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Chapter 0

Logic over Structures: A Single Known
Structure, Classes of Structures, and All
Structures

In this chapter, we give a very informal account of first-order logic over structures (a
single structure, a class of structures, and all structures), formulate some questions,
and look at some important results we will prove eventually in this book.

0.1 Logic on a Fixed Known Structure

You are probably already familiar with first-order logic on a fixed structure (or
context or world). For example, you perhaps know what this statement means:

VxeN3dJyeNx<y

It says “for every natural number x, there exists a natural number y such that x < y.
You have perhaps learned this in elementary courses on discrete mathematics.

If you haven’t or need a primer, I recommend reading it from the following
sources:

e Madhu’s primer for CS173: https://courses.grainger.illinois.edu/cs173/fa2017/B-
lecture/NotesByMadhu/Notes- 1.pdf

The main thing to note here is that you know the structure/universe/context you
are talking about— in this case natural numbers.
You should make sure you know several things about such logical notation:

¢ You should know the Boolean connectives A, V, and —.

* You should know the meaning of V (“forall”’) and 3 (“exists”), which are quanti-
fiers.

* You should know that « = B (read « implies ) has a formal meaning that is
precisely the same as (—a) V 3, and not some other uses in English. For example,
”Goldilocks is the president of the United States implies all gorillas are green” is
a statement that is true in the current world, since Goldilocks is not the president
of the United States (I am assuming this is true when you read this as well).
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* One really needs only the connectives V and —; the rest can be derived or defined
as shortcuts:

— «a A Bis logically equivalent to —(—a V —=f3)
— a = Bis logically equivalent to (-a) V 8
— a © Bislogically equivalent to (& = B) A (8 = a).
*  You should know the de Morgan laws and how negation goes into quantifiers:
— =(a V B) is equivalent to (=a) A (=)
—(a A B) is equivalent to (=) V (=)
— =(3x. @) is equivalent to Vx.(—a)
— =(Vx. @) is equivalent to 3x.(—a)

Using the above, you should know that you you can “push” the negations all the
way in so that they are applied only to atomic symbols/formulae.

As a concrete example, let us discuss logics over a fixed structure— the set of
natural numbers N.

In propositional logic over a fixed structure (or universe or world), you would have
a mapping between propositional symbols and statements. For example, p could be
the statement “there are finitely many primes” and g could be the statement “all
primes other than 2 are odd”. Then p is false in this world, and g is true in this world,
etc.

First order logic over natural numbers is more powerful and useful. Over natural
numbers we have several functions and relations that we know. For example, + is
a (binary) function, X is a (binary) function, and square is a (unary) function. And
<, < are all (binary) relations. In fact, another relation that we overlook sometimes
is the equality relation =, since it’s so common.

Now, let us fix this signature of symbols for functions and relations. Let us also
fix a set of symbols to denote variables, called Var. And define a first order logic
formally:

Terms: t,t' :=x|c|+(x,y) | X(x,y) | square(x)
Formulas: ¢, ¢’ :=t=t |t <t |t<t' |V |eAg | @ |Vx. o] Tx.p

where ¢ € N, x € Var.

We have here two kinds of expressions— terms and formulas. Terms are obtained
from constants and variables by applying functions, recursively, and intuitively “eval-
uate” to some number. For example, +(5, 8) is a term. Note that we write functions
like + with the symbol in front, rather than in infix notation; i.e., we write +(5, 8)
instead of 5+8. But as you are familiar with computer science, you can think of + as a
function that you “call”, and so +(5, 8) should make sense. +(9, x) is a term as well.
And square(x(13384398, square(y))) is a term too. Clearly there are infinitely
many terms.

We don’t really need all constants in the grammar. O and 1 are sufficient, as any
other constant can be expressed as an appropriate sum of 1s.
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Formulas, on the other hand, evaluate to a Boolean, i.e., true or false. The atomic
formulas are those that are formed from terms— those of the form ¢t =¢’, ¢ < ¢’ and
t < t’. Formulas are basically atomic formulas closed under Boolean operations and
quantification.

Note that we write Vx. 3y. x < y, rather than Vx € N. 3y € N. x < y, since
the universe over which variables are quantified are assumed to be natural numbers
anyway. If there are multiple sorts of objects that we want to quantify over, we would
introduce the more general syntax where every time we quantify, we will say which
sort it is over (or designate different sets of variables for each sort). This is similar
to programming, where we declare variables to be of different sorts— like integers
or strings.

You should be able to read and write FO formulas over natural numbers. For
instance, the formula Vx. (x > 2) = square(x) > x says “the square of any number
greater than two is larger than it”, which is happens to be true over natural numbers.
Similarly, if we wanted to say “every number other than 0 has a smaller number”,
we would write this as Vx.—(x = 0) = (Jy. (y < x)), which also happens to be true
over natural numbers.

Now consider the formula Vx.(x > y). Is it true over natural numbers? It’s hard
to imagine how to interpret the statement as its unclear what y is. This leads us to
define something called sentences.

A sentence is a formula where every variable is quantified, We will define this
formally later, but it should be clear to you what this means.... any variable that
occurs in the formula must have a quantification “outside” it such that the variable
is in scope of that quantifier. This is similar to programming— we may require all
variables used in a program to be declared, i.e., every use of a variable should be in
the scope of a declaration of it. Sentences evaluate to true or false on a structure.

The first-order theory of the structure N is the set of FO sentences that hold in
that model, denoted Th(N). Note that since any sentence o must either be true or
false in the structure, and hence either @ or —a must be in the theory. More generally,
a theory is just a set of sentences. And a theory is said to be complete if for every
sentence «, either @ or -« belongs to it. So Th(N) is complete (indeed, the theory
of any fixed structure is complete).

0.2 Logic on a Fixed Class of Structures

In mathematics and computer science, we often want to express properties that hold
on a class of structures, not just a single structure. For example, we may ask what
formulas/sentences are true over groups, or over finite graphs, or over trees, or over
linked lists, or over recursively defined datatypes, or over SQL (relational) databases,
or about objects in a class.

Unlike a single structure, like N or Z or R, we are interested in a class of structures.
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Groups

Let us take groups. A group is defined as a set S endowed with a binary relation
o: 8§ xS — S that satisfies the following properties:

Associativity: forevery a,b,c € S, (aob)oc=ao(boc)
Identity: There is an element e € S such that foreverya € S,ace =eoa =a.
Inverse:  For every a € S, there exists ana’ € Ssuchthataoa’ =a’ oca =e.

For example, the set of integers Z with the operator + forms a group (0 is the
identity, and for every i € Z, —i is its inverse. Another class of examples of groups
is obtained by taking a finite set E and considering the set of elements consisting of
permutations of E, with the binary operation being composition of permutations (a
composition of permutations is a permutation as well). The identity permutation is
the identity element, and every permutation has an inverse, of course, which “reverts”
the permutation.

Now, there are of course properties that hold on all groups. For instance, the
identity element must be unique. Here’s a proof: Assume e, f € S are both identity
elements. Then e. f = e (since f is an identity) and e.f = f (since e is an identity).
Hence e = f.

Similarly, one can show that every element’s inverse is unique.

The above proof shows that the fact that O is the unique identity element for +
over Z is not a particular property satisfied only on integers, but rather is a property
shared among all groups. The field of group theory studies groups in their own right,
since they occur commonly in many areas and applications.

We can now define the first order theory of groups as the set of all FO sentences
that hold over groups. The signature could include a special constant e to denote the
identity element. The sentence Va, b,c.(acb=eAboa=eAaoc=eAcoa=
e) = b = ¢, which says that every element has a unique inverse, is hence a theorem
in this theory.

Note however that the theory of groups is not a complete theory. For example, the
sentence Vx, y.x oy = y ox is not a theorem nor is its negation a theorem. There are
some groups where this property is true (like + over integers) and some where it’s
not true (like permutations of a fixed finite set of elements).

Graphs

Graphs are ubiquitous in computer science. Each graph can be seen as a model where
there is a set/universe which is finite and that has a binary relation E over it, which
models the set of edges. We would expect E to be symmetric (if E (u, v) holds, then
E(v,u) also holds). And we don’t want “self-edges” (for any u, E(u,u) does not
hold).

One can then defined the theory of graphs— which consists of all FO sentences
true over graphs. This FO theory is not terribly interesting, as there are very few
properties about graphs you can express using just FO theory on graphs. Note that
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this theory is not complete, again, of course— the sentence Yu, v.E (u, v) is neither
true in all graphs nor false in all graphs.

One can of course define any subclass of graphs— such as planar graphs or
bipartite graphs— and talk about the theory of such subclasses as well. How does
the theory of graphs, TG, and the theory of planar graphs, TPG, compare? Is one
a subset of the other? It is easy to see that any sentence that holds for all graphs is
certainly true for all planar graphs as well. Hence TG C TPG.

In general, if C and D are two classes of structures with C a subclass of D, then
the theory of O would be a subset of the theory of C. The smaller the class, the
larger its theory! In the limit, when there is only one structure, the theory becomes
complete (and of course cannot get any larger without containing contradictions).

One can now ask— do we really need to have a single structure in order to obtain
a complete theory? In other words, is there a class of structures/models C that has at
least two structures such that its first order theory is complete? Strangely, the answer
is yes! We will see examples of this in the course. For example:

* The theory of rationals with only the relations = and < is the same as the theory

of reals with the relations = and <! In other words, there is no first-order sentence
that can distinguish between these structures.
Note that the above is very specific to the fact that we have only FOL and only
the fixed signature involving <. For example, if we had the function symbol
square that returns the square of a rational/real, then we can distinguish the two
structures. (Can you come up with one? If you have in addition constants such as
0,1,2,...,it would be simpler.)

e More generally, the theory of dense linear orders without endpoints (no least or
largest element) is complete. No matter which dense linear order you pick, you
will find that the theory is the same! So here is an example of an infinite class
of structures which no first order formula (with only < in the signature) can
distinguish.

¢ One extremely surprising result is that there are structures that are non-isomorphic
to natural numbers and yet satisfy the same first-order properties of natural
numbers! You can imagine an alien species having such a non-standard model of
arithmetic in their head (though I wonder what kind of evolutionary circumstance
would give rise to such models in their psyche), and yet we would agree with
them about all theorems in FOL over arithmetic!

0.3 Logic on All Structures

Finally, we can consider logics on all structures. This may sound a bit unnatural
and not very useful. But as we shall see, it is quite useful, as it gives a way to study
general metatheorems in logic that are independent of a particular structure or class
of structures.
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One reason why logics over all possible structures is that one can carve out
useful and natural fragments using axiomatizations. Axiomatizations are logical
mechanisms of specifying a class of structures that you want to study.

Axiomatizations are, in a certain sense, the purest form of reasoning about a class
of structures. If we want to reason about a class of structures {C}, then it remains
how to define them formally so that we can reason with them. For instance, you and I
may think we know what natural numbers and arithmetic are, but to formally reason
with arithmetic, we must be able to state our assumptions clearly. If you start an
argument with “There are infinitely many even numbers, and ...” and I interrupt you
and ask you why that is so and I don’t believe it, then you may provide a proof of it.
But every proof you give will make assumptions (hopefully simpler assumptions),
till at some point you give up and say that those are self obvious. For example, you
may refuse to give a proof of why “x + 0 = x”. So it is natural to ask whether there
are some fundamental and simple assumptions about natural numbers that we all can
agree upon (and people who don’t believe them can go climb a gum tree) such that
all arguments can be made only using such assumptions.

Presburger arithmetic is a particular set of axioms that characterize natural num-
bers with addition only. The axioms are:

(Al) Vx=(x+1=0)

(A2) VYx,y.(x+l=y+1)=>x=y

(A3) Vxx+0=x

(Ad) Vx,yx+(y+1D)=x+y)+1

(AS)  For any first order formula P with a free variable x, the following holds:

(P(0) AVx.(P(x) = P(x+1))) = Vy.P(y)

The meaning and soundness of axioms (A1)-(A4) should be obvious. (A5) is
actually a ser of axioms, called an axiom schema. It says that for any property P
of natural numbers expressible in FOL, induction is a sound way of proving that P
holds on all natural numbers. More precisely, if it was true that P holds for 0 and
for every x, if P holds for x then P holds for x + 1, then P must hold for all natural
numbers.

Itis an amazing fact that all first-order properties of natural numbers with addition
can be proved just using the axioms above. We will not show this in this course,
however, but argue a related theorem to show that the theory of natural numbers with
addition is decidable. (It will become clear later why these are related.)

Perhaps a more natural example of axiomatizations is the characterization of
groups. Recall that groups satisfy a specific set of properties (associativity, existence
of identity, and existence of inverses). This is the definition of groups— we do not
have some other “natural” model of groups in our minds. And furthermore it turns
out that we can characterize the properties of groups in FOL, with the signature
containing = and the sole binary function o, and an identity element (constant
symbol) e:

(A1) Associative law:  Vx,y,z.xo0(yoz)=(xoy)oz
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(A2) Identity: Vx. (xoe=xAeox =ux)
(A3) Existence of inverses: Vx.3dy.(xoy=eAyox=e)

Note that in the above, the set of axioms is finite as opposed to Presburger
arithmetic. Similar to the above, we can characterize many classes of algebraic
structures— abelian groups, rings, fields, Boolean algebras, etc.

Given a set of axioms A, we can think of it as culling out a class of structures
from the class of all structures, namely those that satisfy the axioms. We can then
talk about the theory of the axioms— the set of sentences that are satisfied in every
structure in this culled out class of structures. Let Th(A) denote the theory defined
by the structures that satisfy the axioms A.

For example, for the set of axioms defining groups above, its theory contains the
statement: Vx,y,z. (xoy=eAyox=eAxoz=eAzox=¢) = (y=2)

0.4 Logics over structures: Theories and Questions

Given the above discussion, we have four kinds of theories:

¢ The theory of a single structure M, denoted Th(M).

 The theory of a class of structures C, denoted Th(C).

e The theory of all structures, which we will call tautologies or valid sentences,
denoted Th(FOL).

¢ The theory of a set of axioms Th(A), which the the theory of the class of
structures that satisfy A.

Given the above, one can ask many interesting questions and make some simple
observations:

* Let us call a theory complete if for every sentence e, either « is in the theory or
- is in the theory.

* Note that the theory of a single structure M is always complete. However, the
theory of a class of structures need not be complete. (For example, over groups,
the sentence Vx, y.x = y is neither in the theory nor is its negation in the theory).
Similarly, the theory of a set of axioms need not be complete.

* The theory of a structure or a nonempty class of structures can never have a
contradiction— i.e., it cannot have both @ and —«. You can have one only or the
other or neither, but not both. The theory of the empty class of structures contains
all sentences, and hence contradictions.

* The theory of a set of axioms can have a contradiction. But this happens only
if they define an empty class of structures. Otherwise, the theory will have no
contradiction. (For example, if axioms include Vx.P(x) and 3x.—P(x), then the
set of structures defined by these axioms is empty, and its theory contains all
sentences.)
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» If a (nonempty) class of structures C is a subclass of a class of structures D, then
Th(D) € Th(C). So as the class of structures get smaller, its theory gets larger.
(In the limit, the class of structures is a single structure and the theory becomes
largest and is complete.

* What is the complexity of deciding whether a sentence is valid (on all structures)?
Isitdecidable? If not, is it recursively enumerable? What is its precise complexity?

* Is there a set of axioms (some regular simple set of axioms) that characterize
natural numbers with addition? Integers with addition? Natural numbers or inte-
gers with addition and multiplication? What about rationals with addition and/or
multiplication? Reals?

* Is it possible to decide if a set of axioms has a contradiction? L.e., whether there
is at least one structure satisfying it?

* For each of the above theories, independent of whether they can be axiomatized
or not, are the theories decidable? (Can we build programs that check whether a
theorem is true or not, i.e., belongs to the theory or not, completely automatically?)

* How do we know that proofs even exist? Can it be the case that there are (natural)
classes of structures for which some theorems do not have proofs?

* If we fix a set of axioms, is it true that every theorem (statement in its theory) has
a proof, always, that follow from the axioms? Maybe first we need to define what
a proof is? What’s a proof?

I encourage you to think of all such combinations of questions. Some will be
trivial and you will be able to answer them. Most others you will be able to answer
at the end of the course. These questions that will occupy us for roughly half of this
course.

Here is a sample of the remarkable theorems in logic you will learn in this course:

¢ The set of all valid sentences (the set of sentences that are true in all structures)
is not decidable. However, it is recursively enumerable!

* One can in fact set up a formal proof mechanism for proving valid sentences.
Proofs are syntactic objects that (a) are finite and (b) can be verified easily using
syntactic rules. And then we can show that any valid sentence has a proof! (This
is Godel’s completeness theorem.) It then follows that a Turing machine/program
can simply look for such proofs, and hence the set of valid formulas is recursively
enumerable.

* More remarkably, if I have a set of axioms A where A is a finite set of axioms,
then the theory of A is also recursively enumerable. This even holds if A is
infinite and is a computable (or even recursively enumerable set). In fact, one can
set up generic proof systems that work by assuming any set of axioms that can
prove any theorem in the theory of the set of axioms. This is remarkable as it
shows that any axiomatizable theory has proofs and a computer can just look for
such proofs!

e If a set of axioms define a complete theory, then the theory is even decidable!
There is a program that can take a statement and decide whether it is a theorem
or not. (Don’t ask me how long this will take, though!)
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* There are several specific structures and signatures where you can ask whether
its theory is decidable (naturals, integers, rationals, reals with addition and/or
multiplication, etc.). Most of these have been settled. Note that a complete ax-
iomatization of them also implies decidability, and hence undecidability of the
theory means there is no complete axiomatization.

Four remarkable results are:

— The theory of natural numbers with addition is decidable (Presburger arith-
metic above is a complete axiomatization).

— The theory of natural numbers with addition and multiplication is not decid-
able. It follows that this theory hence does not have a complete axiomatization.
This is essentially one of Godel’s incompleteness theorems. It turns out that
even validity of purely universally quantified formulas or purely existentially
quantified formulas is undecidable.

— The theory of reals with addition and multiplication is decidable!

— The theory of rationals with addiion and multiplication is undecidable.

* Checking whether a set of axioms has no contradiction is undecidable.






Chapter 1
Propositional Logic

Modern logic is a formal, symbolic system that tries to capture the principles of
correct reasoning and truth. To describe any formal language precisely, we need
three pieces of information — the alphabet describes the symbols used to write
down the sentences in the language; the synfax describes the rules that must be
followed for describing “grammatically correct” sentences in the language; and
finally, the semantics gives “meaning” to the sentences in our formal language. You
may have encountered other contexts where formal languages were introduced in
such a manner. Here are some illustrative examples.

Example 1.1 Binomial coefficients are written using natural numbers and parenthe-
ses. However, not every way to put together parenthesis and natural numbers is a
binomial coefficient. For example, (1, (1), or (2) are examples of things that are no
binomial coefficients. Correctly formed binomial coefficients are of the form ("J;j ),
where i and j are natural numbers. We could define the meaning of (i;j ) to be the
natural number <'ITJ’,) . On the other hand, we could define the meaning of (**/) to
be the number of ways of choosing i elements from a set of i + j elements. Though
both these ways of interpreting binomial coefficients are the same, they have a very
different presentation. In general, one could define semantics in different ways, or

even very different semantics to the same syntactic objects.

Example 1.2 Precise definitions of programming languages often involve character-
izing its syntax and semantics. Turtle is an extremely simple programming language
for drawing pictures. Programs in this language are written using F, +, and —. Any
sequence formed by such symbols is a syntactically correct program in this language.
We will interpret such a sequence of symbols as instructions to draw a picture — F
is an instruction to draw a line by moving forward 1 unit; + is an instruction to turn
the heading direction 60° to the left; — is an instruction to turn the heading direction
60° to the right. Figure 1.1 shows example programs and the pictures they draw
based on this interpretation.

Even though Turtle is a very simple programming language, some very interesting
curves can be approximated. Consider the following iterative procedure that produces

11
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F F+F--F+F F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

Fig. 1.1 Example Turtle programs and the pictures they draw.

a sequence of programs. Start with the program F. In each iteration, if P is a program
at the start of the iteration, then construct the program P’ obtained by replacing each
Fin P by F+F — -F +F. So at the beginning we have program F, in the next
iteration the program is F+F — —F + F, and in the iteration after that it will be
F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F, and so on.
The programs in this sequence draw pictures that in the limit approach the Koch
curve.

Example 1.3 Regular expressions define special collections of strings called regular
languages. Regular expressions over an alphabet X are built up using %, parentheses,
0, &, -, +, and *. Inductively, they are defined as the smallest set that satisfy the
following rules.

* (0 and & are regular expressions.
» Forany a € %, a is a regular expression.
e If ry, rp are regular expressions then so are (r; - r2), (11 +72), and (7).

Each regular expression r, semantically defines a subset of X* ! that we will denote
by [r]. The semantics of regular expressions is defined inductively as follows.

o [0] =0, and [£] = {&}.

e Fora € X, [a] ={a}.

* Inductively, [(r1 +r2)] = [r1] U [r2], [(r1 - r2)] = [r1] - [r2] and [(rD)] = [r1]",
where - (on the right hand side) denotes the concatenation of two languages, and
* denotes the Kleene closure of a language.

We will now define one of the simplest logics encountered in an introductory dis-
crete mathematics class called propositional or sentential logic. Propositional logic
is a symbolic language to reason about propositions. Propositions are declarative
sentences that are either true or false. Examples of such include “Springfield is the
capital of Illinois”, “1+1 = 27, “242 = 0. Notice that propositions don’t need to
be true facts and their truth may depend on the context. For example, “2+2 = 0" is
not true under the standard interpretation of + as integer addition, but is true if +
denotes addition modulo 4. Non-examples of propositions include questions (like
“What is it?””), commands (like “Read this!”"), and things like “Location of robot”.

! For a finite set £, 2* denotes the collection of (finite) sequences/strings/words over X. For n € N,
we use X" to denote the set of sequences/strings/words over Z of length exactly n.
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The logic itself will be symbolic and abstract away from English sentences like the
ones above. We will introduce a precise definition of this logic, much in the same
way as Example 1.3, defining the syntax and semantics inductively.

1.1 Syntax

We will assume a (countably infinite) set of propositions Prop = {p; | i € N}. The
formulas of propositional logic will be strings over the alphabet Prop U {(,), =, V}.
Here — is negation, and V is disjunction.

Definition 1.4 The set of well formed formulas (wff) in propositional logic (over the
set Prop) is the smallest set satisfying the following properties.

1. Any proposition p; € Prop is a wff.
2. If ¢ is a wff then (—¢) is a wif.
3. If ¢ and ¢ are wifs then (¢ V ¢) is a wff.

Examples of wifs include py, (=p1), (p1 V p2), ((=(p1V p3)) V (p1V p4)). On the
other hand the following strings are not wffs: (p;—), (Vp1), (p1V).

Inductive definitions of the kind in Example 1.3 or Definition 1.4 are quite com-
mon when defining the syntax of formulas in a logic or of programming languages.
Therefore, in computer science, one often uses a “grammar-like” presentation for the
syntax. For example, wifs ¢ in propositional logic are given by the following BNF
grammar.

pu=pl(=p) [ (¢Ve) (1.1

where p is an element of Prop. Reading such grammars takes some getting used to.
For example, the rule (¢ V ¢) doesn’t mean that disjunctions can only be used when
the two arguments are the same. Instead it says that if we take two elements that
belong to the syntactic entity ¢ (i.e., wifs), put V between them with surrounding
parenthesis, then we get another element belonging to the same syntactic entity ¢. We
will sometimes use such a grammar representation to describe syntax in a succinct
manner.

Inductive Definitions

What is the set identified by inductive definitions like Definition 1.4 and (1.1) ?
Is there a unique single minimal set that satisfies the conditions in Definition 1.4?7
After all sets can be incomparable with respect to the C relation. And what does the
grammar given in (1.1) mean? Finally, do Definition 1.4 and (1.1) identify the
same set?

Let us begin by first defining the set described by (1.1) . Equation (1.1) defines
the set S = U;enSi, where the sets S; (for i € N) are given as follows.

So = Prop
Sis1 =SiU{(=@) e e Si}u{(y Vo) ly,peS;} fori > 0
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Note that § = U;cnS; 1s an infinite union. You can think of S as the limit of the
increasing sequence of sets So U S1 U --- U §,. Another way to think of S is as the
set of all ¢ that belong to some S;. That is,

S={p]|¢esS;, forsomei}.

Another way to interpret the sets S and S; is as follows. S; denotes the set of formulas
that can be derived from the grammar rules within i steps, and S is the set of formulas
that can be derived from the grammar rules in some finite number of steps.

Given the above meaning, it’s natural to prove properties about the set of expres-
sions S using induction on i. More precisely, if we want to show a property P is true
about S, then we:

» Establish P to be true for every expression in Sp.
* For every i > 0, we assume that P holds for every expression in S; and prove it
holds for all expressions in S;yi.

The above shows that P holds on S;, for every i € N, and hence P holds for every
formula in S.

Let us now consider Definition 1.4 and argue that it is well defined. Before
showing that there is a unique smallest set satisfying conditions (1), (2), and (3) of
Definition 1.4, let us argue that there is at least one set satisfying (1), (2), and (3).
Take the set of all possible strings built over the alphabet Prop U{(, ), =, V}. This set
clearly satisfies all the conditions. But why should there be a smallest set? Observe
that if two sets A and B satisfy the conditions in Definition 1.4, then so does A N B.
More generally, if {A; };¢; is a (possibly infinite) collection of sets satisfying (1), (2),
and (3), then so does the set N;¢;A;. Thus, the intersection of all sets which satisfy
the conditions, is the unique, smallest (with respect to set inclusion) set identified by
Definition 1.4. Hence, it is well defined.

