $L \subseteq \Sigma^*$, L is regular.
- 3. The set of all strings Σ^* is regular.

Let $W = a_1 a_2 ... a_n$ ($a_i \in \Sigma$) $\{w\} = \{a_1\} \{a_2\} \{a_3\} -.. \{a_n\}$.

> tw. \{\gequation \text{is regular language.} \Rightarrow \text{tn. |w|=n, \{\gequation \text{is regular language.}}}

Prove by induction on |w|.

Base Gae: n=0. \{\xi\} is regular language. (by difu)

Ind typ: Assume the <n, tw. |w|=k, \{\sigma\gequation \text{is regular.}}

((A B) C) = (A(BC))

Ind Stip: $W=a\cdot u$, |u|=n-1 and $a\in \Sigma$.

regular & Gregular (ind hyp)

LE Et if [Uio finite io rigular. by induction on [L].

Et is regular because & is Regular (by 2) and & is khene chowned of a regular lenguages.

Problem 4. Describe the following regular expressions in English.

- 1. $(0+1)^*$
- 2. 00
- 3. $0^* + (0^*10^*10^*10^*)^*$
- 4. (0+1)*001(0+1)*
- 5. $(10)^* + (01)^* + 0(10)^* + 1(01)^*$
- 6. $(\epsilon + 1)(01)^*(\epsilon + 0)$
- 7. $(0 + \epsilon)(1 + 10)^*$

Problem 5. Describe the following languages as a regular expression.

- 1. All binary strings that have 00 as a substring
- 2. All binary strings such that the third character from the end is 1
- 3. All binary strings that have 00 as a substring but do not contain 011 as a substring