Let S denote the set identified by grammar in (1.1) and T the set defined in
Definition 1.4. We will argue that these two sets are the same. First, let us show that
S satisfies conditions (1), (2), and (3) of Definition 1.4. Observe that, by definition,
for every i, S; C S;+1. Hence, the sets increase with index, i.e., for every i < j,
S; € S;; this can be formally established by induction, and we leave this as an
exercise. Since Prop C Sy, this means Prop C S; for every i, and therefore S
satisfies condition (1). Next, consider any ¢,y € S. By definition of S, this means
there is are i, j € N such that ¢ € S; and ¢ € §;. Taking k = max(i, j), we can
conclude that {¢, ¥} C Si. Thus, by definition, (—¢) and (¢ Vi) both belong to Sy+1,
and hence are in S. Therefore, S satisfies conditions (2) and (3) of Definition 1.4.
Finally, since S satisfies all conditions of Definition 1.4 and T is the smallest set with
these properties, we can conclude that 7 C S.

To prove the other inclusion (that S € T'), we will prove that for every i, S; C T by
induction. In the base case observe that Sy = Prop C T, since T satisfies condition
(1). Assume as induction hypothesis, that for all j < i, S; € T. In the induction step,
we need to establish the claim that S;;; € T. Let ¢ € S;4 be an arbitrary element.
By the definition of S;;, there are 3 cases to consider. If ¢ € S; then by induction
hypothesis ¢ € T.1f ¢ = (=) for some ¥ € S;, then by induction hypothesis ¢ € T,
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and since T satisfies condition (2), ¢ = (=) € T. Finally, if ¢ = (¥1 V ¢,) for some
Y1, Y2 € S; then by induction hypothesis, 1, ¥ € T and since T satisfies condition
(3), ¢ = (Y1 V ¢2) € T. This completes the proof that S C T, and therefore, S = T.

The above argument, establishing that the smallest set satisfying some closure
conditions is the same as the set of objects derived from grammar rules, can be
generalized to any grammar (not just context-free grammars. In general, if one
defines a set as the smallest set S that satisfies conditions of the form “if these
elements belong to S than these other elements must belong to S, then the smallest
set is well-defined. But if you also have conditions saying “if these elements belong
to S, these elements should not belong to S,” then the “smallest” set may not be a
well-defined.

Inductive or recursive definitions are ubiquitous in computer science, and reason-
ing about such definitions is naturally done using some form of induction. In fact, the
prevalence of induction in computer science is because of the ubiquity of recursive
definitions. Here are some other examples of recursive definitions.

* Consider the operational semantics of a program. The set of states/configurations
that the program can reach is best defined recursively. It is the smallest set R of
states such that (a) R contains the initial states of the program, and (b) if a state s is
in R and the program can transition in one step from s to s’, then s” € R. Because
of the recursive nature of this definition, reasoning about programs often involves
induction. For example, to show that a program does not throw an exception, one
needs to prove that any reachable state is one that does not throw an exception.
This is typically established using induction.

» Consider lists in programs. The cons operator constructs a new list by adding an
element to the head of another list. Lists over the elements £ can then be defined
as the smallest set L such that (a) L contains nil, the empty list, and (b) if £ € L
and e € E, then cons(e, {) is in L as well.

* The set of natural numbers can also be defined recursively. Let us denote by succ,
the successor function 2. Then the set of natural numbers is the smallest set N
such that (a) N contains 0, and (b) for every n € N, succ(n) belongs to N.

Other logical operators and Operator Precedence

Conjunction and implication are logical operators that arise quite often when ex-
pressing properties. These operators can be defined in terms of — and V. Let ¢ and
W be wifs. (¢ A ) (read “¢ and ) denotes the formula (=((=¢) V (=¢))). And
(¢ — ) (read “@ implies ) denotes the formula ((—¢) V ). Another useful wff
is T (read “true”); it denotes the formula (p Vv (=p)), where p is (any) proposition.
Finally the wff L (read “false”) is the formula (=T).

2 Intuitively, given a number n, SUCC(n) is the next number, namely, n + 1. However, this interpre-
tation is only in our minds. SUCC is just some function.
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Writing formulas strictly according to the syntax presented is cumbersome be-
cause of many parentheses and subscripts. Therefore, we will make the following
notational simplifications.

¢ The outermost parentheses will be dropped. Thus we will write p3 V (p2 V p1)
instead of (p3 V (p2 V p1))

*  We will sometimes omit subscripts of propositions. Thus we will write p instead
of p1, or g instead of p,, r instead of p3, or s instead of p4, and so on.

¢ The following precedence of operators will be assumed: =, A, V, —. Thus —=p A
g — r will mean (((=p) A q) — r).

Definition 1.4 for wifs in propositional logic has the nice property that the structure
of a formula can be interpreted in a unique way. There is no ambiguity in its
interpretation. For example, if —p; vV p, were a wff, then it is unclear whether we
mean the formula ¢ = ((=p;) V p2) or ¢ = (=(p; V p2)) > — in ¢ V is the
topmost operator, while in ¢ — is the topmost operator. Our syntax does not have
such issues. This will be exploited often in inductive definitions and in algorithms.
This observation can be proved by structural induction, but we skip its proof.

Theorem 1.5 (Unique Readability)

Any wif can be uniquely read, i.e., it has a unique topmost logical operator and
well defined immediate sub-formulas.

1.2 Semantics

We will now provide a meaning or semantics to the formulas. Our definition will
follow the inductive definition of the syntax, just like in Example 1.3. The semantics
of formulas in a logic, are typically defined with respect to a model, which identifies
a “world” in which certain facts are true. In the case of propositional logic, this world
or model is a truth valuation or assignment that assigns a truth value (true/false) to
every proposition. The truth value truth will be denoted by T, and the truth value
falsity will be denoted by F.

Definition 1.6 A (truth) valuation or assignment is a function Vv that assigns truth
values to each of the propositions, i.e., v : Prop — {T,F}.
The value of a proposition p under valuation Vv is given by V(p).

We will define the semantics through a satisfaction relation, which is a binary
relation | between valuations and formulas. The statement V |= ¢ should be read as
“v satisfies ¢” or “gp is true in vV’ or “v is a model of ¢”. It is defined inductively
following the syntax of formulas. In the definition below, we say v [~ ¢ when Vv |= ¢
does not hold.

Definition 1.7 For a valuation v and wif ¢, the satisfaction relation, vV |= ¢, is defined
inductively based on the structure of ¢ as follows.

3 For the formulas here, we are not using the precedence rules given before.
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« vEpifandonlyifv(p)=T.
* V[ (~yp)ifandonly if v £ ¢.
* VE(pVvy)ifeithervEporv = y.

Example 1.8 Let us look at a couple of examples to see how the inductive definition
of the satisfaction relation can be applied. Consider the formula ¢ = =(=p V =gq) V
(=p V —q). Recall with respect to the notational simplifications we identified, ¢ is
the formula ((=((=p) V (=q))) V ((=p) V (—g))). Consider the valuation v that
sets all propositions to T. Now V; [ ¢ can be seen from the following observations.

vikEp because vi(p) =T
Vi E-p semantics of —
Vi Egq because Vi(g) =T
Vi [ g semantics of —
Vi E-p Vg semantics of V
Vi E=(=pV q) semantics of —

Vi E=(=pV =g)V (=pV —~q) semantics of V

Consider v, that assigns all propositions to F. Once again v, = ¢. The reasoning
behind this observation is as follows.

Vo [ p because v, (p) = F
Vo E-p semantics of —
Vo E-p Vg semantics of V

Vo | =(=p V =q) V (=p V —=g) semantics of V

The semantics in Definition 1.7 defines a satisfaction relation between valuations
and formulas. However, one could defined the semantics of propositional logic
differently, by considering the formula as a “program” or “circuit” that computes
a truth value based on the assignment. This approach is captured by the following
definition of the value of a wif under a valuation.

Definition 1.9 The value of a wif ¢ under valuation v, denoted by v[¢], is inductively
defined as follows.

vipl=v(p)
ool =T i 2
vig vyl = {$ vl = viv] = F

Example 1.10 Let us consider ¢ = =(=p V =q) V (=p V =q) and V| which assigns
all propositions to T. v;[¢] can be computed as follows.
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vilp[ =T because vi(p) =T
vi[-p] =F semantics of —
vig] =T because Vi(g) =T
vi[-q] =F semantics of =
Vi[-pV-q] =F semantics of Vv
Vi[-(=pVv-q)] =T semantics of —

Vi[=(=p V =q) V (=p V =q)] = T semantics of Vv

Definitions 1.7 and 1.9 are both equivalent in some sense. This is captured by the
following theorem.

Theorem 1.11 For any truth valuation v and wif ¢, vV |= ¢ if and only if v[¢] =T

The proof of Theorem 1.11 is by structural induction on the formula ¢. It is left
as an exercise for the reader.

It is convenient to associate with every wit the set of truth valuations under which
the formula holds.

Definition 1.12 The models of wff ¢ is the set of valuations that satisfy ¢. More
precisely,

[el ={vIV e}
Observe that as per the definition, [L] = 0.

The relevance lemma says that whether ¢ holds under a valuation depends only on
how the valuation maps the propositions that syntactically occur in the formula. This
is intuitively obvious; surely, whether (p A g) V r holds is independent of whether the
proposition s is mapped to true/false.For a wff ¢, the set of propositions appearing
in ¢, denoted occ(¢), is inductively defined as follows.

occ(p) = {p}
occ(—¢) = occ(yp)

occ(e V i) = occ(y) U occ(y)
The relevance lemma is then as follows.

Lemma 1.13 (Relevance Lemma)

Let V| and V3 be truth valuations such that for all p € occ(p), we have v (p) =
Vo(p), i.e., V1 and Vv, agree on the truth values assigned to all propositions in 0CC().
Then vy ¢ if and only if V2 = ¢.

Proof By structural induction on ¢.

Base Case ¢ = p  Observe that, vi E ¢ iff vi(p) =T = va(p) iff v5 | ¢.

Induction Step ¢ = (=) Since occ(y¥) C occ(y), we have by induction hypoth-
esis, V| | ¢ iff vo | . Therefore, by the semantics of =, v| E ¢ iff v, = ¢.

Induction Step ¢ = (¥ V ¥,) Since prop(¥;) € prop(y) (for i € {1,2}), we
have by induction hypothesis, v| | ; iff v, | ;. Therefore, by the semantics of
V,V] Egiff vp E . O
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Lemma 1.13 implies that, to determine if a formula holds in a valuation, we
only need to consider the assignment to the finitely many propositions occurring
in the formula. Thus, instead of thinking of valuations as assigning truth values to
all (infinitely many) propositions, we can think of them as functions with a finite
domain.

1.3 Satisfiability and Validity

Two formulas that are syntactically different, could however, be “semantically equiv-
alent”. But what do we mean by semantic equivalence? Intuitively, this is when the
truth value of each formula in every valuation is the same.

Definition 1.14 (Logical Equivalence)

A wif ¢ is said to be logically equivalent to y iff any of the following equivalent
conditions hold.

« for every valuation v, v E ¢ iff v E ¢,
* for every valuation v, V[¢] = v[y],

* el =¥l
We denote this by ¢ = .

Let us consider an example to see how we may reason about two formulas being
logically equivalent.

Example 1.15 Consider the wifs ¢; = p A(gVr)and o = (pAg)V (p ATF),
where p, g and r are propositions. Though ¢; and ¢, are syntactically different, they
are semantically equivalent. To prove that ¢; = ¢,, we need to show that they two
formulas evaluate to the same truth value under every valuation. One convenient way
to organize such a proof is as truth table, where different cases in the case-by-case
analysis correspond to different rows. Each row of the truth table corresponds to a
(infinite) collection of valuations based on the value assigned to propositions p, ¢
and r; the columns correspond to the value of different (sub)-formulas under each
valuation in this collection. For example, a truth table reasoning for ¢ and ¢, will
look as follows.

~
~

<
<

b S e W e e o i M 1

Ad44dTnH444T<
b B W e M e i 3

e T i 1 B i i 1 (NS

e e e B B B S
AT T =TT
ATmATm AT AT~

444 mmmS
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Notice that since the columns corresponding to ¢ and ¢, are identical in every row,
and every valuation corresponds to some row in the table, it follows that ¢; and ¢,
are logically equivalent.

Let us now consider ¢ = ¢ A (Y2 Vr3) and @) = (Y1 A2) V (1 Ar3), where
Y1, Y2 and Y3 are arbitrary wifs. Once again ¢ and ¢, are logically equivalent, no
matter what /1, ¥, and 3 are. The reasoning is essentially the same as above. The
rows of the truth table now classify valuations based on the value of formulas /1, ¥
and 3 under them.

U1 Yo

Yo V3 YL ANy Y As

A4 —4—A4TmTm
A—4mMmTmA—=TT
R B I e (N
A4 4T —4—=4-m
o e M i s ey B S
4 —4mmmmmT
R e B B B B |
e s i iy B i i B 1 (NS

Truth table based reasoning, as carried out in Example 1.15, is a very convenient
way to organize proofs of propositional logic. We will often use it. Example 1.15
highlights another important observation. Let ¢ and ¢ be logically equivalent for-
mulas. Let ¢” and ¢’ be formulas obtained by substituting propositions occurring in
¢ and ¢ by arbitrary formulas. Then ¢’ = ¢/’.

Definition 1.16 (Logical Consequence)

Let I" be a (possibly infinite) set of formulas and let ¢ be a wif. We say that ¢ is
a logical consequence of T" (denoted I' | ¢) iff for every valuation v, if for every
Y e I',v Ey then v | ¢. In other words, any model that satisfies every formula in
I' also satisfies ¢.

We could equivalently have defined it as I' | ¢ iff Ny er[¥] < [¢].

Example 1.17 Consider the set I' = {yy1 — 2,2 — 1,1 V o}, where ¢ and
W, are arbitrary formulas. We will show that T" |= 4. Once again, we will use a truth
table to classify valuations into row based on the value that /; and i, evaluate to.
Such a truth table looks as follows.

Y1 Yo | oY Yoy Yy Vi
F F T T F
F T T F T
T F F T T
T T T T T

Notice that there is only one row where columns 3, 4, and 5 are all T; this corresponds
the valuations where ¢ and ¥, evaluate to T, and under every such valuation, all
formulas in I" are satisfied. In this row, since ¥ also evaluates to T, we have that

IEyr.
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It is worth observing one special case of Definition 1.16 — when I' = . In
this case, every valuation satisfies every formula in I" (vaccuously, since there are
none to satisfy). Therefore, if 0 |= ¢, then every truth assignment satisfies ¢. Such
formulas are called tautologies, and they represent universal truths that hold in every
model/world/assignment.

Definition 1.18 (Tautologies)
A wit ¢ is a tautology or is valid if for every valuation v, v |= ¢. In other words,
0 E . We will denote this simply as | .

Example 1.19 We will show ¢ = ¢ — (Yo — ) is a tautology, no matter what
formulas 1 and ¥, are. The proof is once again organized as truth table, and we
show that in all rows the formula ¢ evaluates to T.

i Y | =y Y — (Yo > )
F T

F T
F T F T
T F T T
T T T T

The last important notion we would like to introduce is that of satisfiability.

Definition 1.20 (Satisfiability)

A formula ¢ is satisfiable if there is some valuation Vv such that v |= ¢. In other
words, [[¢] # 0. If a formula is not satisfiable, we say it is unsarisfiable.

Example 1.21 ¢ = (p V q) A (=p V —q) is satisfiable because the valuation v that
maps p to T and ¢ to F satisfies ¢, i.e., V | ¢.

Based on Definitions 1.18 and 1.20, it is easy to see that there is a close connection
between satisfiability and validity.

Proposition 1.22 A wff ¢ is valid if and only if —¢ is unsatisfiable.

Proof Let v be any valuation. If ¢ is valid, we know that v = ¢. Therefore, by the
semantics of -, we have V [£ —¢. Thus —¢ is unsatisfiable. Conversely, if —¢ is
unsatisfiable, then v £ —¢. Again, by the semantics of =, V |= ¢. Thus, ¢ is valid. O

We conclude this section by considering two fundamental computational prob-
lems — satisfiability and validity.

Satisfiability Given a formula ¢, determine if ¢ is satisfiable.
Validity Given a formula ¢, determine if ¢ is a tautology.

The satisfiability and validity problems have very simple algorithms to solve
them. To check if ¢, over propositions {py, ... pn}, is satisfiable (is a tautology),
compute V[¢] for every truth assignment v to the propositions {pj,...p,}. The
running time for this algorithm is O (2"). One of the most important open questions
in computer science is whether this is the best algorithm for these problems. The
following theorem by Cook and Levin, supports the belief that this exponential
algorithm is unlikely to be improved in the worst case.
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Theorem 1.23 (Cook-Levin)
The satisfiability problem for propositional logic is NP-complete.

Proof Any proof showing a problem to be NP-complete has two parts. First is an
argument that the problem belongs to NP and the second that it is hard.

Membership in NP. Given a formula ¢, the NP-algorithm to check satisfiability
is as follows — Guess a truth assignment Vv, evaluate ¢ on the truth assignment,
and accept if V[¢] = T; otherwise reject. Guessing (nondeterministically) a truth
assignment takes time which is linear in the number of propositions in ¢, which is
linear in the size of ¢, and computing V[¢] also takes time that is linear in the size
of ¢, where the evaluation algorithm computes the value in a “bottom-up” fashion.
Thus, the total running time is polynomial.

NP-hardness. Consider A € NP. Let M = (Q,X,T, 6, g0, Gacc, Grej, U, >) be a
nondeterministic TM recognizing A in time n!, where Q is the set of control states,
Y is the input alphabet, I" is the tape alphabet, ¢ is the transition function, g is the
initial state, gacc is the unique accepting state, grej is the unique rejecting state, LI is
the blank symbol, and > is the left end marker symbol that appears on the leftmost
cell of each tape. Without loss of generality, we assume that gacc and gyrej are the
only halting states of M. We will also assume that M has a read only input tape, and
a single read/write work tape.

For an input x, we will construct (in polynomial time) a formula f; (x) such that
M accepts x (i.e., x € A) iff fas(x) is satisfiable. fjs(x) will encode constraints on
a computation of M on x such that a satisfying assignment to fjs(x) will describe
“how M accepts x”. That is, fas(x) will encode that

e M starts in the initial configuration with input x,

* Each configuration follows from the previous one in accordance with the transition
function of M,

* The accepting state is reached in the last step.

Let us formalize this intuition by giving a precise construction. We begin by identi-
fying the set of propositions we will use, and their informal interpretation.

Propositional Variables. The propositions of fjs(x) will be as follows.

Name Meaning if set to T Total Number
InpSymb (b, p) Input tape stores b at position p O(|x|)
TapeSymb(b, p,i)|Work tape stores b in cell p at time i O(|x]*%)
InpHA (4, ©) Input head in cell & at time i O(|x] - |x|)
TapeHd(h, i) Work tape’s head in cell / at time i O(|x]*%)
State(q, i) State is ¢ at time i O (|x|9)

Abbreviations. In order to define f3;(x), the following abbreviations will be useful.

o AL Xy means Xi AXy A A Xy,



1.3 Satisfiability and Validity 23

e V(X1,X3,...X,;) will denote a formula that is satisfiable iff exactly one of
X1, ... X, 1s set to true. In other words,

VX1,X0,...Xm)=(X1VXo V- VX)) A /\(—!Xk V =X))
k#l

Overall Reduction. The overall form of fy;(x) will be as follows.

S (X) = Pinitial A Pconsistent A Pransition A Paccept

where

*  initial Says that “configuration at time 0 is the initial configuration with input x”

*  Qconsistent Says that “at each time, truth values to variables encode a valid config-
uration”

*  Quansition Says that “configuration at each time follows from the previous one by
taking a transition”

*  Qaccept Says that “the last configuration is an accepting configuration”

We now outline what each of the above formulas is.

Initial Conditions Letx =ajas---a,

Cinitial = State(go, 0)
“At time 0, state is go”
AlnpSymb(>, 0) A TapeSymb (>, 0, 0)
“Leftmost cells contain >
Np=1 InpSymb(a,, p)
“At time 0, cells 1 through n hold x”
;‘;1 TapeSymb(L, p, 0)
“At time 0, all work tape cells are blank™
InpHA(0, 0) A TapeHd(0, 0)
“At time 0, all heads at the leftmost position”

Consistency Assume that the tape alphabet is I' = {by, by, ... b,} and the set of
states is Q = {q0, G1»- - - G }-
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14 . .
Pconsistent = /\?:() V(State(q()’ l)’ e State(CIm, l))
“At any time i, state is unique”
?jo TapeSymb(r>, 0, 7)
“At any time, leftmost cell contains >’
14 t . .
i=0 N\p=o V(TapeSymb(by, p,i), ... TapeSymb(b,, p, i))
“work tape cells contain unique symbols”
A, V(INpHA(0, i), .. . InpHd(n, i)
“At any time, input head is in one cell”
n V(TapeHd(0, i), . .. TapeHd(n’, i)
“At any time, work tape head is in one cell”

Transition Consistency Consider a non-halting state g (i.e., ¢ ¢ {qacc, Grej})s
input symbol c¢;, and tape symbol c,,. Let the transition at state ¢, when reading
these symbols be given by

8(g.cimew) = (¢ dly) el ). (g e d)).

4 L

Here (¢, d'", ¢\, d\") € §(g, cin, c) means that if M is in state ¢ and reads

cin on the ing:lt tape and c¢,, on the work tape, then one possible transition is to
state ¢(*), moving the input head in direction dl.(r’;), writing csvi) on the work tape,
and moving the work tape head in direction dv(vi). Direction —1 denotes moving
the head left and +1 denotes moving the head right. We will first define a formula
AP that says that at time i if the state is ¢ and the symbol read on the input
tape is c;, and on the work tape is ¢, at positions p;,, p, respectively, then at
time i + 1 the state, symbols written and new head position is one of the tuples

described by the ¢ function.

Aglhumt = (State(q,i) A INpHA(pin, i) A INPSYMB(Cin, pin, DA
TapeHd(p,,,i) A TapeSymb(c,,, pw,i)) —
V(Ch; . p.-Chi ..Ch;

L, Pin, L,Pin>Pw’ " isPin,pw)
where

Ch , . =State(qg®,i+1) AlINpHA(piy +d2), i+ 1A
TapeSymb(cii), Pw,i+1) A TapeHd(p,, + dﬁv’), i+1)
For a halting state g (i.e., ¢ € {qacc, qrej}), We define A;’é‘l’;ﬁx as saying that the
state, symbols, and head positions don’t change. In other words,

AGRimP = (State(q, i) A InpHA(pin, i) A INnPSYymb(cin, pin) A
TapeHd(p,,,i) A TapeSymb(c,,, pw,i)) —

(State(q,i+ 1) AlnpHd(pin,i +1)

ATapeSymb(c,,, pw,i + 1) A TapeHd(py,,i + 1))

when ¢ is a halting state.
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Now Transition Consistency itself can be defined as follows.

14

4
Ptransition = /\:-l:o /\Zm:o /\nwzo{

Nbze ~TapeHd(p,y, i) —
—(TapeSymb(b, p,,,i) A TapeSymb(c, py,,i + 1))

“If head is not in some position, then symbol does not change”

dm b, b, i,Din>Pw
q9=q0 /\C,‘n:b] /\Cw:bl q4-Cin,Cw

“If head is in some position, then a transition is taken”

Acceptance
Paccept = State (Qacc > n())

We can argue that M accepts x if and only if fjs(x) is satisfiable. Further fjs (x)
can be constructed in time that is polynomial in the size of x; the size of M also plays
arole but that is fixed. O

The Cook-Levin Theorem (Theorem 1.23) is an important result in computer
science. It was the first result establishing the intractibility of a problem. Moreover,
it also implies the intractibility of the validity problem. This is because there is a
formula ¢ is valid if and only if —¢ is unsatisfiable.

Proposition 1.24 A formula ¢ is valid if and only if = is unsatisfiable.

Proof The proposition can be established by the following sequence of observations.
¢ is valid iff for every valuation v, V[¢] = T (definition of validity) iff for every
valuation Vv, V[-¢] = F (from the semantics of =) iff —¢ is unsatisfiable (definition
of unsatisfiability). O

Using Proposition 1.24 we establish the CONP-hardness of validity.
Theorem 1.25 The validity problem for propositional logic is CONP-complete.

Proof Observe that there is a simple NP algorithm to check that a formula ¢ is not
valid — Guess a valuation v, and check that v[¢] = F. Since checking non-validity
has a NP algorithm, it means that the validity problem has a CONP algorithm, and
is therefore, in cONP.

To prove the CONP-hardness of the validity problem, we make the following
observations. First, for any two problems A and B, if A <p B then A <p B.
Thus, from the NP-hardness of the satisfiability problem (Theorem 1.23), we can
conclude that the problem of checking if a formula is unsatisfiable is CONP-hard.
Since unsatisfiability is CONP-hard, it follows that validity is also CONP-hard based
on the observation in Proposition 1.24. O
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1.4 Compactness Theorem

The compactness theorem is an important property about propositional logic. In this
section, we will look at a couple of different proofs of this theorem.

A (finite or infinite) set of formulas I" is satisfiable if there is a valuation Vv such
that for every ¢ € I', v £ ¢ (or V[¢] = T); we will denote this by v = T". A set of
formulas I is finitely satisfiable if every finite subset I'y of I is satisfiable. These two
notions, satisfiability and finite satisfiability, are equivalent — this is the content of
the compactness theorem.

Theorem 1.26 (Compactness)
A set of formulas T is satisfiable if and only if T is finitely satisfiable.

Observe that if I is satisfiable then the satisfying assignment (say V) also satisfies
every subset of I" and therefore also every finite subset of I'. Thus if I is satisfiable
then it is also finitely satisfiable. The challenge is, therefore, in proving the converse
— that finite satisfiability implies satisfiability. If I" is a finite set, then clearly finite
satisfiability implies satisfiability because I' itself is a finite subset of I". So the
interesting case is when I" is infinite. We will provide a couple of very different
proofs for this result.

Before moving on to present our proofs for Theorem 1.26, we highlight an im-
portant consequence of the theorem.

Corollary 1.27 Let I be a (possibly infinite) set of formulas and let ¢ be a formula.
If T | ¢ then there is a finite subset A C T such that A = .

Proof LetT" E ¢. Then I'U {—¢} is unsatisfiable. By Theorem 1.26, there is a finite
subset A’ C T' U {—¢} that is unsatisfiable. Taking A = A’ \ {—¢}, we observe that
A C T and A U {~¢} is unsatisfiable. Thus, A [ ¢. O

It is useful to note that the above argument works even when —¢ ¢ A’.

1.4.1 Compactness using Konig’s Lemma

We present a simple and elegant proof of the compactness theorem that uses Konig’s
Lemma. This proof approach works only for propositional logic, and does not extend
to first order logic. Let us begin by recalling Konig’s lemma for binary trees.

A binary tree is said to have paths of arbitrary length if for each natural number
n, there is a path in the tree whose length is > n. An infinite path in the binary tree
is an infinite sequence of vertices of the tree such that successive vertices in the
sequence are connected by an edge. Observe that if a binary tree has an infinite path
then it also has paths of arbitrary length. This is because for every n, the prefix of
the infinite path with n + 1 vertices, is a path in the binary tree of length n. Kénig’s
Lemma says that the converse of this is also true.
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Fig. 1.2 The bold path in the tree, corresponds to the (partial) assignment V(pg) = T,v(p;) =
F.v(pa) =T.

Lemma 1.28 (Konig)
A binary tree with paths of arbitrary length has an infinite path.

Proof Suppose u is a vertex that does not have paths of arbitrary length starting from
it, then by definition, there must be a number m such that all paths starting from u
are of length at most m. Now, if a vertex u has the property that none of its children
v have paths of arbitrary length starting from them, then u also cannot have paths of
arbitrary length starting from it. The contrapositive of this statement is that if u is
vertex with paths of arbitrary length starting from it, then at least one of its children
v also has paths of arbitrary length.

Suppose a binary tree has paths of arbitrary length. Then the root is a vertex that
has paths of arbitrary length starting from it. The infinite path is given by vg, vy, ...
where v is the root. v;, is the left child of v;, if the left child has paths of arbitrary
length, and v;, is the right child of v; otherwise. O

Let us fix the set of propositions in our logic to be Prop = {p; | i € N}.
Truth assignments to Prop can be thought of as (infinite) paths in the complete,
infinite binary tree — vertices at level i correspond to proposition p; and if the path
takes the left child at level i, then it corresponds to the assignment setting p; to 0;
otherwise it sets p; to 1. Finite paths in this tree, correspond to partial assignments.
So a path of length i corresponds to an assignment that sets values to propositions
{po,p1,-..pi-1}.Forexample, in Fig. 1.2, the bold path corresponds to the (partial)
assignment V that sets V(pg) = T, v(p1) = F, and v(p;) = T. Recall that, whether a
formula ¢ holds in an assignment, depends only on the truth values assigned to the
propositions that appear in ¢ (Lemma 1.13). Thus, partial assignments can determine
the truth of formulas that only mention the propositions that have been assigned. For
example, the partial assignment indicated by the bold path in Fig. 1.2 can determine
the truth of any formula that only mentions pg, p1, and p».
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Proof (Of Theorem 1.26) Let " be a set of formulas that is finitely satisfiable.
Logical equivalence (=) partitions I" into equivalence classes. Take I’ to be a subset
of T" that contains exactly one representative from each equivalence class. That is,
I € I" such that

e Forevery ¢ #¢y €IV, ¢ # ¢, and
e Forevery ¢ €I, there is ¢ € I'” such that ¢ = .

Since IV € T', I is also finitely satisfiable.

Recall that occ(gp) is defined to be the set of propositions that appear in ¢. For
i >0, define I'; to be

Iy ={p eI’ |occ(e) € {po.p1,-..pi-1}}

Observe that I'; defines an non-decreasing sequence of sets, i.e., forevery i, I'; C T'i4q.

Also, I” = U;»0I;. The most important observation about I'; is that it is a finite set

— since I'" has only one formula from each equivalence class of =, each formula in

I'; corresponds to a unique subset of assignments of {po, ... p;—1} to {F, T}. Thus,

we have |I;| < 2. Since I'” is finitely satisfiable, I'; is satisfiable for every i.
Define Tt as the following set of (partial) truth assignments.

Tr = v {po,...pis} = {F.THVE T},

i>0

Recall that we say v |= I'; if v satisfies all formulas in I';. Consider an assignment
v € Tr with domain {pg, pi,...pi-1}. By definition v |= T';. For j < i, since
I'; ¢ Iy, v | I';. Further, I'; only has propositions {po,...p;_1}, we also have
V' £ T'j, where V' is the restriction of Vv to the domain {pg,...p;-1}. SoVv’ € Tr.
Viewed as paths in the infinite binary tree (see Fig. 1.2 ), v is a path of length 7, v/
its prefix of length j. What we observe is that Tt is “closed” under prefix of paths.
Thus, if we restrict our attention to the assignments in 7t then they form a subtree
of the infinite binary tree.

Let us consider Tt. In the previous paragraph we observed that it forms a subtree
of the infinite binary tree. It has paths of arbitrary length; this is because every I';
is satisfiable, and an (partial) assignment satisfying I'; is a path of length 7 in the
tree. Since Tt is a binary tree, by Konig’s lemma, it has an infinite path. The infinite
path corresponds to a (full) truth assignment, say V... Further, since every prefix of
V. is a (finite) path in Tr, it means that the prefix of length i (viewed as a partial
assignment) satisfies I';. Therefore, for every i, V. |= I';, and hence v, = I'". Now,
since every formula ¢ € I is logically equivalent to some formula ¢ € T”, it means
V. ET. Thus, I' is satisfiable. O
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1.4.2 Compactness using Henkin Models

The proof of the compactness theorem we present in the section, relies on construct-
ing a truth assignment for a set of formulas I" through the process of saturation,
where we add formulas to the set I" as long as it remains finitely satisfiable. This is
an approach proposed by Henkin.

Let us fix I' to be a finitely satisfiable set of formulas. We begin by making an
important observation about such sets, namely, it can always be extended by adding
a formula or its nagation, while preserving the property of finite satisfiability.

Lemma 1.29 Let T be finitely satisfiable, and let ¢ be any formula. Then either
' U {¢} or T'U {~¢} is finitely satisfiable.

Proof Assume (for contradiction), neither 'U{¢} nor [U{—¢} is finitely satisfiable.
By definition of finite satisfiability, this means that there are finite subsets I’y C
I'U{¢}and I'y € I" U {—~¢} that are not satisfiable. Consider the (finite) set A =
(TouT) \ {e, 7¢}. Observe that since A C I, A is satisfiable. Let v be a satisfying
truth assignment for A. Then either V = ¢ or vV = —¢. Therefore, either v |= I'y or
V | T'1, which contradicts our assumption that both Iy and I'j are unsatisfiable. O

The set of all formulas of propositional logic are countable, i.e., there is a 1-to-1,
onto function f : N — #, where ¥ is the set of all propositional logic formulas.
Therefore, we can enumerate all the formulas in propositional logic. Let ¢g, ¢1, . . .
be an enumeration of all formulas. Let us, inductively, define a sequence of sets of
formulas as follows.

Ag =T
A = Ap-1 U {p,-_1} if this is finitely satisfiable
"7 | Apsyi U {~¢,_1} otherwise

Observe that the sequence is non-decreasing, i.e., for every n, A,, € A,41. Further,
by induction on n, using Lemma 1.29, we can conclude that A, is finitely satisfiable
for all n. Finally, define

A=A

neN

Since A, is finitely satisfiable for all n € N, we can conclude that A is also finitely
satisfiable.

Proposition 1.30 A is finitely satisfiable.
Proof Consider any finite subset X = {1, ... ¢} of A. Observe, by definition A,

for each i, there is some n; such that € A,,. Taking n = max{nj, ...n,;,}, observe
that X C A,. Since A, is finitely satisfiable, X is satisfiable. This means that A is
finitely satisfiable. O

Finite satisfiability of A implies that A is a complete set.

Proposition 1.31 For any formula ¢, —¢ € A if and only if ¢ ¢ A.
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Proof Without loss of generality assume that ¢ is the nth formula, i.e., ¢ = ¢,. Now
by definition, in step n of the construction of A, if ¢ ¢ A then —¢ € A. On the other
hand, if {¢, —=¢} C A then since {¢, —¢} is not satisfiable, A would not be finitely
satisfiable. But since A is finitely satisfiable, it must be the case that at most one out
of ¢ and —¢ belong to A. O

We are now ready to complete the proof of Theorem 1.26. That is, we will show
that I' (which is finitely satisfiable) is satisfiable. Consider the truth assignment v

defined as follows. T
B ifpeA
v(p) = {Fif—'p €A

Note that v is well-defined because by Proposition 1.31, for any proposition p, exactly
one among p and —p is in A. v shows that A is satisfiable, because of the following
result.

Proposition 1.32 For any formula ¢ € A, V |= .

Proof Consider an arbitrary ¢ € A. Let P = occ(y¢) and P™ = {-p | p € P}.
Consider the set
U=(ANnP)U(ANP") U {¢p}.

Since U is a finite subset of A, by Proposition 1.30, we have U is satisfiable. Let v’
be a truth assignment such that v/ |= U. Observe that forevery p €e ANP,V/ (p) =T
and for every —=p € AN P~,V/(p) = F. Therefore, v and v’ agree on all propositions
in P. By Lemma 1.13, since V' |= ¢, we have v |= . O

Proposition 1.32 establishes the fact that v |= A. Since I C A, v |= T". Therefore,
I' is satisfiable.

1.4.3 An Application of Compactness: Coloring Infinite Planar Graphs

In this section we present an application of the compactness theorem. We will
show that all infinite planar graphs are 4-colorable. We begin by recalling the graph
coloring problem, and its connection to propositional logic.

Definition 1.33 (Graphs)

An undirected graph G = (V,E) is a set of vertices V, and a set of edges
E C V xV,such that E is symmetric (i.e., (1, v) € E iff (v,u) € E) and irreflexive
(i.e., (u,u) ¢ E forany u € V).

Definition 1.34 (Coloring)

A k-coloring of graph G = (V, E) is a function ¢ : V — {1,2,... k} such that if
(u,v) € E then c(u) # c(v). If G has a k-coloring then G is said to be k-colorable.

The problem of determining whether a graph is k-colorable can be “reduced” to
checking the satisfiability of a set of formulas.
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Proposition 1.35 For any graph G = (V, E) (with possibly infinitely many vertices),
there is a set of formulas U i such that G is k-colorable iff I'g i is satisfiable.

Proof For each vertex u € V and 1 < i < k, take the proposition r,; to denote
“vertex u has color i”. I'g  is the following set of formulas.

e For each u € V, the formula r,; V 1y V -+ V ryi. Intuitively these formulas
capture the constraint that every vertex gets at least one of the k colors.

* Foreachu € Vand 1 <i,j < k with i # j, the formula -r,; V —r,;. These
formulas capture the constraint that a vertex does not get two different colors.

* For each edge (u,v) € E and color 1 < i < k, the formula —r,; V —r,;. These
formulas ensure that adjacent vertices do not get the same color.

For a coloring ¢, define the valuation v, such that v.(r,;) = T iff c(u) = i.
Similarly for a valuation v, define a function ¢y (u) =i iff v(r,;) = T. Observe that

* If ¢ is a valid k-coloring of G then V. satisfies I'G x, and
» If v satisfies I'g « then cy is a valid k-coloring of G.

Proof of the above observations is left as exercise. O

Finite, planar graphs are graphs with finitely many vertices such that there is a
drawing of the graph on the plane where the edges do not cross. A celebrated result
about finite, planar graphs is that 4 colors are sufficient to color the graph.

Theorem 1.36 (Appel-Haken)
Every finite planar graph is 4-colorable.

We will show that the compactness theorem in fact shows that Theorem 1.36 can
be extended to infinite graphs as well.

Corollary 1.37 All infinite planar graphs are 4-colorable.

Proof Let G be an infinite planar graph. Consider the set of formulas I'g 4 con-
structed in Proposition 1.35. Observe that I'g 4 is finitely satisfiable. This can be
seen as follows. Let Iy be any finite subset of ' 4. Let G be the graph induced by
the vertices u such that the proposition p,; appears in I'y for some i. Now, Gy is a
finite, planar graph and so by Theorem 1.36 has a 4-coloring c. Then by the proof
of Proposition 1.35, the valuation Vv, satisfies I', 4. Since I'y C I'g, 4, we have v,
satisfies I'.

Since I' 4 is finitely satisfiable, by the compactness theorem, I'G 4 is satisfiable.
Let v be a satisfying assignment for I'G 4. Again, by Proposition 1.35, ¢y is a valid
4-coloring of G. O






Chapter 2
Proof Systems

If logic is the science of valid inference, then proofs embody its heart. But what
are mathematical proofs? They are a sequence of statements where each statement
in the sequence is either a self evident truth, or “logically” follows from previous
observations. Thus, sound derivation principles are identified by correct proofs.

Example 2.1 Euclid’s Elements sets out axioms (or postulates), which are self evident
truths, and proves all results in geometry from these truths formally. Euclid lays out
five axioms for geometry.

Al A straight line can be drawn from any point to any point.

A2 A finite line segment can be extended to an infinite straight line.

A3 A circle can be drawn with any point as center and any given radius.

A4 All right angles are equal.

A5 If a straight line falling on two straight lines makes the interior angles on the
same side less than two right angles, the straight lines, if produced indefinitely,
will meet on that side on which the angles are less than two right angles.

Using these axioms, Euclid proves a number of results in geometry. He uses
previously proved propositions in the proofs of later observations. An example of
such a result, is the proof that the sum of the interior angles of a triangle is 180°.

Claim The interior angles of a triangle sum to two right angles.

Proof Consider the diagram in Fig. 2.1 . The proposition is proved using the
following sequence of statements.

1. Extend one side (say) BC to D [A2]

2. Draw a line parallel to AB through point C; call it CE [P31]

3. Since AB is parallel to CE, BAC = ACE and ABC = ECD [P29]
4. Thus, the sum of the interior angles = ACB + ACE + ECD = 180°

References [P31] and [P29] in steps 2 and 3, allude to previously propositions 31
and 29, proved in the book. 0O

33
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Fig. 2.1 Proof that the sum of the internal angles of a triangle are 180°

Example 2.1 highlights the basic elements of identifying good proofs — one needs
to identify axioms, and the principle by which new conclusions can be drawn from
previously established facts. A formal proof system for a logic identifies such axioms
and rules of inference. We will introduce two such proof systems for propositional
logic — a Frege-style proof system, and resolution — to give a flavor of different
types of proof systems.

2.1 A Frege-style Proof System

Proof systems are most convenient presented as a collection of rules of the form

r

¥

where I is a set of formulas (schemas) and ¢ is a formula (schema). Such rules can
be interpreted as follows — if every formula in I" can be established then ¢ can be
concluded from these observations. One special case is when I' = 0. In this case
the formula below the line can be concluded without establishing anything; in other
words, it is an axiom. Instead of explicitly writing @ above the line, we simply don’t
write anything, and present this axiom in the form

12

Before presenting our first proof system, observe that all propositional logic
formulas can be expressed using just implication and L. To see this observe that —¢
is the same as ¢ — L and ¢ V ¢ is (¢ — L) — . Our first proof system, shown in
Fig. 2.2, assumes that are formulas are written using implication and L.

Our first proof system has 3 axiom schemas and one rule of inference. The
formulas ¢, ¢, and p in Fig. 2.2 , can be any formulas. For example, taking ¢ = p
and ¥ = p, we get p — (p — p) as an instantiation of the first axiom schema,
while taking ¢ = pand ¢ = p — p, we get p — ((p — p) — p) as a different
instantiation of the same schema. The rule of inference in this proof system, is a very
commonly used rule. It, therefore, has a special name; it is called modus ponens.
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o — (¥ — ) (¢ = (¥ —p)) = (= ¥) = (¢ —p))
4 =Y
((p—>1L)>1)—>9 v

Fig. 2.2 A Frege-style Proof System

Proofs in our (formal) proof system, will be like the usual proofs in mathematics —
they will be a sequence of statements. However, instead of using english statements,
here they will simply be well formed formulas of propositional logic. The statement
(or formula) being proved is the last one in the sequence. The sequence of formulas
in a proof should be consistent with the axioms and rule of inference of the proof
system, for it to be valid proof. This is captured in the definition below.

Definition 2.2 (Proofs)
A proof of ¢ from a set (possibly infinite) of hypotheses I is a finite sequence of
wifs Y1, ¥2, ... ¥, such that ¥, = ¢, and for every k € {1,2,...m}, either

e Yrel,or
* Yy is an axiom, or
* Yy follows from ¥; and ¥ ;, with 7, j < k, by modus ponens.

The length of such a proof is the number of wffs in the sequence, namely, m. If there
is a proof of ¢ from I', we denote this by I' + ¢. When I = (0, we write this as + ¢
(as opposed to 0 + ¢).

Let us look at some proofs in our system.

Example 2.3 Let us construct a proof of ¢ — p from the hypothesis {p}. Such a
proof is as follows.

1. p — (¢ — p) Axiom 1, taking ¢ = p, and ¥ = ¢
2.p Hypothesis in set I"
3.9—>p Modus Ponens on lines 1 and 2

Thus, {p} + g — p.
We will now show that+ L — ((p — q¢) — (p — p)).

L.(p—(qg—p)—(p—>q9 —(p—p)
Axiom 2, taking ¢ = p,y =gandp =p
2.p—(qg—p)
Axiom 1, taking ¢ = p,and ¢ = g
3.(p—=>q9) > (p—p)
Modus ponens on lines 1 and 2
4. ((p>q9) > (p—-p)—->L—->p—>9 —(p—p))
Axiom 1, takingp = (p > q) > (p » p),andyy = L
5L>(p—q)—(p—p)
Modus ponens on lines 3 and 4
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Finally, let us show + p — p.

L(p=>p—=p—=p)—=>(p=>(p—=p)—((p—rp)
Axiom of 2, taking g = p,y =p > pandp =p
2.(p = ((p—=p)—=p)
Axiom 1, taking ¢ = p,andy =p — p
3.(p=>(—-p)—>(@—-p
Modus ponens on lines 1 and 2
4.p—(p—p)
Axiom 1, taking ¢ = p, ¥ = p
S.p—p
Modus ponens on lines 3 and 4

In proof systems, like the one we are considering in this section, there is a very
useful theorem that makes writing proofs easy. This is called the deduction theorem.
Some proof systems have it as an explicit rule.

Theorem 2.4 (Deduction Theorem)
T U{p} -y thenT + ¢ — .

First, observe that the converse of Theorem 2.4, is clearly true, i.e.,if ' F ¢ — ¢
then I' U {¢} + . Establishing this left as an exercise. The proof of the deduction
theorem is a more difficult exercise. The informal outline of the proof is as follows.
Assume that py, p2, . .. pm is a proof of ¢ from I' U {¢}. One shows by induction on
i that, for each line i, we have I' + ¢ — p;.

The deduction theorem simplifies the task of writing down proofs in our proof
system.

Example 2.5 Consider the task of showing + (¢ — ¢¥) — ((¢ — p) = (¢ — p)),
where ¢, ¥, and p are arbitrary wffs. Our approach to solving this problem, would
instead be to instead establish {¢ — Y, ¥ — p, ¢} + p. If we succeed, we will get
the desired result by using the deduction theorem a few times.

L{e—>v.¥ > pptre—y Hypothesis

2 {e = ¢y > pptty Hypothesis

3 {e =¥y = p, oty Modus Ponens on lines 1 and 2
d{o—=y Yy > pptry —op Hypothesis

S5{¢e =¥, ¥y = p,oltp Modus Ponens on lines 3 and 4
6.{p—=y, ¥y >plro—p Deduction Theorem

T.{p > Ut —p) > (¢ > p) Deduction Theorem
8.+ (¢ > v) — ((¢ —» p) = (¢ — p)) Deduction Theorem

2.1.1 Completeness Theorem

Proofs in a formal proof system like the one in Fig. 2.2 try capture the notion of
correct logical inference. But what do we mean by “correct logical inference”? There
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are two aspects to such a question. First, any conclusion drawn by a proof must be
logically correct, i.e., consistent with the semantics we defined. In other words, we
should not be able to conclude any false facts using a proof. This is often referred to
as the soundness of the proof system. The second is that the proof system must be
rich enough to be able to prove all true facts. This is called the completeness of the
proof system. We make this connection between provability and the semantics we
gave precise in the following theorem.

Theorem 2.6 (Soundness and Completeness)

For any set of formulas T (possibly even infinite) and any wif ¢ the following two
properties hold.

Soundness IfT'+ @ thenT | ¢.
Completeness IfT" = ¢ thenT + ¢.

Thus, any formula proved without any hypotheses is a tautology, and every tau-
tology has a proof from the empty set of hypotheses in our proof system. We will
not prove Theorem 2.6. We will instead prove such a soundness and completeness
theorem for the second proof system that we will introduce for propositional logic.
Proving soundness is usually easy. It requires making sure that the axioms and proof
rules are consistent with the semantics of the logic. In this case it requires showing
that every axiom in the proof system is indeed a tautology, and modus ponens is
consistent with logical consequence. Proving completeness is typically hard.

2.2 Resolution

Notice that the proofs for formulas that we constructed in Examples 2.3 and 2.5 are
very symbolic and mechanical — one doesn’t need to understand what the formula
we are trying to prove is saying or what the meaning of the hypotheses is. Instead the
proofs are constructed by looking at the pattern of formulas. This raises the prospect
of trying to mechanize the process of searching for proofs of formulas. However,
the proof system in Sect. 2.1 is not good for this purpose. This is because at any
point during the construction of the proof, one can extend it by using any one of
the axiom schemas. Since each axiom schema can be instantiated in infinitely many
possible ways, this makes mechanization difficult. A proof system that is amenable to
mechanization is one that has very few choices at any step of the proof construction.
Resolution is such a proof system. Resolution has no axioms and only one rule of
inference.

Resolution is a method for refutations, i.e., it proves that a formula is “not true”
or more precisely unsatisfiable; recall that a formula ¢ is unsatisfiable if v £ ¢ for
all valuations v. Thus unlike the proof system in Sect. 2.1 which proves validity of
a formula directly, resolution works by showing that the negation of the formula is
unsatisfiable. One can imagine resolution refutations like a proof by contradiction,
where one assumes the negation of what one is trying to establish, and trying to
show that that is impossible.
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Resolution works when the formulas are represented in conjunctive normal form
(CNF). We begin, therefore, by introducing conjunctive normal form formulas. CNF
formulas are built using propositions and their negations, and the logical operators
of A and V. It will be convenient to think of V and A being present implicitly (see
Definition 2.7 below) instead of explictly in the syntax.

Definition 2.7 (Conjunctive Normal Form)
Conjunctive normal form formulas are defined as follows.

* A literal is a proposition p or its negation —p.

* A clause is a disjunction of literals. We will think of a clause as a set of literals,
implicitly assuming that the literals are disjuncted. In this interpretation, a truth
valuation satisfies a clause if some literal in the set evaluates to 1 under the truth
valuation.

* The empty clause is the clause containing no literals. By definition, no truth
assignment satisfies the empty clause.

e A formula is said to be in conjunctive normal form (CNF) if it is conjunction
of clauses. Again, we will think of a CNF formula as a set of clauses, with
the conjunction being implicit in the syntax. With this interpretation, a truth
valuation satisfies a CNF formula if it satisfies every clause in the set representing
the formula.

CNF formulas as sets of sets of literals

In Definition 2.7, clauses are represented as sets of literals, and CNF formulas as sets
of clauses. Why is this well-defined? The reason is because V and A are both idempo-
tent, commutative, and associative. Ildempotence means that disjuncting/conjuncting
a formula with itself is equivalent to the formula. In other words, for any wif ¢ we
have

pVep=9 PAP =

Idempotence of disjunction and conjunction ensures that representing them as sets
which don’t have repeated elements is faithful with the semantics. Commutativity
and associativity mean that the order in which formulas are disjuncted/conjuncted
does not change its semantics. That is, for any formulas ¢, ¢, and p,

pVY =y Ve PAY =Y Ay
(V) Vp=eV(¥Vp) (@AY)Ap =@ AW Ap).

Thus, commutativity and associativity ensure that sets (which are ordered collec-
tions) are faithful representations of disjunctions and conjunctions of formulas.

CNF formulas are formulas in a restricted form. However, they are not semanti-
cally restrictive. That is, every wff ¢ can be shown to be equivalent to a formula i
in CNF — we can push negations all the way in using DeMorgan’s Laws, and then
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distribute v over A. We will look at this conversion process more closely later in this
chapter. Let us look at some examples of CNF and non-CNF formulas.

Example 2.8 The formulas (p; Aq1) V (p2 Aq2), =(p A g) are examples of formulas
that are not in CNF — neither formula has A as the topmost connective. The formulas
(p1Vp2)A(p1Vagr)A(q1V p2)A(g1V gqz) and =p V =g are formulas in CNF as
they are conjunctions of clauses.

We will represent CNF formulas as set of set of literals, without explict conjunc-
tions and disjunctions. For example, {{p1, p2},{p1-92},{q1, pP2}.{q1,q2}} is the
way the formula (p1 V p2) A (p1V q2) A(q1V p2) A (g1 V q2) will be represented.
Similarly, {{-p, =¢}} will be the representation of —p V —q.

The resolution proof system is a sequence of transformations that preserve satis-
fiability, until the empty clause (which is by definition not satisfiable) is obtained.
The transformations involve the single rule of inference that constructs the resolvent
of two clauses.

Definition 2.9 (Resolvent) The only rule in the resolution proof system is as follows.

Cu{pt DU{-p}
CuD

The conclusion C U D is called the resolvent of C U {p} and D U {=p} with respect
to proposition p.

Two clauses may have multiple resolvents depending on which proposition one
chooses to resolve with respect to. The resolvent of two clauses may be the empty
clause if C and D are empty sets. Let us look at some examples to clarify this
definition.

Example 2.10 Consider the clauses {p, =g, —r} and the clause {-p, =q}. The resol-
vent of these two clauses (with respect to p) is the clause {—g, —r}.

On the other hand, if we consider clauses {p, ¢} and {-p, g}, we have two
possible resolvents. If we resolve with respect to p, we get {g, —q}, and if we resolve
with respect to g, we get {p, -p}.

Definition 2.11 (Refutations)

A resolution refutation of a (possibly infinite) set of clauses I' is a sequence of
clauses C;, C,, ... C,, such that each clause Cy is either in I" or a resolvent of two
clauses C; and C; (i, j < k), and the last clause C,, in the refutation is the empty
clause.

Example 2.12 The set of clauses I' = {{p, ¢}, {-p.r}, {—q,r}, {-r}} has the fol-
lowing resolution refutation.
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1. {_'p’ V}

2. {-W'}

3. {=p} Resolventof 1 and 2
4. {~q.r}

5.{—gq} Resolvent of 2 and 4
6. {p.q}

7. {q} Resolvent of 3 and 6
8. {} Resolvent of 5,7

2.2.1 Proving Tautologies with Resolution

As mentioned before, resolution refutations establish the unsatisfiability of a formula
given in CNF. To prove that a formula is a tautology using resolution, we need to use
Proposition 1.24. That is, to prove that ¢ is a tautology, we need to convert —¢ into
CNF. This can be done as follows.

1. Push negations inside using DeMorgan’s Laws. Recall that DeMorgan’s laws
say the following.

(Y1 AY2) =gV o (Y1 V) =Y A Yo

2. Remove double negations, because = — = ¢
3. Distribute V over A, using the distributive law, which says

U1V (Yo Ag3) = (W1 V) AW Vis) W1 AY2) Vs = (W1 V) A2 Vips)

Example 2.13 Let ¢ = (=p1 V =q1) A (=p2 V =gq2). We can convert —¢ to CNF as
follows.

1. Pushing negations inside using DeMorgan’s Laws, we get
(==p1 A =mq1) V (mmp2 A =mg2)
2. Removing double negations, we get
(P1Aq)V (P2 Aq2)
3. Distributing V over A, we get

(P1VP2) NP1V a2 A(q1V p2) A(q1V q2)

The above method while semantically correct, can be expensive. The main reason
is that when we distribute V over A, the resulting formula can be exponentially larger.
For example, if we have the formula
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\n/(l?i A qi)
i=1

and we distribute V over A, we will get a CNF formula where each clause is of the
form (ry Vry V.-V ry,), where r; is either p; or ¢;. This will result in a formula
with 2" clauses (as we have two choices for each r;).

The exponential blowup can be avoided by using a translation proposed by Tsejtin.
Tseijtin’s method does not construct a logically equivalent CNF formula. Instead,
for the formula —¢, it constructs a CNF formula ¢ with the property that —¢ is
satisfiable if and only if ¢ is satisfiable. This weaker correspondence between —¢
and ¢ is sufficient in this context; we will have ¢ is a tautology if and only if ¢ is
unsatisfiable.

Tsejtin’s Method.

Let us describe the conversion of formula —¢. The first step is to introduce new
extension propositions x,, for each subformula i of ¢ as follows.

* For each proposition in ¢, the extension proposition x, is the same as p.
* For each negated subformula —, x_; is taken to be the literal —x,,.
* For all other subformulas ¥, x is a new proposition.

Having identified the extension propositions, the CNF formula that we will construct
corresponding to —¢ is as follows. Here, we will use the representation of CNF
formulas as sets of sets of literals. So for ¢, we define I', to be the following set of
clauses.

 The singleton clause {-x,}
* For each subformula ¥ A p, we add the CNF formula equivalent to “xy,, <
Xy A Xp. In other words, we will have the clauses

{_'xlﬂ/\p"xlﬂ} {_'xlﬁ/\paxp} {xlﬁ/\p’ _‘xdxa_‘xp}

* For each subformula ¢ v p, we add the CNF formula equivalent to “xyv, <
Xy V X,. In other words, we will have the clauses

{xyvp, 7xy} {xyvp, xp} {=xyvp, Xy, xp}

Observe that the number of subformulas of a given formula ¢ is linear in the size of
¢. Thus the number of extension propositions we introduce is linear in ¢. Further,
for each subformula, we are introducing only a constant (3 to be precise) number of
clauses. This means that resulting set of clauses I, is linear in the size of ¢.

Example 2.14 Let us apply Tsejtin’s construction to the formula in Example 2.13.
Recall that ¢ = (=p1 V =q1) A (=p2 V =q2). The first step is to identify the new
extension propositions we need. In this case there are only 3 that we will add —
x, corresponding to ¢, x; corresponding to (=p1 V —q1), and x, corresponding to
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(=p2 V ~g2). Our CNF formula I', will be obtained by adding 3 clauses for each of
these interesting subformulas corresponding to x,, x1 and x,. Thus, we have I'y, is
the following set

{_‘xw}:

{=xg, x1}, {xg, X2}, {x, ~x1, 2},
{x. ik Axn g1 ) {—x1, —p1 g},
{x2, p2}, {x2, 2}, {=x2, =p2, ~q2}

In the above description, we have replaced ——p by p for p € {p1, 41, P2, 92}

2.2.2 Completeness of Resolution

We will now prove that resolution is a “correct” proof system. In other words, we will
prove the soundness and completeness of resolution. What that means for resolution
is that a set of clauses I" has a resolution refutation if and only if I is unsatisfiable.
Note that we will establish this for any set I', including those that are infinite. Recall
that a set of clauses I' is satisfiable if there is a truth assignment Vv such that for every
clause C € T, there is some literal £ € C such that v[{] = T.

Theorem 2.15 (Soundness)
If a set of clauses T has a resolution refutation, then I is unsatisfiable.

Proof The crux of the proof of the soundness theorem, is to establish the “correct-
ness” of the resolution proof rule. That is captured by the following lemma.

Lemma 2.16 (Resolution Lemma)

Let A be a set of clauses and let C be the resolvent of two clauses D, E € A. Then
for any assignment V, V |= A if and only if v E AU {C}. O

Proof (Of Lemma 2.16) Observe that if v |= A U {C}, then clearly v = A.
Consider a truth assignment such that v = A. Without loss of generality, let us
assume there is a proposition p such that p € D and —p € E. If v(p) = T then since
V [ E, there must be a literal £ € E (obviously ¢ # —p) such that V[£] = T. Since
¢ € C, we have v |= C. On the other hand, if v(p) = F then since v | D, there
must be a literal £ € D (obviously ¢ # p) such that v[[¢] = T. Since £ € C, we have
vEC. O

Using Lemma 2.16, we are ready to complete the proof of Theorem 2.15. Let
Ci,Cy,...Cy,, be a resolution refutation of I'. Let us define a sequence of sets of
clauses inductively as follows.

= T;=T_1U{C}

Thus, I'; = TU{Cy, Cs,...C;}. Since Cy, = {}, Ty, is clearly unsatisfiable. Therefore,
by Lemma 2.16 (and induction), I" = I'j is also unsatisfiable. m]
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Theorem 2.17 (Completeness)

If a set of clauses T is unsatisfiable then there is a resolution refutation of T

We will present a proof of the completeness theorem due to David and Putnam.
For finite I', the proof is constructive. That is, when I" is unsatisfiable, it gives a
specific construction of a refutation for I'.

Proof Let I be an unsatisfiable set of clauses. By the compactness theorem (The-
orem 1.26), there is a finite subset A C I' that is unsatisfiable; this can be seen
by taking ¢ = L in Corollary 1.27. We will prove the completeness theorem by
induction on the number of propositions appearing in A. Before outlining the proof,
it is useful to point out that since A is unsatisfiable, it must be a non-empty set of
clauses. This is because an empty set of clauses is (by definition) satisfiable.

For the base case, observe that if A contains no propositions, then A contains the
empty clause. Then the refutation for A is simply {}.

Let us now consider the induction step. Let us call a clause C trivial if there is a
proposition p such that {p, =p} € C. Trivial clauses are valid, and hence they can be
removed from A without affecting its satisfiability. Thus, without loss of generality,
we will assume that A does not have any trivial clauses. Let p be a proposition that
appears in A. With respect to proposition p, A can be partitioned into 3 sets.

A§={C€A|Cﬂ{pﬁp}=®}
+={CeA|peC}
AP ={CeA|-peC}

Thus, Ag are clauses where p does not appear, A? are those where p appears
positively, and AP are those where p appears negatively. Let us construct a new set
of clauses as follows.

Ap=Al U{CUD|CU{p} e A and DU {-p} € AP}

Thus, A, has all the clauses in Ag and all resolvents of clauses from AY and AP.
Observe that p no longer appears in A,. If we can argue that A, is unsatisfiable then
we can complete the proof by using the induction hypothesis — the refutation for A
is just all the steps to create A, followed by a refutation for A,.

To finish the proof, we need to establish the following lemma.

Lemma 2.18 If A, is satisfiable then so is A. O

Proof (Of Lemma 2.18) Let v be a truth assignment that satisfies A,. Let v’ be
the truth assignment that is identical to Vv, except that it flips the assignment to p.
Observe that since v and v’ only differ on the assignment to p, they agree on all the
propositions appearing in A,,. Therefore, v’ also satisfies A,.

Let us assume without loss of generality, that v(p) = T and vV’ (p) = F. We will
show that either v or v’ satisfies A. Observe that both v and v’ satisfy Aop (because p
does not appear in A). Also, v satisfies A} (because all clauses in AY have p) and
v’ satisfies AP (because all clauses in A” have —p). Now if v satisfies AP, v satisfies
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A. Similarly, if v’ satisfies AY then v’ satisfies A. So the problem is if neither of
these hold. In that case that is a clause C U {p} € A that is not satisfied by v’ and
there is a clause D U {—=p} € AP that is not satisfied by v. But then their resolvent
CUD € A, is not satisfied by either v or v, which contradicts our assumption that
both v and Vv’ satisfy A,. O

With the proof of Lemma 2.18, we have completed the proof of Theorem 2.17.0

2.3 Craig’s Interpolation Theorem and Proof Complexity

Craig’s Interpolation theorem is a classical result in logic that holds for many dif-
ferent logics. The theorem has been used in different contexts in the broad area
of formal methods and verification — in hardware and software specification; rea-
soning about large knowledge databases; type inference; combination of theorem
provers for different first order theories; model checking of finite and infinite state
systems through the construction of abstractions. In this section we look at some of
its connections to theoretical computer science and complexity theory in particular.
We will introduce the theorem for propositional logic, and its connection with proof
lengths for propositional logic formulas.

2.3.1 Craig’s Interpolation Theorem

Before we state and prove the interpolation theorem, it will be convenient to introduce
some notation. A list of propositions pi, pa, ... p, will be denoted by 77 when
the actual number of propositions in the list is unimportant. A formula ¢ over
Propositions pi, p2, ... Pnsq1,4q2, - - - gm will be sometimes denoted as (7, q),
making explicit the propositions that may syntactically appear in ¢. Finally, for a
truth valuation v and a list of propositions 7, v I will denote the restriction of v to

the propositions ?; note that v has an infinite domain, the domain of v f? is finite
and restricted to 7.

Theorem 2.19 (Craig)

Suppose = ¢(P.q) — w(q,T). Then there is a formula n(q) such that
Eo(P.q) » n(q) and = n(q) — w(q, 7). nis said to the interpolant of ¢ and
v

Before presenting the proof of Theorem 2.19, let us examine its statement. There
are different equivalent ways of presenting this result. Recall that = ¢ — ¢ iff ¢ E .
Therefore, we could say that if i is a logical consequence of ¢ then 7 is a formula
that captures the reason why, using only the common propositions. In this case, since
¢ E n, we could think of n as an “abstraction” of ¢ (as n “forgets” the constraints ¢
imposes on ) that is sufficient to ensure ¢. Another formulation of Craig’s theorem
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is as follows. Suppose ¢ (7, 7) Aw (¢, 7) is unsatisfiable (or equivalently, ¢ | —)),
then there is a formula 77(¢) over the common propositions such that ¢ = 1 and
n Ay is unsatisfiable (i.e., = ). Informally, 7 is an abstraction of ¢ that captures
why ¢ A ¢ is unsatisfiable. We will consider this formulation of Craig’s theorem in
terms of unsatisfiability, when we revisit resolution later in this section.

Proof (Of Theorem 2.19) The proof of Craig’s Interpolation Theorem is quite sim-
ple in this context of propositional logic. Let us define

M=1{vig [V[e] =T).

Observe that since the domain (and range) of all functions in M is finite, M is a finite
set. Let us, without loss of generality, take M = {v{, Vs, ...V, }. The interpolant n
will essentially say that “one among the assignments in M hold”. Formally,

n(q) =V 1(‘1(l) A qél) A ql(cl))
where
W _a; ifvi(g) =T -
q/ - {—lqj otherwise and 1AL gk

Clearly from the definition of M and 7, we have o(7,7q) E n(7). Let us now
argue that () | ¢(¢, 7). Consider an arbitrary valuation v such that vly] =F
Since we have ¢ [= ¢, it must be that v[¢] = F. Consider any assignment v’ such that
Vig = v’ I 7- Since v and v’ agree on the propositions appearing in ¢, we have

vV[y]=F. Agam since y is a logical consequence of f o, it must be that v/ [¢] = F.
Thus, no matter how the assignment to propositions 7 is changed from v, we will
not be able to satisfy ¢. This means that v 3¢ M. Thus, by our construction of 7,
v[n] = F. This establishes that n = . O

Example 2.20 Let us look at a simple example that illustrates the construction of
the interpolant in the proof of Theorem 2.19. Consider ¢ = p A (g1 V ¢2) and let
¥ =(q1VqaVr).Itiseasy to see that = ¢ — . The set M constructed in the proof
in this case would be M = {VrT, VTF, VFT}, Where Vv;; is the function

Vij(q1) =i and Vij(g2) = j
Given M, the proof constructs the follow formula as interpolant.

n=0(q1 Aq2) V(g1 A—=q2) V (~q1 A q2).

2.3.2 Size of Interpolants

The interpolant 7 constructed in the proof of Theorem 2.19 is exponential in the
number of common variables, and therefore, could be exponential in the size of the
formulas ¢ and ¢. Can this be improved? Small interpolants can have a big impact in



46 2 Proof Systems

the contexts where interpolants are used, like in formal verification. Or can we prove
that, in the worst case, the interpolant needs to be exponential in the size of the input
formulas? Unfortunately, like many questions in theoretical computer science, this
remains open and unresolved — we cannot prove or disprove that the construction
in the proof of Theorem 2.19 is the best. However, in this section, we will show that
it is unlikely that we can construct polynomial sized interpolants for all formulas.
Or more precisely, we will show that resolving whether there exist polynomial sized
interpolants for all formulas, is closely related to other open questions in complexity
theory.

In order to present these results on the size of interpolants, we need to introduce
new circuit complexity classes. Circuit complexity for a problem is based on a non-
uniform model of computation. The idea is the following. Imagine you have the
ability to choose a different algorithm for each input length; how much resource
would you need? The “programs” for each input length are circuits, and different
aspects of these circuits correspond to different computational resources one may
care about. Running time in this context, roughly corresponds to circuit size. This
leads us to analogs of P, NP, cONP in the context of non-uniform complexity, which
are defined next.

Definition 2.21 (Circuits)

A Boolean Circuit C is a sequence of assignments Ay, Az, ... A,, where each A;
is one of the following forms.

Pi=F

Pi=T

P ="
Pi=Pj/\Pk, J ok <i
P

P

iZPJ'VPk, Jok<i
i=—|Pj,j<i

where each P; is a variable that appears on the left-hand side in only A;. The size of
such a circuit, denoted |C|, is n.

The variable P; is said to be an input variable if the line A; corresponding to it
is of the form P; = ?. The input variables of C will be denoted by I(C). Given an
assignment v : I(C) — {F, T}, the value of C under Vv is the value assigned to the
variable P,, in the last line. There is a natural order on the variables (based on which
line they are assigned a value) which also imposes an order on the input variables.
Thus, an assignment /(C) — {F, T} can be thought of as a string x, where x[i] is
the value assigned to the ith input variable. Under such an interpretation, the value
of C under string x, will be denoted by C(x).

Example 2.22 Circuits and formulas are two ways to represent Boolean functions. It
is instructive to see how they differ by looking at an example.

Consider the boolean function parity(xy, xz, . . . X, ) which computes whether the
number of propositions in {x,x2,...x,} set to T is odd or even. For example, we
could write down the formula for some simple cases.
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parity(x1,x2) = (x1 V x2) A =(x1 Axz)
parity (x1,x2,x3) = (((x1 V x2) A =(x1 Ax2)) V x3)
A=(((x1 V x2) A =(x1 A x2)) A X3)

More generally, we can inductively write down the formula for parity(xy, x2, . . . xp)
by observing that the parity of xi,x7,...x, is odd iff either (a) the parity of
X1,...Xn—1 is even and x,, is T, or (b) parity of xi,...x,—; is odd and x, is F.
This results in the following definition.

paritY(xlaxZ, . -xnfl,xn) = (parlty(xlax27 .. ~xn71) Vxn)
A=(parity (x1, X2, .. . Xp—1) A Xp)

Observe that the formula we wrote down for parity (x;, x2, x3) is based on exactly this
definition. Observe that the size of the formula parity(xy, .. .x,) is double the size
of parity(x1, . ..x,-1). This means that the size of parity for n arguments is O (2").

A circuit for the same formula does not grow as rapidly. This is because it can
“reuse” previous computed answers. Let us look at the circuit corresponding to the
formula parity(xp, x, x3) we wrote above.

X1=?
XQ:?
X3=?
Py=x1Vxy
Ps=x; Axp
Pg = —Ps
P7=P4 A Pg
Pg =P7V x3
Py =P7 A Xx3
Pio =P
Pii=Pg AP

Notice that variable P stores parity(xj, x2) and it is reused without paying an extra
cost. More generally, if C,,_; is the circuit computing parity(xy,...x,—1) with last
line Py, |, the circuit C,, computing parity(x, .. .x,) is given by

Cn—l

Xp =7

0= Pkn,l V Xp
02 =Py, Nxy
03 =-0>

Py, =01 AQ3

Now if |C,,| = |Cp—1| + 5. Therefore, in general, we get |C,,| = O(n). Thus the circuit
for the same syntactic formula can be exponentially smaller.
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Definition 2.23 A language A C {0, 1}* is said to be in P/poly iff there are constants
¢,k € N, and a (infinite) family of circuits {C;};en such that (a) for every n,
|Cp| < cnk, and (b) for every x, x € A iff Cjy((x) = T.

A language A C {0, 1}* is said to be in NP/poly (coNP/poly) iff there are
constants ¢, k € N, and a (infinite) family of circuits {C; };cn such that (a) for every
n, |Cu| < cn®, and (b) for every x, x € A iff for some (all) r, Cix)(x,r)=T.

One can think of P/poly (or NP/poly or coNP/poly) as the collection of prob-
lems that be solved in polynomial time (or nondeterministic polynomial time or co-
nondeterministic polynomial time) given a polynomially long advice string, namely,
the description of the appropriate circuit. Just like in the case of (uniform/regular)

0
complexity classes where it is open whether P = NP N coNP, the same question is
open in the non-uniform context as well. That is, a long standing open problem is

whether P/poly 2 NP /poly N coNP /poly.

Mundici’s theorem says that establishing the existence of interpolants with poly-
nomial circuit representation for all pairs of formulas, is equivalent to resolving the
P/poly versus NP /poly N coNP/poly question. Thus, it is likely to be difficult to
establish.

Theorem 2.24 (Mundici)

If for any ¢ and  such that ¢ |=  there is an interpolant whose circuit size is
polynomial in ¢ and  then

P/poly = NP /poly n coNP /poly

Proof Consider a problem L € NP/poly n coNP/poly. Thus, there are families of
circuits {A;, }nen and {B;, },en such that for each n, A,, and B,, have size bounded by
a polynomial function of » and for any binary stringw,w € Liff 3p. A, (p,w) =T
iff Vr. B (w,r) = T. These observations are just a consequence of L € NP/poly
and L € coNP/poly.

Based on the previous paragraph, we have, for any n, if for some assignment of
values to ¢, if Ip. A, (7, 79) holds then it also the case that V7. B,, (¢, 7) holds.
Therefore, we have A, (7,7) | B,(,7). By our assumption on interpolants, we
have an interpolant (as a circuit) C,,() such that |C,,| is bounded by a polynomial
in |A,| and |B,|. Since |A,| and |B,| are bounded by polynomials in n, we have
|C,| is bounded by a polynomial in n. Further, since C,, is an interpolant, we have if
I7. A,(P,77) holds then C,(¢) holds, and if C, () holds then V7. B, (¢, 7)
holds. Thus, {C,} is a family of polynomially sized circuits deciding L, and thereby
demonstrating that L € P/poly. O

2.3.3 Interpolants from Refutations

Constructing small interpolants for all formulas is likely to be difficult. However,
it turns out that, if a formula A(7,¢) — B(¢q,7) has a short proof in some
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proof systems, then the proof can be used to construct an interpolant, whose size
is propositional to the original proof. One proof system that admits such a result is
resolution.

Theorem 2.25 Let the collection of clauses I' = {Ai(f),_cf)}{.‘:l U {B; (_q),_/)}f.:1
have a resolution refutation of length n. Then there is a circuit C(q) such that

N Ai(P.q) EC(G) and C(q) A Aj Bj(ﬁ),_r)) is unsatisfiable.
Further |C| is O(n).

Proof SinceT” = {A;(7,7)}:iU {B; (7,7)}1- is unsatisfiable, every truth valuation
v fails to satisfy at least one of the A;(77,q) or B i (¢, 7). We can also restate the
properties of an interpolant C as

E-C(q) > -\ Ai(P.,q)and
EC(d)—>-A\,;B;j(q.7)

Thus, C(7) can be thought of as a way of labelling truth valuations: those labelled
F will not satisfy some clause A;(7,¢) and those labelled T will not satisfy some
B;j(q., 7).

The structure of the proof will be as follows. Let 1,42, ...¥, be a resolution
refutation of I'. Let the set of common variables § = {g1,...¢m}. Our circuit
for the interpolant will be a sequence of the form g1 =?,¢» =?,...qm =7, P1 =
E\,Py, =E,,...P, = E, — the first m lines asserting that ¢;’s are variables, and
then having one line P; = E; corresponding to each line i; of our refutation. It
will be convenient to consider expressions E; on the right hand side that have more
than one logical connective. We will find it convenient to talk about the “circuit
corresponding to a line y; in the refutation”. What we mean by this is look at the
sequence of assignments upto (and including) line P; = E;; we will denote this as
circuit C;. The value of C; (with respect to a truth assignment) will simply be the
value variable P; gets when we compute this circuit.

As mentioned above, we will construct the circuit line by line, corresponding to
the refutation. With each line ¢; in the refutation, we can associate a set of truth
assignments, namely those that do not satisfy y;, i.e., M; = {v | v[¥;] = F}. The
invariant we will maintain as we build the circuit line by line, is that C; “correctly
labels” assignments belonging to M;. That is, for v € M;, if C;(v) = F then v does
not satisfy some clause A;(7,7) and if C;(v) = T then v does not satisfy some
clause B; (¢, 7). Notice that the last line ¥, = {}, and so M,, is the set of all truth
assignments. Thus, if the invariant is maintained, C,, will indeed be an interpolant
because it will “correctly” label all assignments.

Let us now describe how we construct the circuit. For each line ., we will add
a line P, = E.. What E, is will depend on the justification for the line ¢, in the
refutation. Let us begin with the cases when i, is a clause belonging to I'. There are
two cases to consider.



50 2 Proof Systems

 Suppose . € {A; (P ,_q))}f.ll. Observe that any v € M, does not satisfy a clause
in {A;(7 ,7{)};‘:1 and could be safely labeled F. Thus, the line corresponding to
e willbe P, = F.

o Ify, € {B; (q.7) }521 , then each v € M, could be labeled T because it does not

satisfy Y. € {B; (_9)’7)}§:1' Thus, we have P, = T.

The next cases to consider are when ¥, is a resolvent of two clauses. So let
VY. = p1 U p> and let it be the resolvent of clauses ¢, and i, in the refutation. We
need to consider different cases based on the proposition with respect to which i, is
aresolvent. Let us begin by considering the case when the proposition being resolved
is one of the common variables. Without loss of generality, let us take ¥, = p1 U{q}
and ¥ = p2 U {~g}. Consider an arbitrary assignment V € M,, i.e., V[y.] = F.
From the soundness of the resolution proof rule, we know that either v € M, or
vV € M. If v(gq) = F then v € M; it may also, in addition, be the case that v € M},
but that is unimportant. We could label such assignments in the same manner as the
labeling corresponding to line ¢/, i.e., as per the value of variable P,. Similarly, if
V(g) = T then v € M}, and so it can be labeled in the same manner as Pj,. This gives
us that the line corresponding to ¥ in this case should be P, = (=g AP,)V (g APp).

Let us now consider the case when ¢, is a resolvent of ¢, and ¢, but the
resolution step is taken with respect to a proposition (say s) that is either in 7 or in
7. Once again any v € M, must also belong to M, U M, but now since s is not in ¢’
it cannot be explicitly mentioned in the line P, = E,, as we did in the previous case.
Again, without loss of generality, let us assume that . = p; U p2, ¥, = p1 U {s},
Wp = p2 U {=s}. Let V' be the assignment that is identical to v, except that it flips
the assignment to s. Without loss of generality, we can assume that v(s) = F and
v/(s) = T, and for all other propositions #, v(z) = v’(t). Observe that v € M, and
v/ € My, Further, C,(v) = C,(V’) and Cp (V) = Cp(V’); this is because C, and Cp,
do not mention s. Let us consider two cases based on whether s € 7 or s € 7.

* Suppose s € p. Observe that in this case, for any j, V[B;] = v'[B;], because
s does not appear in B;. Now, since C, and C}, satisfy our invariant, we have,
if C4(v) = T(= C4(V')) then for some j, V[B;] = F(= V/[B,]). Similarly, if
Cp (V') = T(= Cp(v)) then for some j, V'[B;] = F(= v[B;]). Thus, if either C,
or Cy, label v, v’ by T, then C, must do the same. Otherwise, both C, and Cj, label
v and vV’ as F, and this common label is correct as per our invariant. Therefore,
we have P, = P, V P}, in this case.

+ Now let us consider s € ¢. In this case, for any i, V[A;] = V’[A;]. Using an
argument similar to the previous case, we can argue that if either C, or Cp
label v, Vv’ by F then C, must do the same. Otherwise, C, and C}, agree on the
label, and that is indeed the correct label. Therefore, dually, in this case we have,
P,=P, APy

The proof that the invariant is maintained follows inductively, from the arguments
we have made for each case. Thus, C,, is indeed the interpolant. It is worth noting that
in C,, we have a sequence of initial assignments g =?,¢g> =7, ... ¢q,, = ? that assert
that g are input variables. This seems to suggest that the size of C, also depends on
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[¢| and hence on I'. However, instead of asserting that all variables in g are input
variables, we could assert only those variables in ¢ that appear in the refutation.
Thus, |C,| is indeed linear in the size of the refutation. O

Example 2.26 Let us look at an example to see how an interpolant can be constructed
from a refutation. Consider the set of clauses

A B

Ir= {{p’ q}’ {_'p’r}v {—|q,r}, {"7‘}}.

Here p is a proposition that only appears in the A-clauses, and g and r are propositions
that appear in both A and B clauses. I" is unsatisfiable, and we are looking for
an interpolant that only mentions the common variables ¢, r. Below we have the
refutation (on the left) alongside the circuit for the interpolant (on the right) as per
the proof of Theorem 2.25.

qg="7
r="7
{_'p’r} Pl =0
{-ﬂ"} P2 =1
{-r} P3 = (=r APy)V (rAP)
{_‘q"’} P4=1
{—q} Ps=(-r APy)V (r A P2)
{p.q} Ps=0
{q} P7=P3V Ps
{ Pg = (=g AP7) V(g A Ps)

Observations like Theorem 2.25 have also been established for other proof systems
of propositional logic. That is, in these proof systems, a short proof for a fact
can be converted into a construction of a small interpolant. Theorem 2.25 can be
strengthened for certain special sets of clauses — one can show that in certain special
cases, not only is the interpolant small, but it is also monotonic.

Definition 2.27 (Monotone Circuits)

A monotone circuit C is one where there are no assignments of the form P; = —P;.

A monotone circuit enjoys the following monotonic property. Let us say v; < Vv,
if for all proposition p, if vi(p) = T then vo(p) = T, i.e., Vv, sets at least as many
propositions to T as v. The value of a monotonic circuit with respect to this ordering
on assignments is monotonic. In other words, if C is monotone, then for any v, v,
such that v; < v,, we have C(vy) = T implies C(v3) = T.

Theorem 2.28 Let the collection of clauses T' = {A,-(_p),_q))}f.‘=1 U {B; (7},?)}?21

have a resolution refutation of length n. Further assume that either ¢ occur only
positively in A;s or q occur only negatively in Bs. Then there is a monotone circuit
C(q) such that
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A Ai(P.9) EC(qQ) and C(q) A Aj Bj(ﬁ),_/) is unsatisfiable.
In addition, |C| is O(n).

Proof The construction of the interpolant is identical to that in the proof of Theo-
rem 2.25. All cases in that proof go through except for the case when the line i, is a
resolvent with respect to proposition g € —q>, i.e., the common variables. In this case,
in the proof of Theorem 2.25, the circuit was P, = (=g A P,) V (q A Pp), where ¥,
is the resolvent of lines ¢, = p; U {p} and ¢, = p» U {—q}. This is not monotonic
because if the use of —g. To prove our result, we need to change the circuit in this
case. We will change it by forcing it to be monotone in the most naive way — we
will remove the offending —¢ and write P, = P, V (g A Pp).

The resulting construction is correct, but the inductive argument using the invari-
ant from Theorem 2.25 does not go through! Let us see what the problem is. Recall,
that for any line ¢, we defined the set M, = {v | v[y.] = F}. The invariant we
proved in Theorem 2.25 was for any valuation v € M., we have

o Ifv[C,] = F then v[A;] = F for some i, and
e Ifv[C.] =T then v[B;] = F for some j.

Let us try to prove this invariant by induction as in the proof of Theorem 2.25.
Consider the case that we just changed, i.e., of a resolvent with respect to a common
variable. So ¢, = p; U p; is the resolvent of lines ¥, = p1 U{q} and ¢, = po U{—q}.
And we have, P, = P, V (q A Pp). Consider a valuation v € M,. The problem with
carrying out this inductive proof occurs when v(g) = T; the other case of v(¢) = F
goes through rather simply. Then v € Mj. Now if C,(v) = F or Cp(v) = T then
C.(V) = Cp(v) and correctness follows from the inductive assumptions on Cp,. The
problem occurs when C, (V) = T and C,(v) = F.

The way to fix the problem is to prove a stronger invariant. In our old invariant,
we proved that our circuit for line e was correct on the truth assignments in M, =
{v|V[¢.] = F}. Our strengthening will show that the circuit for line e is correct on a
larger set of truth assignments. Depending on whether we consider the case when g
appears only positively in {A;(7,77)}: or the case when ¢ occurs only negatively
in {B; (q.7)} j» the invariant (and the proof) is slightly different. We will present
the proof only for the case when ¢ occurs negatively in {B | (q.7)} - We will state
the modified invariant for the other case, but leave the details to be filled out by the
reader.

To describe the invariant in the case when 7 occurs negatively in {B J (7. 7)} Iz
we need to introduce some notation. For a clause ¢, f?ﬁ be the clause obtained

by removing all literals involving propositions in 7. On the other hand, 2.7 is
the clause obtained from ¢ by removing all literals of proposition 77 as well as all
positive literals of 7. Our stronger invariant will be for every valuation v

* ifV[y I3 2] =F and Cc(v) = F then V[A;] = F for some 7, and

« ifv[y [ »]=Fand C.(v) =T then v[B;] = F for some j.

Notice that since {} 2= {} l_2.7= {}, proving this new invariant guarantees
that C,, (where n is length of the resolution refutation) is an interpolant.
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We now argue that the stronger invariant holds for the new construction. We
consider each case in order.

Ve € {A;}i:  In this case, we have i, r;’j: Ve and P, = F. The invariant,
therefore, holds.

Ye € {B;};:  Again we have Yo [_ »= .. Since P, = T, the invariant holds.

Resolvent w.r.t 7:  Let . = p; U p, be the resolvent of lines ¢, = p; U {¢} and
Up = pa U{~q}. Recall we have P, = P, V (q A Pp).

1. Consider v such that V[, r?ﬁ»]] = F and C.(v) = F. In this case, if
v(g) =T then V[, T;’,;]] = V[yp] = F. Also, since C.(v) = F, it must be
that Cp,(v) = F, and so correctness follows by induction. On the other hand,
ifv(g) = FthenV[ya 15 7] = V[¢a] = F. Also, Cu(v) = F and correctness
follows by induction.

2. Consider v such that vy, [_ 7 71 =Fand Ce(v) = T.If C4(v) = T then
since V[, I_ —>’—>}] =V[p1 I_ ?’_)]] = F, the invariant follows by induction.
Notice, how the stronger invariant helped the proof go through in this case
which was problematic before. On the other hand, if v[g A Cp] = T then
V(g) =T.SoV[y I_3 ] = F and then invariant holds by induction.

Resolvent w.r.t. 7:  Lety. = p; U ps be the resolvent of lines ¢, = p; U {p} and
Up =p2U{-p}.Recall P, = P, V Pp.

1. Suppose C.(v) = F and V[, I —»]] = F. Then we know C, (V) = Cp(V) =
F. Further either V[y,] = F or V[[Wbﬂ = F. Thus, correctness of construction
by induction.

2. Suppose V[, T_7,7>]] = Fand C,(v) = T. Now ¢, g 7=Va 37
Ugp 1 g 7, and so V[ r_??]] = V[yp F_T;jﬂ = F. Further since
C.(v) =T, either C,(v) = T or Cp(v) = T. So correctness follows by
induction.

Resolvent w.r.t. 7:  Proof similar to previous case.

The proof of correctness when ¢ appears positively in {A;(7,¢)}; is similar,

though the invariant is slightly different. For a clause ¢, take ¢ [ 7 +7 to be the

clause obtained by removing literals of 7 and negative literals of 7. In addition,
Y I 7 is the clause obtained by removing literals of 7. The invariant we will prove
about the construction is, for every v,

* ifV[y I ,z] =Fand Cc(v) = F then v[A;] = F for some i, and
o ifvy Iy _ﬁ] F and C.(v) = T then V[B;] = F for some j.

The proof is similar and skipped. O

Example 2.29 Let us consider the set of clauses I" from Example 2.26.

A B

= {{p7 q}’ {_'p7r}’ {_'q7r}’ {—W‘}}.
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Notice that the common propositions, g and r, appear only positively in A. The
refutation alongside the interpolant construction is as follows.

qg="?
r=7
{_‘P,r} P]=0
{=r} Py=1
{-p} P3 =PV (rAP)
{_'q’r} P4:l
{—q} Ps = P4V (r A P2)
{p7q} P6=0
{q} P7;=P3V Pg
{} Pg=P7V (qAPs)

2.3.4 Lower bounds on Resolution Refutations

The results in Sect. 2.2 connecting resolution refutation lengths and size of inter-
polants, allows one to prove lower bounds on the length of resolution refutations for
formulas. In particular we can show that there are sets of clauses I" for which the
shortest resolution refutations are exponential in the size of I'. Thus, not every un-
satisfiable formula has a short proof in resolution. The specific example we consider
relates to cliques in graphs and their coloring. Let us recall these classical problems.

Recall that in Proposition 1.35, we showed that determining if a graph is k-
colorable can be reduced to checking the satisfiability of a set of formulas. More
specifically, let us fix the graph G = (V, E) to have n vertices. Any such graph can
be represented by an assignment to propositions {q, | #,v € {1,2,...n}}, with the
interpretation that (u,v) € E iff ¢, is set to T. Using r,; to denote “vertex u has
color i”, there is a set of clauses color,, (g, 7 ) such that v |= color, & (7, 7) iff the
graph (over n vertices) represented by v [ has a k-coloring given by v . The set
color;, i is almost identical to the construction given in the proof of Proposition 1.35.
The only difference is that we will use the clause —~q,,, V —ry; V —r,;, for every pair
of vertices u,v € {1,2,...n} and color i € {1,2,...k}, instead of —r,; V —r,; for
every edge (u,v) as given in Proposition 1.35. Note that color,, ; has O (n’k + nk?)
clauses.

Whether a graph is k-colorable is related to the presence of graph structures called
cliques.

Definition 2.30 A k-clique in a graph G = (V,E) is a subset U C V such that
|U| = k and for every u,v € U, with u # v, we have (u,v) € E.

Like graph coloring, the problem of determining if a graph has a k-clique can be
reduced to satisfiability.
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Proposition 2.31 For any n, k, there is a set of O(n’k?) clauses clique,, 7.7
such that v | clique,, (7.7q) iff the graph represented by v Iz has a k-clique
given by v 5

Proof The proof of this observation is similar to that of Proposition 1.35. We will
introduce propositions that encode the k-clique, and clauses will specify constraints
that characterize properties of a k-clique. Let proposition p;,, fori € {1,...k} and
u € {1,...n}, denote that “the ith vertex in clique is u”. Then clique,, ; (7.79) is
the following set of clauses.

e Foreach 1 <i < k, the clause p;; V pi2 V -+ V pin. These clauses capture the
constraint that the ith vertex of the clique must be among {1, . ..n}.

e Foreachl <i < k,and 1 < u,v < n such that u # v, the clause —p;;, V =p;,.
Intuitively, this says that the ith vertex of the clique can be at most one vertex.

* Foreach1 <i,j <k withi # j,and 1 < u < n, the clause -p;;, V =p,. These
clauses say that the ith and jth vertex of the clique cannot be the same vertex u.

e Foreach 1l <i,j < kand 1 < u,v < n with u # v, we have the clause
“piu V 7Pjv V quyv. These clauses together say that if u,v are vertices in the
clique then they have an edge between them.

The proof that these clauses satisfy the proposition is left to the reader. O

Observe that if a graph G has a k-clique then it cannot be colored using k — 1
colors. This is because each of the vertices in the clique must get different colors.
Thus a graph with a k-clique needs at least k colors. This leads us to the following
observation.

Proposition 2.32 For any n, k, clique,, ; (7. q)Ucolorn 1 (q,7) is unsatisfiable.

Proof A satisfying assignment for clique,, ; (7.7q) Ucolor, ;_1(¢,7) is a graph
encoded by ¢ that has k-clique (identified by 77) and can be colored using k — 1
colors (with the coloring encoded by 7). This is clearly impossible. O

Since clique,, ; 7. q)u colory, r—1 (q,7) is unsatisfiable, it must have a reso-
lution refutation. How long is its refutation? Our goal will be to prove that this is
exponential in n. Since the size of clique,, ; 7. 9) Ucolory, k-1 (7., 7) itself is poly-
nomial in n, this would be an example that has a “long” proof. In order to establish
this result, we present a celebrated result in circuit complexity whose proof can be
found in textbooks like [?].

Theorem 2.33 (Razborov, Alon-Bopanna)

Any monotone circuit that evaluates to T on n-vertex graphs containing a k-clique
and evaluates to F on n-vertex graphs that are k — 1 colorable must have size at least

nQ(\/E), when k < ni.

Theorem 2.33 combined with Theorem 2.28 gives us the desired lower bound on
proof lengths.

Theorem 2.34 Any resolution refutation of clique,, (7.79) U colorn ;1 (q.7)
must have length at least nQ(‘/E), when k < n%.
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Proof Let there be a resolution refutation of length . Observe that § appears
only positively in clique,, (7.79) and only negatively in colory, k (¢.,7). Thus,
clique,, (7. q)u color, k-1 (q.,7) satisfies the conditions of Theorem 2.28, and
so there is a monotone interpolant of size O (£). The interpolant is a monotone circuit
satisfying conditions of Theorem 2.33. Thus, £ must be at least neVe), O

Theorem 2.34 establishes that resolution proofs can be long as an exponential
function of the size of the input clauses. Historically, the above theorem was not the
first example of a proof that some formulas have long resolution proofs. The first
such result was established by Haken. He showed that the pigeon hole principle has
long resolution proofs. Recall that the pigeon hole principle says that if there are
n holes and n + 1 pigeons then some hole may contain more than one pigeon. Let
pigeonhole,, be the propositional logic formula that says that every pigeon goes to a
hole and no hole contains more than one pigeon. Then pigeonhole,, is unsatisfiable,
and Haken showed that any resolution refutation of this fact must be exponential
in n. The broad principle of using interpolation and lower bounds from monotonic
circuit complexity have been used to establish that other proof systems can also have
long proofs.

Understanding how long resolution proofs can be, and when they can be long,
helps our theoretical understanding of the limits of SAT solvers — what examples
they may work well and when they can take long. But a probably more important
reason for studying proof lengths in some proof system is because of its connections
to some fundamental questions in complexity theory. Essentially, the goal in proof
complexity is to understand if there is a proof system for propositional logic that has
the property that all facts have short proofs. Investigating whether this is true or not
has important implications in complexity theory. Let us see why.

Definition 2.35 A proof system I1 is super if every tautology ¢ has a proof in I1
such that length of the proof is bounded by a polynomial function of |¢].

Now Theorem 2.34 says that resolution is not a super proof system. But are there
other proof systems that are super? This is intimately tied to another open question
in complexity theory.

Theorem 2.36 (Cook-Reckhow)
Propositional logic has a super proof systems if and only if NP = coNP.

Proof There are two directions to this proof. Assume that there is a super proof
system. Then the problem to determine if a given formula is valid, is in NP — the
NP algorithm simply guesses the proof and checks that it is a proof in our super
proof system. Since the problem of checking validity is CONP-complete, it follows
that CONP = NP; the NP algorithm for an arbitrary problem A € coNP is simple
to reduce it to validity checking and then use the NP algorithm based on the super
proof system.

On the other hand, suppose NP = cONP then there is nondeterministic Turing
machine N, running in polynomial time, that checks if a given propositional logic
formula is valid. Proofs for a formula ¢ in our new “super’” proof system will simply
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be the nondeterministic choices that cause N to accept ¢; notice, that these proofs
will be polynomially long because N only has computations that are polynomially
long. O

In the light of Theorem 2.36, to resolve the NP versus CONP question, we need
to prove that there are no super proof systems for proposition logic. Cook proposed
an approach to tackling this problem. Consider concrete natural proof systems for
propositional logic, one by one, and show that they are not super. Then use the
intuition developed in this process to generalize and prove the absence of any super
proof system. Resolution was the first proof system shown to be not super. Since
then other proof systems have also been proved to be not super. However, there are
still natural proof systems for which we have not been able to prove exponential
lower bounds for proof lengths. One such proof system is the Frege proof system
we introduced. It is still open whether there are tautologies for which proofs in the
Frege proof system will be exponentially long.






Chapter 3
First Order Logic

Syntax, Semantics, and Overview

First order logic is a formal language to describe and reason about predicates. Modern
efforts to study this logic grew out of a desire to study the foundations of mathematics
in number theory and set theory. It has a careful treatment of functions, variables,
and quantification. First order logic deals with predicates as opposed to propositions
— declarative statements that are either true or false — which is the subject of study
in propositional logic. A predicate is a proposition that depends on the value of some
variables. For example truth of the statement “x is prime”, depends on the value x
takes (and of course also on the meaning of “is prime”). If x = 2 the statement “x
is prime” would be true and if x = 4 it would be false. Predicates may depend on

more than one variable. For example, the truth of P(x,y) x4 y = 0 depends on
the values of both x and y.

One way to convert a predicate into a proposition by substituting values for
the predicate variables. For example, for the predicate P defined in the previous
paragraph, P(2,—-2) denotes the proposition “2+(-2) = 0”. Another way to obtain
propositions in predicate logic is by using quantifiers, which allows one to express
statements like the predicate holds for all values of the variable, or the predicate
holds for some values of the variable. In this chapter, we introduce the syntax and
semantics of first order logic, and some of the questions we will explore in this book.

3.1 Syntax

First order logic formulas are defined over a vocabulary or signature that identifies
non-logical symbols, namely, the predicates, constants, and functions that can be
used in the formulas.

Definition 3.1 A vocabulary or signature is T = {C, ¥, R}, where

* C=/{c1,c2,...}is aset of constant symbols,
o F = {F*}i is a collection of sets with X = {flk, f2k, ...} being the set of k-ary
function symbols, and

59
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o R = {R¥}, is a collection of sets with R¥ = {Rk, R’Z‘, ...} being the set of k-ary
relation symbols.

Note that any of the above sets of constants, k-ary function symbols or k-ary
relation symbols can be empty, finite, or infinite. A signature is purely relational
or simply relational if there are no constants or functions in the signature, i.e.,
C = F = 0. A signature is finite if the total number of symbols in the signature is
finite.

We will typically consider signatures that are finite. When the arity of a function
or relation symbol is clear from the context, we will drop the superscript.

Formulas in first-order logic over signature T are sequences of symbols, where
each symbol is one of the following.

. The symbol =

. An element of the infinite set V = {x{, x2, x3, ...} of variables
. Constant symbols, function symbols and relation symbols in 7
. The symbol — called negation

. The symbol V called disjunction

. The symbol 3 called the existential quantifier

. The symbols ( and ) called parenthesis

~N O\ N B W N =

As always, not all such sequences are formulas; only well formed sequences are
formulas in the logic. In order to define well formed formulas, we first need to define
the set of terms.

Definition 3.2 The set of terms over signature 7 = {C, ¥, R} is inductively defined
as follows.

1. Every variable x € V is a term.

2. Every constant symbol ¢ in 7 is a term.

3.If f is a k-ary function in 7 and #1, 5, . . .ty are terms then f(#1,72,...2;) is a
term.

We could capture this definition succinctly by the following BNF grammar.
to=x|c| f(tt,...1)
where x is a variable, ¢ is constant symbol and f is a function symbol.

Having defined terms, we can use them to define well formed formulas (wff) or
just formulas for short.

Definition 3.3 A well formed formula (wff) over signature 7 is inductively defined
as follows.

1. If 1, t, are terms then ¢; = 1, is a wif.

2. Ift1, 1o, ...ty are terms and R is a k-ary relation symbol in 7 then R(#1, 13, . . . t)
is a wit.

3. If ¢ is a wff then (—¢) is a wif.
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4. If ¢ and y are wifs then (¢ V ¢) is a wft.
5. If ¢ is a wif and x is a variable then (Jx¢) is a wif.

More succinctly, we could capture the above definitions of terms and formulas by
the following BNF grammar.

pu=t=t|R(t,t,...1) | () | (¢ V@) | (Ixp)

where x is a variable, 7 is term (given by Definition 3.2, and R is a relation symbol,
and x is a variable.

Atomic formulas are wifs that do not have any logical operators, i.e., either of
the form ¢y = t, or R(t1,15, .. .1;), where each ¢; is term and R is a k-ary relation
symbol. Finally, a literal is formula that either atomic or the negation of an atomic
formula.

It is useful to introduce logical operators in addition to those in Definition 3.3.
These operators can be “syntactically” defined in terms of the operators in Defi-
nition 3.3. As in propositional logic, we can define the Boolean connectives con-
junction as ¢ Ay = (=((=¢) V (=), implication as ¢ — ¥ = ((—p) V ),
true as T = (¢ V (—¢)), and false as L = (=T). Finally, we can define universal
quantification as (VYx¢) = (=(3x(—yp))).

To avoid too many parenthesis, and at the same time have an unambiguous inter-
pretation of formulas, we will assume the following precedence of operators (from
increasing to decreasing): -, A, V, —, V, 3. Thus VxVy x = y — —R(x,y) means
(Vx(Vy (x =y — (=R(x,y))))). We will also drop the outermost parentheses, and
since A and V are associative, drop parentheses in formulas involving the conjunc-
tion/disjunction of multiple formulas.

Example 3.4 Consider signature 7 = {R} where R is a binary relation symbol. The
following are formulas over this signature.

e Reflexivity: YxR(x, x)

o Irreflexivity: Vx(=R(x,x))

o Symmetry: VxVy(R(x,y) — R(y,x))

o Anti-symmetry: VxVy((R(x,y) A R(y,x)) > x =)
o Transitivity: Yx¥yYz((R(x,y) A R(y,z)) — R(x,2))

Non-examples of formulas include R(x) (R expects two arguments); x (a variable is
not a formula); (R(x, y) V R(z,x) (mismatched parentheses); Jx (x is quantified but
there is no formula provided as argument).

3.2 Semantics

The semantics of formulas in any logic is defined with respect to a model. In the
context of propositional logic, models were truth assignments to the propositions.
For first order logic, models will be objects that help identify the interpretation of
constants and relation symbols. Such models are called structures.
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1

1/ \0
/NN
0 0 1 0

Fig. 3.1 Example of labeled binary tree.

Definition 3.5 A structure A of  signature T is A =
(A, {Cﬂ}cer’ {fﬂ }fe-n {Rﬂ}Rer) where

e A is anon-empty set called the domain/universe of the structure,

* For each constant symbol ¢ € 7, cle Aisits interpretation,

* For each k-array function symbol f € 7, f/' : A¥ — A is its interpretation, and
» For each k-ary relation symbol R € 7, R C AF is its interpretation.

The structure (A is said to be finite if the universe A is finite. The universe of a
structure A will be denoted by u(A).

Many mathematical objects can be studied through the lens of logic. Let us look
at some example signatures and structures.

Example 3.6 Consider the signature 7 = {E}, where E is a binary relation. We
use this signature to study graphs. A graph H = (V, E) modeled as a structure is
G = (G, E9), where the universe G is the set of vertices V, and for a pair of vertices
u,veG (=V), E9uv ! holds iff (u,v) € E.

Example 3.7 Let 1o = {<, S} where < and S are binary relation symbols. A finite
order structure is O = (O, <9, SO), where O is the universe of elements, < is
interpreted to be an ordering relation, and S as the “successor’” relation.

Example 3.8 Let 74 = {o} where o is a binary function. A group would be a
structure with a universe, where the operation o is associative, has an identity, and
every element has an inverse.

Example 3.9 Labeled binary trees, where vertices are labeled by elements of X, can
be represented as a structure in the following manner. Let 7 = {<, So, S1, (Qu)aex}
where <, Sp, S are binary relation symbols, Q, is a unary relation symbol. A tree
(labeled by symbols in %) is a structure 7 = (T, <7, 87,57, (Q7)acx) where
elements of T are called vertices, < is the ancestor relation, Sy and S are the left
and right child relations, respectively, and Q, holds in all vertices labeled by a.

For example, consider the binary tree shown in Fig. 3.1 . Let us see how this
tree is represented as a structure. The universe will consist of the vertices of the tree.
We could use any names for the vertices. But it is convenient to name them in a
manner that makes the edge relation explicit — the root will be &, and for a vertex

! For a relation symbol R, we will sometimes write RAajas - - - ap, instead of (ai,az,...ay) €
RA.
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w, its left child will be w0, while its right child will be w1. Given this, the tree in
Fig. 3.1 corresponds to the following structure. 7~ = ({&,0, 1,00,01,10, 11}, <7 =
{(u,uv) | v # 8},55 = {(u,u0) | u € {¢,0, 1}}’5’17’ ={(u,ul)|ue{e0,1}},Qp =
{1,00,01, 11}, Q; = {¢,0, 10}).

In order to define the semantics of a first order logic formula, we need a structure,
and an assignment. An assignment maps every variable to an element in the universe
of the structure.

Definition 3.10 For a t-structure (A, an assignment over A is a function « : V —
u(A) that assigns every variable x € V a value a(x) € u(A).

Fixing the values of the variable, and the interpretation of the function symbols,
ensures that each term evaluates to value in u(A). For a term ¢, we will abuse
notation and define this value as @/(7) and this can be defined inductively as follows.
* For a variable x, @(x) is simply the value « assigns to x.

+ For constant symbol c, a(c) = ¢7.
o Forterm f(t1,to,...1), a(f(t1,t2, ... t1)) = fFA(a(t)),...a(ty)).

For an assignment « over A, a[x — a] is the assignment

a(y) fory #x
a forx=y

alx o al(y) = {

We now have all the elements to define the semantics of a formula. The satisfaction
relation will be a ternary relation — A | ¢[a] to be read as “¢ is true/holds in A
under assignment @”. The relation will be defined inductively on the structure of the
formula. In defining the relation, we will also say A [~ ¢[a] to mean that A = ¢[a]
does not hold.

Definition 3.11 The relation A [ ¢[«a] is inductively defined as follows.

s Aktn=nla]iffa(t)) = a(t)

o AERG,... th)|a]iff (a(t1),a(t2),...a(ty)) € R™

* Ak (-p)la]iff A | pla]

c AE(eVy)la]ift A E¢la] or A Eyla]

A E (Ixp)[a] iff for some a € u(A), A = pla[x — a]]

Example 3.12 Consider a structure (graph) over the vocabulary of graphs (rg =
(E}) G = ({1,2,3,4},EY9 = {(1,2),(2,3),(3,4), (4,1)}). For any assignment «,
G E Vx3yE(x,y)[a] because

G E 3yE(x,y)[a[x — 1]] because
G EEx y)lalx— 1]y - 2]],
G E JyE(x,y)[a[x — 2]] because
G EE(, y)lalx - 2][y— 3]],
G E 3yE(x,y)[a[x — 3]] because
G I E(x,y)[alx — 3][y — 4]], and
G E JyE(x,y)[a[x — 4]] because
G EE( y)alx 4]y — 1]].
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Notice that in Example 3.12, the actual assignment to variables x and y did not
matter when determining the satisfaction of the formula in the graph. This is because
they are bound by the universal and existential quantifiers in the formula ¢. This
leads us to the important notion of bound and free variables in a formula. We begin
by defining the scope of a quantifier.

Definition 3.13 For a wff ¢ = (3xy), ¢ is said to be the scope of the quantifier Vx.

Definition 3.14 Every occurrence of the variable x in ¢ = (Ixy) is called a bound
occurrence of x in ¢.
Any occurrence of x which is not bound is called a free occurrence of x in ¢.
The free variables in wff ¢ will be denoted by free(¢). The notation
©(x1,X2, . ..x,) will be used to indicate that free(¢) C {x1,...x,}.

Let us look at an example to understand the subtle definition of bound and free
variables.

Example 3.15 Consider ¢ = P(X,y) V (Ix(JyR(x,y)) V Q(x,y)) the free variables
are shown in bold. Notice that a variable may occur both bound and free. As we
will establish soon, we can change the names of bound variables without affecting
the meaning of formulas. Thus ¢ = P(x,y) V (Ju(IvR(u,v)) vV O(u,y)) is an
equivalent formula. Therefore, we will typically assume that bound and free variables
are disjoint. In addition, since bound variables can be renamed without affecting its
meaning, we can also assume that every bound variable is in the scope of a unique
quantifier. Thus, instead of P(x, y)V (Ju(IvR (1, v))V(IvQ(u,v))), we will consider
the equivalent formula P(x,y) V (Ju(IFvR(u,v)) vV (z0(u, 2)))

The satisfaction of a formula in a structure A under assignment « only depends on
the values « assigns to the free variables; the values assigned to the bound variables
in @ are unimportant.

Theorem 3.16 For a formula ¢ and assignments a) and ay such that for every
x € free(p), ai(x) = a2(x), A E plaa ] iff A E ¢laz].

Theorem 3.16 can be proved by induction on the structure of the formula ¢. The
proof is left as an exercise for the reader. Theorem 3.16 suggests that if a formula has
no free variables, its truth is independent of the assignment. Formulas without any
free variables (i.e., those all of whose variables are bound) are an important class of
formulas and have special name.

Definition 3.17 A sentence is a formula ¢ none of whose variables are free, i.e.,
free(y) = 0.

An immediate consequence of Theorem 3.16 is that the truth of sentences is
independent of the assignment.

Proposition 3.18 For a sentence ¢, and any two assignments ay and a, A = ¢[a]
iff A E elaz].
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Proposition 3.18 is an immediate consequence of Theorem 3.16. Thus, for a
sentence ¢, we say A = ¢ whenever A = ¢[a] for some a.

Definition 3.19 For a sentence ¢, A is said to be a model of ¢ iff A = ¢. We will
denote by [¢] the set of all models of .

3.2.1 Satisfiability, Validity, and First order theories

Satisfiability and validity/tautologies are defined in a manner similar to that for
propositional logic — a formula is satisfiable if there is some model and assignment
in which it is true, and it is valid if it is true in all models and assignments.

Definition 3.20 A formula ¢ over signature 7 is said to be satisfiable iff for some
T-structure A and assignment a, A = ¢[a].

A formula ¢ over signature 7 is said to be logically valid iff for every 7-structure
A and assignment o, A = ¢[a]. We will denote this by = ¢.

We can also define with a formula ¢ is a logical consequence of a set of formulas
I' in exactly the same way as we defined it for propositional logic.

Definition 3.21 For a set of formulas I', we say A | I'[«a] iff for every ¢ € T,
A E ¢la].

We say ¢ is a logical consequence of T, denoted by I' |= ¢, if and only if for every
A and a, A |= T'[«@] implies that A = p[a]. Thus, if 0 E ¢ then = ¢.

The following observation is an immediate consequence of the definition of
logical consequence.

Proposition 3.22T"'U {¢} Fy iff T F o = ¢

Finally two formulas are (semantically) equivalent, if the hold in exactly the same
set of structures and assignments.

Definition 3.23 Formulas ¢ and  are said to be logically equivalent (denoted ¢ = )
if for every A and assignment o, A | ¢[e] iff A E y[a].

A first order theory T over signature T is any set of sentences over signature 7. A
theory 7 is said to be inconsistent if there is a sentence ¢ such that {p, ¢} C T. If
T is not inconsistent then it is said to be consistent. Finally, T is complete if for every
sentence ¢ over signature 7 either ¢ € T or —p € T.

First order theories are typically identified by structures or axioms (i.e., sentences)
as follows. For a structure A, the first order theory of A, denoted Th(:A), is defined
as

Th(A) = {¢ a sentence | A E ¢}.

Thus, Th(A) is the set of all sentences that are true in the structure A. Notice that,
since for any sentence ¢ exactly one of ¢ or -y is true in A (by definition of -),
it follows that Th(A) is consistent and complete for any structure A. For a set of
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structure C, the theory of C (Th(C)) is set of sentences that hold in all the structures
of C. That is,
Th(C) = ) Th(A).
AeC

A couple of observations about this definition are worth making. First if C is an
empty set then Th(C) is the set of all sentences and is therefore inconsistent. On
the other hand, for a non-empty set C, since Th(A) is consistent for every structure
A € C, it follows that Th(C) is also consistent. However, it may or may not be
complete depending on what C.

Axioms or sets of sentences, are another way in which theories are defined. For
a set of sentences I', the theory of I" is given by

Th(I") = {¢ a sentence | I" | ¢}.

We could define Th(T") in another way. Recall that for a sentence ¢, [¢] is the set of
all structures in which ¢ holds. We can extend this to a set of sentences I" by defining
[T'] to be the set of structures in which every sentence in I" holds. In other words,
[I'] = Nger[e]. Then Th(T) is nothing but Th([I']). Based on the discussion in the
preceding paragraph on the consistency of the theory of a set of structures, we can
conclude that Th(T') is consistent if and only if [I'] is non-empty. Depending on the
set I, Th(I") may or may not be complete.

3.3 Overview

There are a number of computational questions related to first order logic that we will
investigate in these notes. The main ones relate to whether a sentence is true in some
structure (satisfiability), in all structures (validity), and in all structures belonging to
some set C over a signature. These computational questions are much harder than
similar questions asked in the context of propositional logic.

Let us start with the question that is conceptually the simplest: Given a structure
A and sentence ¢, is A |= ¢ or equivalently, is ¢ € Th(A)? In the context of
propositional logic the analogous question (given a truth assignment v and formula
¢ determine if v |= ¢ is a computationally simple problem — we simply evaluate ¢
in vV which can be done in time that is linear in the size of ¢. In first order logic, it is
not clear how this problem can be solved. If A is a finite structure, we could simply
unwind the definition of satisfaction (as we did in Example 3.12) and check if the
sentence holds. When A is infinite, the challenge is that existential quantifiers would
require us to search in an infinite universe for a witness that the formula holds. But
this begs an even more basic question, if A is infinite, how is it given as input to
the problem? We will consider structures A that are “computable” in the sense that
interpretations to constant symbols can be computed, and given representations of
elements in the universe, one can compute the value of a function symbol on these
arguments and one can decide if any tuple formed by these elements belongs to the
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interpretation of any relation symbol in the signature. Notice that we do not require
the universe u(A) itself to be a recursive set. We will not typically worry about these
computability assumptions on the structure A because we will consider “standard”
structures that are known to be computable in this sense. We will consider structures
involving numbers and arithmetic operations, like naturals, integers, rationals, reals,
equipped with the standard ordering relation and arithmetic operations of addition
and multiplication.

We will begin our study of computational questions related to first order logic by
investigating structures A for which the set Th(A) is decidable. Decidability results
in this space are often proved by a general technique of quantifier elimination. A
theory Th(A) is said to admit quantifier elimination if for every formula ¢, there
is a quantifier-free formula ¢’ such that free(¢’) C free(y) and ¢’ is equivalent to
¢ with respect to Th(A), i.e., Th(A) £ ¢ < ¢’ 2. If the process of constructing
the quantifier-free formula ¢’ is computable, and the problem of determining if
¥ € Th(A) is decidable for quantifier-free formulas ¢, then composing these steps,
gives a decision procedure for checking if ¢ € Th(A); this is often the case, and
so if a theory admits quantifier elimination, then it is typically decidable. We will
see that Th((R, <)) and Th((R,0, 1,+, <)) admit quantifier elimination and are
therefore decidable; here < denotes the natural ordering on numbers and + denotes
addition on numbers. In fact, Th((Q, <)) = Th((R, <)) and Th((Q,0,1,+, <)) =
Th((R, 0, 1, +, <)), and therefore these theories over the rational numbers are also
decidable. The observations Th((Q, <)) = Th((R, <)) and Th((Q,0,1,+,<)) =
Th((R,0, 1,+, <)) demonstrate that there are non-isomorphic structures that are
indistinguishable in terms of the first order sentences that they satisfy. We will see
that Th((N, 0, 1, +, <)), which is known as Presburger’s arithmetic, is also decidable.
An even more surprising result is that Th((R, 0, 1, +, X, <)) (X denotes multiplication
on numbers) admits quantifier elimination and is decidable. This is a celebrated result
due to Tarski and Seidenberg, and is beyond the scope of these notes. In contrast,
both Th((Q, 0, 1, +, X, <)) and Th((N, 0, 1, +, X, <)) are not recursively enumerable.
The later is a form of Godel’s Incompleteness theorem, while the former is a result
due to Robinson. Notice that even though Th((Q,0, 1,4+, <)) = Th((R,0,1,+, <
)), Th((R,0, 1,+, X%, <)) # Th((Q,0, 1,+, X, <)). This can be seen as follows: the
sentence ¢ = Ix x X x = 1 + 1 is in Th((R, 0, 1, +, X, <)) (as we can take x = \/5)
but does not belong to Th((Q, 0, 1, +, X, <)).

The classical decision problem is that of determining if a sentence ¢ is valid. That
is, given a sentence ¢ over signature 7, determine if ¢ holds in every 7-structure. This
problem, on first glance, may seem very general and of little practical importance.
However, this is not true. It provides a framework to study general meta-theorems
in logic that are independent of a particular structure or class of structures. Equally
importantly, many computational questions can be reduced to this classical problem.
Suppose we want to reason about a class of structures, and the class of structures
can be described by a finite set of sentences or axioms I'. For example, suppose we
want to study properties that are true about groups. Recall that groups are structures

2 @  y isthe formula (¢ — ¥) A (¥ — @).
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where the universe is equipped with a binary operation o : § X § — S that satisfies
the following properties.

1. Associativity: For every a,b,c,ao (boc)=(aob)oc.

2. Identity: There is an element e € S such that foralla,ace =eoca =a.

3. Inverse: For every a, there is an element a’ such that a o a’ = a’ o a = e, where
e is the identity.

Let I" be the set of sentences encoding the properties of o being associative, and
having an identity and inverses. Checking if a property ¢yniq that says that the identity
is unique — VxVy(iq(x) Apig(¥)) — x =y, where ¢jq(1) = Vaaou = aAuoca =a
— holds in every group is equivalent to checking if I' |= @yniq. This question is
equivalent to checking if F (Ayeryy) — ¢unig» Which is the classical decision
problem.

One of the most important results is that the classical decision problem is recur-
sively enumerable. This is due Godel’s completeness theorem which says that there
is a sound and complete proof system (like the ones we saw for propositional logic
in Chap. 2 ) for determining validity of first order logic sentences. Since checking if
a sequence of formulas constitutes formal proof in these proof systems can be mech-
anized, the RE-procedure simply searches for a proof of validity. Unfortunately, the
problem is RE-hard, and hence undecidable. The RE-procedure for the classical
decision problem means that if I is an RE set of sentences then Th(I') is also RE.
Moreover, if Th(T") is consistent and complete then Th(I") is decidable! The deci-
sion procedure for checking if ¢ € Th(I") simply dovetails the RE-procedures for
checking if ¢ € Th(I") and the procedure for checking —¢ € Th(T"). One of these is
guaranteed to succeed since the consistency and completeness of I guarantees that
exactly one out of ¢ and —¢ belong to Th(I").



Chapter 4
Quantifier Elimination and Decidability

In this chapter, we will look at the computational problem of determining if a
formula belongs to the theory of a structure. The structures we will consider involve
numbers and arithmetic. We will mainly focus on structures when this problem is
decidable. The key idea behind the decidability algorithms in this chapter will be
quantifier elimination. Let us begin with this key definition. A formula ¢ is said to
be quantifier-free if the quantifiers 3 and V do not appear in ¢.

Definition 4.1 (Quantifier Elimination)

A theory I' over signature T admits quantifier elimination if for every formula ¢
over signature 7, there is a quantifier free formula ¢* such that free(¢*) C free(p)
and ¢ is equivalent to ¢ with respect to I'. That is,

FEpoy

where ¢ & ¢ = (¢ — ) A (Y — ¢). Another way to say this is, for every structure
T-structure A such that A T, and every assignment «,

Ak pla] iff A | ¢*[a].

There are a few points worth noting about Definition 4.1. First, the free variables
of quantifier-free formula ¢* is required to be a subset of the free variables of ¢.
Thus, in any structure A that satisfies I', the set of assignments « that satisfy ¢ is
exactly the same as the set of assignments that satisfy ¢*. Second, while there is no
requirement that the construction of ¢* from ¢ be computable, it is often the case
that ¢* can be effectively constructed. Hence, if in addition, for any quantifier-free
sentence ¥ (i.e., a Boolean combination of atomic formulas built using the constants
in the signature), the problem of determining if I' |= ¢ is decidable, then Th(T") is
decidable when I" admits quantifier elimination. This is the approach we will use in
this chapter to establish the decidability of Th(A) for some structures A.

Finally, observe that if I is inconsistent, then it trivially admits quantifier elimi-
nation — any quantifier-free formula ¢* over the same free variables as ¢ is (vaccu-

69
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ously) equivalent to ¢ with respect to I'. Let us look at a simple example of quantifier
elimination.

Example 4.2 Consider the structure (R, 0, 1, +, X, <). Consider the formula ¢ with
free variables a, b, ¢ given by 3x a X x X x + b X x + ¢ = 0. The formula ¢ identifies
assignments to the variables a, b, ¢ such that the polynomial ax” + bx + ¢ has real
roots. From high school algebra, we know that this happens when the discriminant
of the polynomial is non-negative. That is, the quantifier-free formula ¢* equivalent
to ¢ is

4dxaxc<bxb

where by s < t we mean the formula (s <) V (s =1).

We conclude this section by observing that to prove that a theory I'" admits
quantifier elimination, we only need to establish this for special formulas. If every
formula ¢ of the form 3xy, where ¢ is quantifier-free, there is a quantifier-free
formula ¢* such that free(¢*) C free(¢) and ¢* is equivalent to ¢ with respect
to I, then I' admits quantifier elimination. The reason for this is that we can take
any formula, express V quantification using 3 and negation, and starting with the
innermost quantified formulas, systematically eliminate one quantifier at a time in
order to eliminate all quantifiers. Hence eliminating quantifiers from formulas with a
single existential quantifier is all that is needed to show that a theory admits quantifier
elimination. We can make one additional simplifying assumption, if needed. We can
assume that when doing quantifier elimination of ¢ = 3xy, ¢ is a conjunction of
literals, i.e., a conjunction of atomic formulas or their negation. The reason is that
for any arbitrary formula 3xp, where p is quantifier-free, we can always treat it as
a Boolean formula over atomic formulas, and write it in disjunctive normal form
— a formula is in disjunctive normal form (DNF) if it is a disjunction of one or
more conjunctions of literals — and every quantifier-free formula can be rewritten
into an equivalent DNF formula. Then, we notice that 3 quantifier distributes over
disjunctions, and hence we can write the formula as a disjunction of formulae of the
form Jxp’, where p’ is a conjunction of literals. If we can do quantifier elimination
on such formulae, we can simply do this for each disjunct to obtain a quantifier-free
formula.

Proposition 4.3 Consider a theory T such that for every formula ¢ of the form
3x AL, @i, where each «; is a literal, there is a quantifier-free formula ¢* such that
free(¢*) C free(p) and T |= ¢ & ¢*. Then T admits quantifier elimination.

Proof We will prove this by structural induction on the formulas. In the induction
below, for a formula , we will denote by ge(y) the equivalent quantifier-free
formula constructed by the proof.

Base Case Ify is an atomic formula, then simply take ge(y) to simply be i itself.

Case y = =y It is easy to see that ¢ is equivalent to the quantifier-free formula
—ge(y1).

Casey =y V¢, Itiseasy toseethaty is equivalent to the quantifier-free formula

ge(y1) v ge(y2).
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Case = dx ¢y Observe that i is equivalent to 3x qe(y ). Converting qe(y)
to DNF, suppose ge(y) is equivalent to \/tl.‘=1 vi, where each v; is a conjunction
of literals. Then 3x ge(y) is equivalent to \/f.“:1 Jxy;. By our assumption, each
Axy; is equivalent to the quantifier-free formula qe(3xy;). Thus, ¥ is equivalent
to the quantifier-free formula \/f.‘:l ge(3xy;). O

4.1 Dense Linear Orders without Endpoints

The first structure we will look at is (R, <), where the universe is the set of real
numbers and we have one binary relation < which is interpreted as the standard
ordering relation on real numbers. We will show that Th((R, <)) admits quantifier
elimination and is decidable. The procedure to eliminate quantifiers relies on the
following properties of the ordering relation <.

Vx =(x < x) (Irreflexive)
VaVy (x < y) = =(y < x) (Asymmetric)
VaVyVz (x < y) A (y <2)) = (x <2) (Transitive)
VaVy (x < y) V(x=y)V(y<x) (Total)
VaVy (x <y) = (Fz (x <2) A(z <)) (Dense)
Vx3y (y < x) (No Min)
Vx3dy (x < y) (No Max)

The set of these 7 sentences will be denoted as the set DLOWE. The first 4 sentences
( (Irreflexive) , (Asymmetric) , (Transitive) , and (Total) ) state that < is a total,
strict, linear order. Equation (Dense) says that the ordering < is dense, i.e., between
any two elements one can always find a third element. The last two sentences ( (No
Min) and (No Max) ) state that there is no minimum or maximum element.

We now show that Th((R, <)) admits quantifier elimination. Observe that over
the signature {<}, the only atomic formulas are of the form y < z or y = z, where
v, z are variables. Our first observation shows that, in the presence of (Total) ,
Proposition 4.3 can specialized even further, and we can restrict our attention to
formulas without negation.

Proposition 4.4 Suppose every formula of the form 3x /\II,‘=1 Bi, where each B; is
atomic of the form x < y, x =y, ory < x, where y is a variable that is different
from x, is equivalent to a quantifier-free formula ¢* with respect to Th((R, <)). Then
Th((R, <)) admits quantifier elimination.

Proof By Proposition 4.3, to prove that Th((R, <)) admits quantifier elimination,
we only need to consider formulas of the form ¢ = 3x A, @;, where each ¢; is a
literal. We first show that (Total) allows us to eliminate negation, and so A\, a; is
equivalent to a positive Boolean combination (i.e., no negations) of atomic formulas.
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Observe that, by (Total) ,

(y=2)=( <2 V(z<y)
~(y<z)=(y=2)V(z<y)

Thus, negation can be eliminated, and A, a; is equivalent to a positive Boolean
combination of atomic formulas. We can convert this into disjunctive normal form,
push existential quantification inside, and see that

¢ ki

@ = \/Elx Bij
i=1 j=1

where each f3; ; is an atomic formula. Thus, to prove that Th((R, <)) admits quantifier
elimination, we can focus our attention to formulas of the form 3x AX | B;, where
each ; is atomic.

Consider = 3x /\t’.‘= 1 Bi, where each §; is atomic. Observe that, by (Irreflexive)
,x <x = L. Thus, if any 8; = x < x then ¢ is equivalent to the quantifier-free
formula L. Next, since x = x is equivalent to T, if any 3; = (x = x), we can drop S;
from the conjunct. Finally, if one of the §;s is of the form y > z, where =€ {=, <}
and y, z # x, then we can “pull out” 3; from the quantification. This is because

Fx(yz)Ap=(yrz) Adxp.

Thus, without loss of generality, each §; is of the form x < y,x = y or y < x, for
y # x and so the proposition is established. O

Having established Proposition 4.4, we are ready to complete the proof. Consider
a formula ¢ = Jx /\f-‘zl Bi, where each §; is either x < y, x = y,ory < x, for y # x.
We consider two cases.

¢ Consider the case when there is an i and variable y such that 8; = (x = y), i.e,,
one of the conjuncts is an equality constraint. Assume, without loss of generality,
B1 = (x = y). In this case, the value for x must be the same as y. We can substitute
x with y and eliminate the variable x. That is,

Bilx = y]

AN
=

i=2

* Assume that none of the conjuncts 3; are equality constraints. That is, each §; is
either x < y or y < x for some variable y # x. In other words, we can write ¢ as

o= (/\f)A(AU)

where L and U are sets of variables. Clearly, if there is a value of x that satisfies
¢ with respect to an assignment «, then for every £ € L andu € U, a({) < a(u).
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Conversely, when L and U are non-empty, if for an assignment «, a({) < a(u)
for every £ € L and u € U, then by picking x to be a value between the the
“largest” element in L and the “smallest” element in U we can show that ¢ holds
with respect to assignment «. This can always be accomplished, since < is dense.
Now, if either L or U is empty, then ¢ can be satisfied by picking a value for x
that is either very small or very large, which is possible since our structure has
no minimum or maximum. This reasoning shows that there is some x satisfying
the constraints if and only if every variable in L takes a value that is less than the
value taken by every variable in U. Using this observation, we can say

@ = /\ { <u.
tel, ueU

When L or U is empty, the above formula is an empty conjunction, which by
convention is T.

We can summarize the above observations in the main theorem for this section.
Theorem 4.5 Th((R, <)) admits quantifier elimination.

The arguments in this section that establish Theorem 4.5, only rely on (Irreflexive)
, (Asymmetric), (Transitive), (Total), (Dense), (No Min), and (No Max), i.e., the
sentence in DLOWE. Thus, any structure over the signature {<} that satisfies all the
sentence in DLOWE admits quantifier elimination. For example, since the rationals
also satisfy all the properties in DLOWE, they also admit quantifier elimination.
More generally, we will say structure A over signature {<} is said to be dense linear
order without endpoints if A | DLOWE. Two examples of dense linear orders
without endpoints are (R, <) and (Q, <). We can strengthen Theorem 4.5 as follows.

Theorem 4.6 If A is a dense linear order without endpoints, then Th(A) admits
quantifier elimination.

Observe that our argument for Theorem 4.6 is constructive. Hence, given a formula
¢ over {<}, there is an algorithm that will construct the equivalent quantifier-free
formula ¢*. Next, if ¢ is a sentence, the equivalent quantifier-free formula ¢* is
also a sentence (no free variables), and therefore, just a Boolean combination of T
and L, which can be checked to see if it is true. Thus, for example, Th((R, <)) and
Th((Q, <)) are decidable. It is worth observing that our procedure of constructing
the quantifier-free formula, relies only on the sentences in DLOWE, and so the
formula we construct is independent of the universe of the structure we are working
in. Thus, Th((R, <)) = Th((Q, <)) = Th(DLOWE). This shows that there can be
non-isomorphic structures (like (R, <) and (Q, <)) that have the same first order
theory. In general, as we shall later, for any infinite structure A, it will always be
the case that there are (infinitely many) different (non-isomorphic) structures 8 that
will have the same theory as A. We conclude this section with the main decidability
result.

Theorem 4.7 Th(DLOWE) is decidable. An immediate consequence of this is that
Th((R, <)) = Th((Q, <)) = Th(DLOWE) are decidable.
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Each quantifier eliminated by our algorithm results in a quadratic blowup (because
we construct a formula that compares each variable in L with each variable in U).
Thus, if a sentence of size n has m quantifiers, its equivalent quantifier-free formula
has size O (n>") size. This analysis does not even take into account the fact that there
are steps involving the construction of a DNF formula to get removing negations,
etc. Thus our procedure has a doubly exponential complexity.

4.2 Linear Arithmetic

In this section, we will extend the results of Sect. 4.1 and consider properties
of numbers that involve addition along with ordering. We will look at the struc-
tures (R, 0, 1, +, <) and (Q, 0, 1, +, <), where 0 and 1 are constants representing the
numbers 0 and 1, respectively, and + is the binary function symbol representing
addition.

The main result of this section is captured by the following two theorems.

Theorem 4.8 The theories Th((R,0, 1,4+, <)) and Th((Q, 0, 1, +, <)) admit quanti-
fier elimination.

Since the processes of constructing quantifier-free equivalent formulas will be
effective, we will in fact get a decision procedure for these theories.

Theorem 4.9 The theories Th((R,0, 1,4+, <)) and Th((Q, 0, 1, +, <)) are decidable.

We will prove Theorem 4.8. From Proposition 4.3, to show that quantifiers can be
eliminated, we only need to show that quantifiers can be eliminated from formulas
¢ of the form 3x ¢, where ¢ is a quantifier-free formula. In other words, ¢ is a
Boolean combination of atomic formulas. Using de Morgan’s laws, we can push
negations inside all the way to atomic formulas. Since < on both reals and rationals
satisfies (Total) , we can eliminate negations like in Proposition 4.4. Recall that in
our signature, atomic formulas are of the form u >« v, where € {=, <} and u and v
are expressions that look like 71 +#, + - - - ; with each #; being either a variable y, or
constants O or 1. And,

“(u=v)=(u<v)Vv{y<u) S(u<v)=w=v)V(<u).

Therefore, without loss of generality we may assume that ¥ is a positive Boolean
combination of atomic formulas.

Consider an atomic formula of the form u > v, where =€ {<,=}. We will treat
these atomic formulas as equations/inequations over numbers, and use standard tricks
to “solve for the variable x”. That is, we will move all the terms involving variable x
to one side with constants and other variables on the other side, and then “divide” by
the coefficient of x. If x was present to begin with and does not get eliminated by this
process, this will give us a formula of the formx < u orx = u orx > u, where u is a
linear expression with rational coefficients involving the variables other than x. If x
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gets eliminated or was not present to begin with, then we will get a constraint of the
form 0 >« u, where =€ {<,=} and u is a linear expression with rational coefficients
involving variables other than x. Such constraints are technically not formulas in
our signature, since our only constants are O and 1 and scalar multiplication is not
a function symbol in our signature. However, this will just be an intermediate step.
Before we construct the quantifier-free formula, we will get back to something that
is in the legal syntax of our logic.
Let us look at an example to see what we mean by “solving for x”.

Example 4.10 Consider the constraintx +y+z+y+1 < y+1+x+ 1 +x+x. In this
solving for x, will result in the constraint

y z 1

S+ - - - <.

2727 25"
Similarly, the constraint x + y + x + x + z < 0 when solved for x will result in the
constraint y oz

X<—§—§.

Based on the observations above, to show that Th((R, 0, 1, +, <)) admits quantifier
elimination, we need construct quantifier-free equivalent formula for formulas of the
form 3x , where y is a positive Boolean combination of constraints of the form
x<u,x=u,u<x,0=uor0 < u where u is a linear expression with rational
coefficients not mentioning x. We will present two algorithms that will eliminate
quantifiers from such formulas. The first algorithm due to Fourier and Motzkin, is
very similar to the approach for dense linear orders without endpoints outlined in
Sect. 4.1 . The second is a more efficient algorithm due Ferrante and Rackoff.

4.2.1 Fourier-Motzkin

Analogous to Proposition 4.4, we can show that we need to eliminate quantifiers
only in formulas, where the quantifier-free formula in the scope of the quantifier is
a conjunction of constraints involving x.

Proposition 4.11 Suppose for every formula of the form Ix /\{.‘:l Bi, where each
Bi is of the form x < u, x = u, or u < x, where u is a linear expression with
rational coefficients involving variables other than x, is equivalent to a quantifier-
free formula ¢* with respect to Th((R,0,1,+,<)) (or Th((Q,0,1,+,<))). Then
Th((R,0,1,+,<)) (or Th((Q,0, 1, +, <))) admits quantifier elimination.

Proof The proof is very similar to Proposition 4.4, and we recall the main ideas,
leaving the details to the reader to work out. First, based on the discussion preceding
this subsection, we need to eliminate the quantifier in a formula ¢ of the form Jx ¢,
where ¥ is a positive Boolean combination of constraints of the form x < u, x = u,
u < x,0 < u,or0=u, where x does not appear in u. We can rewrite ¢ in disjunctive
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normal form, push the existential quantifier inside the disjunction, and finally pull
constraints of the form 0 < u and 0 = u out of the quantifier to get the result. O

Having established Proposition 4.11, the rest of the proof is similar to Sect. 4.1 .
Consider a formula ¢ = 3x /\f.‘:1 Bi, where each B; is either x < u, x = u, oru < x,
for a linear expression u not involving x. We consider two cases.

¢ Consider the case when there is an i and expression u such that 3; = (x = u), i.e.,
one of the conjuncts is an equality constraint. Assume, without loss of generality,
B1 = (x = u). In this case, the value for x must be the same as u. We can substitute
x with u and eliminate the variable x. That is,

k

¢= [\ Bilx > ul

i=2

e Assume that none of the conjuncts 3; are equality constraints. That is, each ; is
either x < u or u < x for some linear expression . In other words, we can write

¢=3X(AM<X)A A)

uel veU

where L and U are sets of linear expressions. As in the case of dense linear orders,
we can argue that ¢ holds if and only if, every expression in L is smaller than
every expression in U. Thus,

Q= /\ u<v.

uel, veU

When L or U is empty, the above formula is an empty conjunction, which by
convention is T.

The final formula constructed by the above steps has constraints of the form
u =voru <v,where u and v are linear expressions with rational coefficients. Such
constraints are not in our signature. However, they can be rewritten into an equivalent
formula in our syntax — we multiple each side by the LCM of the denominators,
and rearrange terms to remove negative coefficients. We illustrate this through an
example.

Example 4.12 Consider the constraint

yor_olb_y 2
2 2 2 3 3

involving expressions constructed in Example 4.10. The LCM of the denominators is
6. Multiplying both sides by 6, and rearranging terms, we get the following sequence

of steps.
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y+g-f<-3-4
3y+3z-3<-2y-2z2
Sy+5z<3

y+y+y+y+y+z+z+z+z+z<l+1+1
The last line is a formula in our syntax.

We conclude the section with an example that shows how the Fourier-Motzkin
approach eliminates quantifiers.

Example 4.13 Consider the formula
p=Vx(0<x)—> (1 <x+y).

It is easy to see that the equivalent quantifier-free formula should be y > 1, or
(I = y) v (1 < y). Let us see how the Fourier-Motzkin method constructs this
expression.

Converting the for all quantifier in terms of exists, we get ¢ = =3x =(0 < x —
1 <x+y).Consider y =3x -(0 < x — 1 < x +y). We can rewrite the implication
and push the negation inside to get

Y=Tx (0<x)A-(l <x+Yy).

Eliminating the negation using the totality axiom, solving for x, distributing the
disjunctions over the conjunction, pushing existential quantifiers in, we get

Yy=Ix(O<x)A((I=x+y)V(x+y<l)
=Ix(O0<x)A((x=1-y)Vx<l-y))
=Ix [0<x)A(x=1=p)]V[(x<0)A(x<1=y)]
S[AxO0<x)Ax=1=-y)]V[IxO<x)A(x <1=-y)]

Lety; =3x (0<x)A(x=1-y)and ¢, =3x (0 <x) A (x < 1-1y). We will
eliminate the quantifier in both i; and ¥, to get the formula for .
Since ¢| contains an equality constraint, we have

y1=0<l-y=y<l.

In y», we have one upper bound constraint and one lower bound constraint. So, when
we eliminate the quantifier, we have

Ur=0<l-y=y<l

Thus,
vy V=G <h)viy<Dh=@<l

Now, ¢ = =y = =(y < 1) = (1 =y) V (1 < y), which is what we hoped.
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4.2.2 Ferrante-Rackoff

Let us fix a formula ¢ of the form 3x ¢, where ¢ is a positive Boolean combination
of constraints of the form x < u, x = u, u < x, 0 = u or 0 < u where u is a
rational expression not mentioning x. Our goal is to elimnate the quantifier in ¢. The
Fourier-Motzkin algorithm relies on Proposition 4.11 which reduces the obligation
to remove quantifiers to very special formulas. However, this step requires rewriting
a formula to disjunctive normal form (see proof of Proposition 4.11), which can lead
to an exponential blow-up. The Ferrante-Rackoff method avoids this conversion.

The key idea behind this approach is as follows. Let S be the expressions arising
in constraints involving x in . That is,

S = {u | 3 constraint of the form x = u, x < u, u < x in Y }.

Depending on the valuation of the free variables, the expressions in S will be some
rational numbers. Think of them on the “number line”. Now, x can be any number,
but if two expressions u; and u, evaluate to two “consecutive” values on the number
line, it doesn’t matter which value of x we pick in between u; and u;. All of them
will make the atomic constraints in ¢ evaluate the same way. So we can just pick
(uy +uz)/2. Now, we don’t know what order the expressions in S will evaluate. But
we can simply instantiate x to (u + u’)/2 for every pair of expressions u, u’. Since,
we will also do this also for the pair u, u (in which case (u# + u)/2 = u), this will
cover x being precisely equal to one of the expressions in S. For u, v € §, define

B u+v
Yup =ylx - —
and take
Um=\/ Yup.
u,veS

To cover the range of numbers less than all the expressions, we can instantiate x to
anything smaller than all the expressions. But instead of doing this as a substitution,
we just imagine instantiating x to some large negative value, and see how the atomic
formulas in ¢ will evaluate. Clearly, atomic formulas of the form x < u will evaluate
to T, x = u will evaluate to L, and u < x will evaluate to L. So we can replace the
atomic formulas by these values, and get a formula ¢ _.,. That is,

Vow=Ylx<u)> T,(x=u)— L, (u<x)— L].

Similarly, to cover the range of rationals larger than all the expressions, we
pretend instantiating x to a value much larger than the values of all the expressions.
The atomic formulas # < x evaluate to T, and the formulas of the form x = u and
x < u evaluate to L. Replacing these gives the formula ¢, . That is,

Vio =[x <u)— L, (x=u) —» L, (u<x)— T].



4.2 Linear Arithmetic 79

We then take the disjunction of all the above formulas to eliminate x. In other
words,

©=3Y =Yoo Voo V Ui

Like in the Fourier-Motzkin case, the formula as written above will not be in the
syntax of our logic. But as in Example 4.12, this can be rewritten in our syntax.
Let us look at an example to see how the Ferrante-Rackoff procedure works.

Example 4.14 Consider the formula ¢ = Vx (0 < x) — (I < x +y), from
Example 4.13. Recall that the equivalent quantifier-free formula is y > 1, or
(1 = y)v(l < y). As in Example 4.13, we can say that ¢ = —, where
Yy=Ix-0<x->1l<x+y)=Ix O0O<x)A((x=1-y)Vx<1-y)).
Letp=0<x)A((x=1-y)V(x<1l-y))andsoy =3x p.

Let us first eliminate the quantifier in . Based on the rewriting of i, we have
S = {0, 1 —y}. The expressions we need to substitute x by are “—o0”, “+00”,0, 1 — y,
and I_Ty ‘We have,

P =LA(LVT)=1

Pro=TA(LVL)=1

Po=(0<0)A((0=1-y)vV(0<l-y)=L
ploy=0<l=-A((l-y=1-yVv(l-y<l-y)=0<l-y)=y<l

pry=(0< AP =1-)V(F <1-)=0<DA=DV<D)) =<

Thus, we have
y=1viviv(y<Dh)viy<h=(<l.

Since p =, wegetp==(y<1)=(y=1)v(l <y).

Our procedures for eliminating quantifiers Sections 4.2.1 and 4.2.2, rely on prop-
erties that hold in both (R, 0, 1, +, <) and (Q, 0, 1, +, <). Further, starting with any
sentence ¢, the procedure (say the one by Ferrante and Rackoff) will construct the
same quantifier-free formula ¢*, whether we are working with reals or rationals.
Thus, Th((R,0, 1,+, <)) = Th((Q,O0, 1, +, <)). No first order sentence can distin-
guish (R, 0, 1, +, <) and (Q, 0, 1, +, <).

Axiomatizations

One can ask, similar to dense linear orders without endpoints, whether there is a set
of axioms/sentences that capture the property of linear arithmetic of reals/rationals.
This is possible, but requires care. Chapter 3 of Calculus of Computation [?], presents
such an axiomatization in parallel with the quantifier elimination procedure, and
claims that they are the axioms for linear arithmetic. However, the axiomatization
presented there is not complete, as it does not have any axioms for the constant 1.
In general, it is true however that for theories of a single structure (or more
generally, for consistent and complete theories), the notions of the existence of a
recursive axiomatization and decidability are synonymous. One direction is easy
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— if the theory is decidable, we can simply take the theory itself as its recursive
axiomatization (sounds like we are cheating, but we are not). And if there is a
recursive axiomatization for a complete theory, it will follow, as we will show later
(Godel’s strong completeness theorem), that the membership problem is recursively
enumerable, and hence by simultaneously checking if ¢ or —¢ is in the theory, we
can show the problem is decidable.

4.3 Other theories that admit quantifier elimination

There are several other important theories that admit quantifier elimination that we
will not consider here.

Presburger arithmetic is PresA = Th((N, 0, 1, +, <)), and can be shown to be
decidable. However, PresA does not admit quantifier elimination. For example, one
can show that there is no quantifier-free formula that is equivalent to the formula
dx x + x = y, which says y is even. However, we can extend the signature so that it
admits quantifier elimination. For each ¢ € N, we will introduce a unary predicate
c|- such that c|x is true if x has a value that is a multiple of ¢. This extended logic
does admit quantifier elimination, and leads to a decision procedure.

Another important theory that admits quantifier elimination is Th((R, 0, 1, +, X, <
)) and is decidable. This theorem is basically due to Tarski, and is called Tarski-
Seidenberg theorem.



Chapter 5
Lower Bounds for the Validity Problem

Church-Turing Theorem and Trakhtenbrot’s Theorem

The classical decision problem or Entscheidungsproblem is the following: Given a
sentence ¢ over signature 7, determine if ¢ is valid. The problem was popularized by
David Hilbert (das Entscheidungsproblem, or the decision problem), in an attempt to
lead towards the formalization of mathematics. However, what computation meant
was not clear then. These were resolved in 1936, when Church postulated that
computability is captured by a class of functions using recursion schemes, and
proved that the classical decision problem was not solvable using this notion of
computability. A few months later, Alan Turing, in his paper that introduced Turing
machines (and started the field of theoretical computer science, or even computer
science), also examined the Entscheidungsproblem (mentioned in the title of the
paper), and showed validity of first-order logic is undecidable. Soon people realized
that the notions of computing defined by Turing and Church were the same — Turing
in fact showed equivalence in his paper — and the Church-Turing postulate was that
the notion of computability coincided with the notion of computability defined by
A-calculus and Turing machines. The undecidability of the Entscheidungsproblem is
credited now to both Church and Turing.

The classical decision problem, in fact, turns out to be RE-complete (and hence
undecidable). We will prove the hardness of this problem in this chapter. Membership
in RE will be shown later in what essentially constitutes proving Godel’s complete-
ness theorem. In fact what we will show, which is the content of the completeness
theorem, is that for any recursive set of sentences I" and sentence ¢, the problem of
determining if " |= ¢ is in RE.

In this chapter, we will also consider another problem, namely that of validity
in finite models. That is, given a sentence ¢ over a signature 7, determine if for
every finite T-structure A, A |= ¢. We will show that this problem of validity in
finite models is CORE-complete. This result is due to Trakhtenbrot. The reason for
considering this problem here is because the proof of hardness is similar to showing
the hardness of the classical decision problem. CORE-hardness of validity in finite
models implies that checking validity in finite models is not in RE. Consequently,
there is no proof systems to establish validity in finite models! This fundamental

81



82 5 Lower Bounds for the Validity Problem
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Fig. 5.1 Pictorial representation of structures satisfying (Succ) (or the sentence ¢nym). Such
structures must have a subset that is isomorphic to N. They may have additional elements that form
s-cycles or s-chains that are isomorphic to Z (integers).

incompleteness result is easier to understand than the incompleteness result for
arithmetic (Godel’s first incompleteness theorem) which we will see later.

5.1 Number Lines

Before looking at the proof of hardness, let us informally discuss some of the
challenges in solving the validity problem/classical decision problem, and introduce
some ideas that are central to both hardness proofs. Notice that the RE-hardness
of the validity problem means that the problem of checking the non-validity of
sentence ¢, or in fact the satisfiability of —¢, is not recursively enumerable. This, on
first reading, sometimes seems surprising. Recall that to show that ¢ is not valid, we
need to demonstrate a structure A in which ¢ does not hold, i.e., A E —p. Can’t
the RE procedure for non-validity simply nondeterministically guess a structure A
and checking if A |= —¢? If one can prove that ¢ is not valid if and only if there is a
finite structure A such that A |= —¢, then this would indeed by a RE algorithm for
non-validity. Unfortunately, it is easy to see that this not true, i.e., there are sentences
¥ that satisfiable, but only in structures that are infinite. Let us look at an example.

Example 5.1 Consider the signature 7 = {0, s}, where 0 is a constant, and s is a
unary function standing for successor. Consider the sentence

psuce = (Yx=(s(x) = 0)) A (VaVy(s(x) = s(y)) = (x =) (Suce)

which says that s is an injective function and that the constant O is not the successor
of any element. Consider a structure A in which ¢gycc holds. Since 0 is not the
successor of any element, it follows that 0 # s(0) in A. Continuing, since s is
injective, s(s(0)) # s(0) # 0, s(s(s(0))) # s(s(0)) (# s(0) # 0), and so on. We
can, therefore, show by induction, that for any i # j, s'(0) # s/(0) (where s°(0) is i
applications of s to 0, assuming that sO(O) = 0). Thus, A must be infinite, because
there must be a subset of its universe that is isomorphic to the natural numbers.
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Fig. 5.2 Pictorial representation of finite structures satisfying ¢fin_num- Such structures must have
a subset that is isomorphic to an initial segment of N. They may have additional elements that form
S-cycles.

Example 5.1 argues that any structure A satisfying ¢sycc (Succ) must have
a subset of its universe that is isomorphic to the natural numbers. However, the
universe of A may have additional elements. The function s on these elements may
induce sub-structures that are isomorphic to Z (integers), or to cycles. A pictorial
representation of such a structure is shown in Fig. 5.1 , where the number of
additional cycles and Z-chains could be 0, finite, or infinite.

Having structure, a subset of whose universe is isomorphic to N is very useful.
This part of the universe can be used to model time or the number of steps of a Turing
machine. It can also be used to model the indices of tape cells. If the tape symbols
are encoded by numbers, then elements of this part of the universe can also be used
to model tape symbols. Our reduction will use structures that have a “number line”
as a sub-structure.

However, instead of using using a unary successor function to create a number
line, we will find it more convenient to consider structures that have a binary relation
S that will represent the graph of the successor function s. That is, our signature will
be {0, S}, where 0O is a constant as before, and S is a binary relation. We will want
our binary relation S to satisfy the following sentences.

Vx3y S(x,y) (Serial)
VxVyVz (S(x,y) AS(x,2)) — (y=2) (Functional)
Vx =S (x,0) (Zero)
VaVyVz (S(x,2) A S(y,2)) = (x =) (Injective)

The first two sentences state that S is the graph of a function, the third sentence states
that O is not the successor of any element, and the last sentence states that S is the
graph of an injective function. We will denote the conjunction of these 4 sentences as
¢num- As observed before, structures satisfying ¢nym will look as shown in Fig. 5.1

Our reason for using a successor relation S, as opposed to a successor function s,
to encode number lines is because this gives us the flexibility to use partial functions
to encode an initial segment of N. This will be used in proving the undecidability
of checking validity over finite models (i.e., Trakhtenbrot’s theorem). Consider the
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sentence
3m (Yx ~8(m,x)) A (Vx ~(x =m) = (3y S(x,y))) (Max)

which says that all elements except a maximum () have a successor with respect
to relation S. Take ¢fin_num to be the conjunction of (Max), (Functional), (Zero)
,and (Injective) . Let A be finite structure such that A E @fin_num. Observe that
the maximum m must be an element in the successor chain starting at 0. This is
because if m is not on the chain starting at 0, then since all elements except m have
a S-successor, the chain starting at 0 will be infinite as argued in Example 5.1, and
A would not be finite. Thus any finife model of ¢fi,_num can be depicted as shown
in Fig. 5.2 . We will exploit this in our proof of Trakhtenbrot’s theorem.

5.2 Church-Turing Theorem

In this section we will prove the following theorem.

Theorem 5.2 (Church-Turing)

Given a sentence ¢ over signature T, the problem of determining if ¢ is valid is
RE-hard.

Our proof will reduce the RE-hard language MP to the problem of checking
validity. Recall that the universal Turing machine U recognizes the language MP.
Without loss of generality, we will make some simplifying assumptions about U. We
will assume that U has one work-tape (and an input tape); we can ignore the output
tape since we are not computing a function. We assume that the input alphabet of U
is £ = {0, 1} and the tape alphabet is I" = {0, 1, L, >}, where Ul is the blank symbol,
and > is the left end marker. Let Q be the set of states of U, with g as the initial
state, and gacc as the unique accept state. The transition function ¢ of U is such that
it ensures that input head of U never leaves the input portion of the input tape. This
is ensured by moving the head to the right (+1) when the left end marker () is read,
and moving the head left (—1) when a blank symbol (L) is read on the input tape.
A configuration of U is described by current state, current input and work-tape head
positions, and the contents of the work-tape.

Given binary string w, our reduction will construct a sentence ¢,, such that
w is accepted by U if and only if ¢,, is valid. The construction will mimic the
ideas in the proof of Theorem 1.23, where the sentence ¢,, will describe con-
straints that a computation of U on w satisfies. ¢,, will be sentence over the
signature 7 = {0, S, State, InpHd, TapeHd, TapeSymb}, where 0 is a constant,
S, State, InpHd, TapeHd are binary relations, and TapeSymb is a ternary relation.
The intuition behind these relation symbols in 7 is as follows. O together with S will
encode a number line as in Sect. 5.1 . The remaining relation symbols are used to
encode configurations of U: State(q, r) holds if g is the state at time ¢; InpHd(i, £)
and TapeHd(}, ) hold if the input tape head is at cell i and work-tape head is at cell
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J, at time t; TapeSymb(a, i, t) if the symbol in cell i at time ¢ on the work-tape is
a. As outlined in Sect. 5.1 , we will use the structure induced by 0 and S to encode
time, cell numbers, states, and tape symbols.

Like in the proof of Theorem 1.23, the sentence ¢,, will state that the relations
State, InpHd, TapeHd, InpSymb, TapeSymb encode the initial configuration at
“time 0”, configurations at successive times follows the transition function ¢, and
that the accept state gacc is reached at some point. In order to state these properties
conveniently, we will find it convenient to make use of some auxiliary formulas that
we first introduce.

* The property “Variable x stores a value which is the ith successor of 0” can be
written as

i(x) =3x 3 - -3 S(0,x1) AS(xp,x2) Aes AS(xi—1,x) A (x =x3).

The set of states Q and the tape alphabet I are finite sets. We will assume that
each state is ¢ is encoded as a number in {0, 1,...|Q| — 1} and symbol a is
encoded as a number in {0, 1,2,3}. For b € Q UT, it would be useful to have a
formula that says that “variable x stores a value which the encoding of symbol
b”. Assuming b is encoded by number i, this formula is

b(x) =i(x).

* For a formula y (x,) (with free variables x and ), we will find it convenient
talk about the formula when x is instantiated by » € Q U I". We can write this as

Y(b,Y) =3Iy (x,Y) Ab(x).

* For a finite set S of elements (either states or tape symbols), the formula that says
that a variable x takes a value in set S can be written as

(xeS)= \/ b(x).

beS

* Finally, the property that “there is a unique value for x that satisfies ¥ (x,y)” can
be written as

Ay F) =y () A Ve (2 F) = (2 =x).

Let us now write a few sentences that capture properties that a valid computation
of U on input w must satisfy. We begin with the condition that at time O the relations
must encode the initial configuration. That is, the work-tap the string &>, the heads
pointing to cell 0 (which contains >, and the state being the initial state go. Thus,

Vinitial =State(go, 0) A InpH(0, 0) A TapeHd(0, 0)
A (Ye =(c = 0) — TapeSymb(u, ¢, 0).
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We demand that the interpretation of relations is consistent with an encoding of a
configuration. That is, at all times, the state, the head positions, and symbols in each
cell are unique.

@eonsistent = VI (I!x State(x, 7)) A (I!x InpHA(x, 1)) A (3'x TapeHd(x, 1))
A (Vc3A!lx TapeSymb(x, ¢, 1)).

Next, we require that configurations at successive time steps are consistent with
the transition function. This is the most complicated property to write down. Consider
a transition 6(p, a, b) = (q, din, b’,dy), i.e., U when in state p, reading a on the
input tape, and b on the work-tape, moves to state ¢, writes b’ on the work-tape, and
moves input head in direction dj, and work-tape head in direction d,,. Without loss
of generality, we will assume that we extend ¢ so that when U reaches a halting state
q,6(q,-,-) is defined so that the machine stays in state g; this is so that our relations
can be defined for all times. For each such tuple (p, a, b, q, din, b’, d,,), we will have
a Sentence ¢(p a,b.q.dn,b’.d,,) Which captures when U takes a step according to this
transition. To describe this property let us introduce some notation. For a tape symbol
a, let S, denote the positions on the input tape where where symbol a is written.
SoS. ={0}, Sy ={wl+1} !, and S, = {i + 1 | w[i] = a} when a € {0,1} 2.
Finally, given a direction d € {-1,+1}, we write d(c, ¢’) to indicate that cells ¢
and ¢’ are consistent with the head moving in direction d. Thus, d(c, c¢’) = S(c¢’, ¢)
when d = —1, and d(c,¢’ = S(c,c¢’) when d = +1. Given all this, we can write
O(p,a,b,q.din,b’dy) s follows.

D(p.a,b,q,din,b’",dy) ZVIVI’VCinVCi'nVCWVC:M
(S(1,1") A din(cip,ef ) ndv (el A State(p, 1) A InpHd(cin, 1)
A TapeHd(cy, 1) A (cin € Sa) A TapeSymb(b, ¢y, 1))
— (State(q,1") A InpHd(c{,, 1) A TapeHd(c),,,t")
A TapeSymb(?’, ¢\, 1)
A (YeVx (=(c = ¢y) A TapeSymb(x, c,t)) — TapeSymb(x, c,t’))

Finally, the sentence that says that every move is consistent with U’s transition
function is given by

Ptransition = \/ P(p.a,b,q,din,b’,dy)
&(p,a,b)=(q,din,b’".d)

The last condition in our sentence ¢, is the one that says that U reaches the
accepting state gacc. This is easy to write as

@accept = 3t State(gace., 7).

! Since we are assuming that the input head of U moves left when reading LI, we can assume that
the head never moves beyond the first LI symbol on the input tape. Thus we can take S, = {|w|+1}.

2 Our indices of strings start at position 0. So, w[0] is written in cell 1 as cell 0 contains t>.
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Putting all of this together, ¢,, needs to say that if 0 and S encode a number line,
the computation starts in the initial configuration and follows the transition function,
then U accepts. Using all the sentences we have defined, this is

®w = (@num A Pinitial A Poonsistent A Ptransition) — Paccept- 5.1

It is easy to see that, given w, the formula ¢,, can be computed by a Turing
machine. To complete the proof, we need to argue that the reduction is correct. Let
us consider the easy case first. Assume that ¢, is valid. Consider structure A such
u(A) = N. The constant 0 is interpreted as the number 0, S(n, n”) holds exactly when
n’ = n+ 1. Next, we interpret the relations State, InpHd, TapeHd, TapeSymb in
manner that is consistent with U’s computation on string w. Observe that in such
a structure A, @num, Pinitial» Pconsistent> AMd Pyransition all hold. Thus, since ¢,, is
valid, it must be the case that @accept also holds in this model. This means that the
computation of U on w reaches gacc and w € MP.

Let us now assume that U accepts w. Let the accepting computation of U be

Co——>Ci —> - > Cp.

Our goal is to argue that ¢,, is valid. Consider a structure A in which ¢num, @initial,
@consistent> and @ransition all hold. We need to argue that @accept also holds. This
becomes challenging because A may have additional elements that are not part
of the main number line starting with O (see Fig. 5.1 ). Unfortunately, first order
logic is not expressive enough to ensure that A only contains elements of the main
number line. To understand this subtlety, let us attempt to reduce MP to validity. It
is tempting to think that all we need to do is to modify the sentence and demand that
State(gacc, t) does not hold for any 7. That is, consider the sentence

Yy = (num A @initial A @consistent A Piransition) — (V1 ~State(gacc,1)).  (5.2)

The sentence i, is not valid even if U’s computation on w is non-halting
— consider a structure 8 where U’s computation faithfully encoded using
State, InpHd, TapeHd, and TapeSymb on the main number line starting from
0 but State(gacc, 1) is true for ¢ that is not on the main number line!

Coming back, the key to showing @accept holds in structure A is to argue that
when U accepts w and A satisfies the properties in the antecedent of ¢,,, then
A’s interpretation of State, InpHd, TapeHd, and TapeSymb is faithful to the com-
putation on the main number line. More precisely, let the number i denote the ith
successor of 0 in A. We can prove by induction, that the interpretations of State(-, i),
InpHA(-, i), TapeHd(-,i) and TapeSymb(,-,i) in A encode the configuration c;
(i.e., the ith configuration of U’s computation on w). We leave the proof of this fact
as an exercise for the reader. Having proved this, it follows that State(gacc, m) must
hold in A and therefore, so does paccept- This completes the proof of Theorem 5.2.
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Discussion.

Our proof shows that validity is undecidable even if the signature has one constant,
4 relation symbols and no function symbols. We could strengthen the result to the
case when the signature has only one relation symbol — the 4 relation symbols in
our reduction are modeled as a single relation which has an additional argument
whose value determines which of our relations we are talking about. We could also
get rid of our constant symbol 0 — we just existential quantify to get the element
representing 0. Similarly, we could encode our entire reduction if our signature had
only a single function symbol. It is, therefore, hard to find reasonable restrictions on
the signature that make checking validity decidable. Note that quantifier alternation
does play a critical role in our reduction. One could ask if there are restructed
quantifier sequences that lead to decidability. A fairly complete characterization of
what is decidable and what is not can be found in the book “The Classical Decision
Problem” [?].

5.3 Trakhtenbrot’s Theorem

In computer science, computational problems often involve finite objects. In the
context of validity, it is therefore, natural to ask how difficult is the computational
problem where given a sentence ¢ over structure 7, we are asked to determine if
@ is true in all finife structures. Given that the reduction in Sect. A.2 crucially
relies on the sentence ¢nym Which forces the structure to be infinite, does validity
become easier when considering only finite models? Clearly, satisfiability problem,
which is the complement of the validity problem, is easy on finite structures. To
determine if a sentence ¢ is satisfiable in a finite structure, we can simply enumerate
finite models one by one, and check whether ¢ holds in any of them. For a finite
structure A, determining if A | ¢ is decidable as we can simply go through our
inductive definition of satisfiability to answer this question. Surprisingly, validity on
finite structures is a very hard problem.

Theorem 5.3 (Trakhtenbrot)

Given a sentence ¢ over signature T, the problem of determining if ¢ is holds in
all finite structures is CORE-hard.

Thus, in some sense, Theorem 5.3 says reasoning about finite structures is hard.
If we want to prove theorems, then reasoning about infinite structures makes life
easier as by Godel’s completeness theorem, when theorems are true (valid), we can
build machines that can identify that they are true. But over finite structures, there is
no such algorithm. There is no proof system to establish theorems that hold on finite
structures. L

To prove Theorem 5.3 we will reduce MP to the problem of checking validity
in finite models. Recall that from Theorems A.24 and A.26, we can conclude that
MP is coRE-hard and hence, establishing such a reduction, will prove Theorem 5.3.



5.3 Trakhtenbrot’s Theorem 89

Again if U is the universal Turing machine accepting MP, given an input w, our
reduction will construct a sentence p,, such that w is not accepted by U if and only
if p,, holds in all finite structures. Notice that our construction of p,, must differ
from ¢,, in (5.1) in some fundamental ways. This is because ¢, is trivially valid
in all finite structures — since ¢nym has no finite models, ¢,, is vaccuously true in
any finite structure!

Instead of using ¢nym, we will use @finite_num- Recall that finite structures satisfy-
ing Yfinite—num look like those shown in Fig. 5.2, and so they will have a substructure
that is isomorphic to an initial segment of N starting at 0. Notice that the sub-structure
starting from O has a maximum element, which is the only element that does not
have an S-successor. We will make use of this as follows. To say that U does not
accept w, we will say

®not-accept = Vt (Yx =S(1,x)) — —-State(gace. 1)- (5.3)

Notice that ¢not-accept requires that the state not be gacc at the unique element of the
structure that does not have an S-successor. On input w, our reduction will return
the following sentence.

Pw = (@finite—num A Pinitial A Pconsistent A Prransition) — Pnot—accept- (5.4)

The proof that this is a correct reduction, is similar to the proof used in The-
orem 5.2. Suppose U accepts w by computation that has k steps. Consider finite
structure A whose universe is {0, 1, ... k}, with the constant O being interpreted as
the number 0, and S(i,7’) holding iff i" = i + 1; here k is the unique element that
does not have an S-successor. Interpret the relations State, InpHd, TapeHd, and
TapeSymb such that it mimics the accepting computation of U on w. Clearly A
satisfies the antecedent of p,, and State(gacc, k) holds. Thus A = p,, and so p,,
is not valid. Conversely, suppose U does not accept w. Consider any finite struc-
ture A that satisfies the antecedent of p,,. Like in the proof of Theorem 5.2, one
can prove by induction that the relations State, InpHd, TapeHd, and TapeSymb
faithfully encode a prefix of U’s computation on w when time ¢ is restricted to take
values on sub-structure consisting of 0 and its S-successors. Notice that since U
does not accept, the states at any of the times corresponding to this chain of 0 and
its successors is going to be gacc. Moreover, since the unique element that does not
have a S-successor is guaranteed to be a successor of 0 in any finite model satisfying
Pfinite—num-» Pnot—accept holds in A. This establishes the correctness of the reduction.

Itis worth recalling the discussion in Sect. A.2 about the formula ¥, in (5.2) and
why that does not describe a correct reduction from univL to validity. The problem
there was that we may have models where State(gacc, t) holds for ¢ that are not on
the primary number line. Hence ¢,, may not be valid even if U does not accept w.
Now, we no longer face that problem, because ¢,0r—accepr checks the state at time
(i.e., the maximum) that is guaranteed to be on the main number line in any finite
model of Yfinite—num-
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Since validity and satisfiability are undecidable, a simple corollary of Theorem 5.3
is that for sentences satisfiable in finite models, there is not computable bound on
the size of the model.

Corollary 5.4 There is no computable function f such that for any sentence ¢, ¢ is
satisfiable in a finite model if and only if ¢ is satisfiable in a structure whose universe
is bounded by f(|¢|).

Proof Observe that Theorem 5.3 implies that satisfiability in finite models is unde-
cidable. Suppose (for contradiction) there was a computable function f satisfying the
properties in the statement of Corollary 5.4. Then checking if a sentence is satisfiable
in a finite model would be decidable as follows. Compute f(|¢|) and check if ¢ holds
in all finite models of size bounded by f(|¢|). This contradicts the undecidability of
finite satisfiability and hence the corollary is true. O



Chapter 6
Incompleteness Theorems

Number theory and correctness of programs

Incompleteness results in logic argue that there are no formal systems that can prove
all theorems in certain models or classes of models. In other words, for certain
models or classes of models, not all theorems have proofs, in any proof system. We
saw the first such incompleteness result in Sect. 5.3 , where we proved that there
is no proof system that can be used to prove that a given sentence/theorem holds in
all finite structures, or special classes of finite structures like finite graphs. We, in
fact, proved this incompleteness result in an equivalent form. Instead of arguing the
“incompleteness” of an arbitrary proof system for finite structures, we showed that
the problem of checking if a sentence holds in all finite structures is not recursively
enumerable. This is the form in which we will establish incompleteness results in
this chapter as well.

In this chapter we will prove two other important incompleteness results. We
will show that there is no proof system that can establish the truth of all theorems
(expressed in first order logic) that pertain to natural numbers with addition and
multiplication. This the famous result due to Godel that revolutionized mathematics
when it was first discovered. Natural numbers, endowed with addition and multipli-
cation, is one of the most ubiquitous structures in mathematics and computer science.
It is used to model many things in the physical/natural world and the human created
world — discrete objects and others that can be discretized by approximation. For
example, people are discrete objects; it’s useful to know how many children one has,
or how many people can vote in a country. Goats and cows are discrete, and impor-
tant in early notions of wealth and trade. Time is not discrete, but we can discretize
time into intervals, like seconds, and hence use numbers to count time. Planetary
positions are not discrete, but can be discretized to arcs of degree, and hence modeled
as natural numbers. With discretization, a significant aspect of the physical world
can be modeled as numbers, and most observations of physical phenomena can be
modeled using numbers. Programs are also very much discrete in nature. They deal
with inputs that are sequences, which can be seen as numbers; they do operations,
which can be seen as similar to operations involving numbers (arithmetic/Boolean
circuits); and the program itself, is a sequence of symbols that can be seen as a
number.

91
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Our second incompleteness result pertains to programs and their verification.
Consider an imperative program in your favorite programming language with asser-
tions. Assertions are basically properties of states that you assert in code, and are
a form of specification asserting that the property must be true in all states where
the assertion is reached. A program with assertions is said to be correct if in every
execution of the program, whenever an assertion is reached, the asserted property
holds. The problem of program verification is to determine whether a given program
with assertions is correct. The statement that a program P with assertions is correct,
is really a theorem in mathematics. And a proof of such a theorem, no matter what
the notion of proofs are, is a mechanically checkable sequence of statements, where it
should be clear that the proof asserts in the end that the program is correct. There are
several sound proof systems that prove programs correct, with Hoare logic being a
popular one. Unfortunately, as we shall see, none of these proof systems are complete
— there are correct programs that they will fail to prove.

Incompleteness results put mathematics in a strange place than we intuitively
imagined. There may be true theorems that are not provable using any set of formal
rules of proof we accept. This means that there are theorems in number theory,
including open problems, that may not have proofs. Similarly, there may be theorems
about graphs that are unprovable, and programs whose correctness we may fail to
establish.

All incompleteness results have a similar proof outline based on some form of
diagonalization, similar to the one found by Cantor to establish the uncountability
of real numbers, and similar to the one used by Turing to show the undecidability of
the halting problem. Since, as computer scientists, we already know of such results,
we will use these results and reductions to establish the non-recursive enumerability
or incompleteness of the problems considered in this chapter.

6.1 Godel’s (First) Incompleteness Theorem

In this section we will Godel’s first incompleteness result. That is, any sound proof
system for N = (N, 0, 1, +, X, <) is necessarily incomplete, i.e., for any sound proof
system, there will be sentences ¢ such that N |= ¢ but ¢ is not provable in the proof
system. However, in this section, we prove an equivalent form of this result. Namely
that Th(/N) is not recursively enumerable.

Recall that (from Theorem A.16, Example A.19 and Corollary A.21) that haltL
is not recursively enumerable. Our proof of the incompleteness theorem will reduce
HP to the problem checking membership in Th(/N), thereby establishing that Th(N)
is not recursively enumerable. We will follow
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6.2 Incompleteness of the theory of natural numbers with
additional and multiplication

We want to show that the theory of natural numbers with addition and multipli-
cation is not recursively enumerable, i.e., Th(N, 0, 1, +, X, =, <) is not recursively
enumerable.

The intuition behind this result is that the theorem stating that a program is correct
(or that Turing machines halts or does not halt) is a first-order expressible theorem in
number theory! Consequently, there is no formal proof system such that all theorems
in FO arithmetic have proofs in the system.

We want to reduce the problem of Turing machine non-halting (or halting!) to
the validity problem of sentences over the theory of natural numbers. The following
proof is adapted from Dexter Kozen’s book “Automata and Computability”.

First, we can express several interesting properties using first-order logic using
addition and multiplication:

e g is the quotient and y is the remainder when x is divided by y:
IntDiv(x,y,q,r): x=qy+rAr<y

e ydivides x:
Div(y,x) : 3q. IntDiv(x,y, q,0)

e x is prime:
Prime(x) : x 22 AVy. (Div(y,x) = (y=1Vy=x))
* yisapower of a particular fixed prime p, i.e., y = p* for some k € N:
Powerp (y) : Vz.((Div(z,y) A Prime(z)) = z = p)

We will now show a reduction from the non-halting problem of a Turing machine
(on an empty tape) to validity of arithmetic sentences.

Given a Turing machine M with tape alphabet I" and states Q, let us fix the
alphabet IT = T" U (Q x I'). Let us choose a prime p larger than IT, and let us look
upon sequences over I1 as p-ary representations of numbers. A sequence a,, . . ., dp,
where each a; € [0, p — 1] maps to the number Z;c[q a;p'.

The computation of M on the empty tape can be seen as a sequence of configu-
rations 0y, 07 . . . ,, where each o is a configuration represented a word in I[1*. When
M halts, configurations are bounded by some maximum length (depending on how
much space M takes on the tape. Let H denote the subset of II that has the halting
state: H = ' x HQ, where HQ C Q are the halting states. Hence M halts iff there
is a sequence of configurations that represents valid moves of M that has the halting
configuration, i.e., where some element of H occurs.

! Note that reducing the halting problem to validity also works to show non r.e.-ness since the
theory is negation-complete; a negation conmplete theory is either decidable or not r.e.
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We now encode the halting of M as the existence of a number whose p-ary
representation encodes a valid halting computation of M.

A finite computation sequence oy, 01, . . ., 0, Will be encoded as large enough
blocks so that each o7 fits into a block. If C is a large enough length to encode each
configuration, we will use ¢ = p€ to capture this number. (In general, most numbers
k related to the Turind machine that we need will be captured using p¥ instead of
k.) This number ¢ will eventually be quantified in the formula we reduce to.

In order to say that a configuration sequence is correct, it is sufficient to demand
that successive configurations are correct. In order to demand o, sigma’, two suc-
cessive configurations (encoded with sequence of the same length C) are correct, it
is sufficient to check every three-element subsequence of o~ with the corresponding
three-element subsequence in o’ (since Turing machines make only local changes
on the tape). The three element sequences either does not encode a state (i.e., is over
I" only), in which they must be the same, or the three element sequence in o encodes
a state in the middle, in which case the corresponding three-element sequence in o~/
depicts the correct evolution according to the transitions of the Turing machine.

Let V be the set of all 6-tuples (ay, az, as, by, by, b3) that denote valid pairs of
three-tuples. V includes all:

* Every (al, a»,as, by, by, b3) such that ay, az,as, by, by, b3 €T

¢ Forevery transition §(g, a) = (b, q’, R), the triples (a1, (g, a), az,ay, b, (¢, az)),
((g,a),ay,a2,b,(q’,a1),az), and (ai,az, (q,a),a,as,b) are in V, for every
ai,ap € I.

* Forevery transition §(g, a) = (b, q’, L), thetriples (a1, (¢, a), a», (¢’,a1), b, az),
(Cl], (q,a),a3, (q/7a1)9b’a3)s
arein V, for every aj,a3 € I'.

Note that check inconsistencies of sequences only in tuples where the “middle”
symbol in the first configuration, i.e., a», encodes a state.

We will write a formula that ensures that in a number encoding sequences of con-
figurations, for every two consecutive configuration o~ and o, every three-element
subsequence in o and the corresponding three-element subsequence in o, the 6
elements are related by V. This will ensure that the entire sequence of configurations
is valid.

The crucial power of arithmetic with addition and multiplication is that we can
encode sequences as numbers, and also decode sequences into their components.
Here is an important formula, which says that the character in position Y of a sequence
encoded by the number v is a (where a € [0, p — 1]. As we said before, we encode
the position Y using the number y = p¥. So the following really says that the position
encoded in y of the sequence encoded by v is b (assuming y is a power of p):

Digit(v,y,a) =3u.Ir. (v=r+ay+upyAr <yAa<p)

Intuitively, let’s say v’s p-ary representation can be split into p; - a - pp, where
|p2| = Y. Then clearly v = r + ap¥ + up**!, for some r < y (where r encodes
the number corresponding to p, and u encodes the number corresponding to pp).
Replacing p¥ by y gives v = r+ay+upy, which is what the above formula demands.
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The intuition for the following formulae follow along similar lines, and we let the
reader work this out for themselves.

We can demand that the 3-digit sequence of v at positions encoded by y are by,b»,
and b3, using the formula:

3Digit(v,y,b1,by,b3) : Au. Ar. (v =r+ b1y +bapy+bsppy+upppy

A<y A bi<p A by<p A b3z<p)

Now we can demand that the three digits of v at the position encoded by y match
correctly the three digits of v at the position encoded by z:

Match(v,y,z) : \/ (3Digit(v,y,ay,ay,as3) A 3Digit(v, z, by, by, b3))
(ay,a2,a3,b1,by,b3) €V

We can now write a formula that says that the p-ary string that represents v encodes
a valid sequence of configurations of the TM evolution. For technical reasons, we
will parameterize this with ¢ and d— c is the number that encodes the size of
configurations (i.e., p raised to the power of the length of configurations) and d will
encode a bound on the entire length of the sequence v. The formula checks whether
all pairs of three-digit sequences precisely ¢ apart (or rather log,(c) apart) in v
match according to the Turing machine’s moves, up to d:

ValidMoves(v, c,d) : Vy.(Power,(y) A yppc < d) = Match(v,y, yc)

We can state the sequence representing v starts with the initial configuration. Let
init be the number encoding the symbol (g, #), the Turing machine reading the
blank symbol. Let blank denote the number encoding the blank symbol #. Note that
the start configuration is then (g, #) - # - #. . . - #. The following formula forces this
as the first configuration of v:

Start(v, ¢) : Digit(v, 1,inif) A\Vy. (Power,(y) Ay > 1 Ay < ¢ = Digit(v, y, blank))
We can also state that the halting configuration occurs in v before d by the formula:
Halt(v,d) : 3y. |Powerp(y) Ay < d A \/ Digit(v,y, b)
beH

We can now ready to write a formula that says that v is a valid sequence of
configurations that halts. In order to do this, we first express that the number d
represents an upper bound on the length of v (we then interpret v using the p-ary
representation of v, with 0’s padded to the left, if necessary):

Length(v,d) : Powerp(d) Av < d
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Note that v along with d (where Length(v, d) holds) represents the precise p-ary
sequence we wish to express properties about. We can now write that this sequence
represents a valid halting computation:

ValidHaltComp(v) : 3d. 3c. (Length(v,d) A Power,(c) A c<d

AStart(v, ¢) A ValidMoves(v, c,d) A Halt(v, d))

We can now finally write a sentence that says that the Turing machine M does not
halt:

—3v. ValidHaltComp(v)

The above formula is valid over the standard model of natural numbers with
addition and multiplication iff the Turing machine does not halt. The relation < can
be expressed with the other relations using the following equivalence:

x<ye dz-(z=0)Ax+z=y
We hence have:

Theorem 6.1 The first-order theory of natural numbers with addition and multipli-
cation, Th((N, 0, 1, +, X, =)) is not recursively enumerable.

6.3 Program Verification

Consider a TM that we want to check for non-halting. The TM can be realized by
a program P (any programming language with infinite memory will do, as it can
simulate the moves of a Turing machine; for example, a program with access to
unbounded linked lists, or a program with access to an unbounded secondary storage
device, or even a program that has unbounded integers). So the problem reduces to
checking whether P does not halt.

Construct a program P’ that is basically the program P modified so that if P halts,
we add an assertion assert false; at the point where it halts. (An assertion of
false doesn’t hold in any program state— if you are uncomfortable with it, replace it
with x := 1; assertx = 0;.)

Now it is clear that the program P’ satisfies its assertion if and only if P does not
halt. Consequently, program verification is not recursively enumerable.

Theorem 6.2 Program verification is not a recursively enumerable problem.
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6.4 Further Remarks
Godel’s proof and strengthenings

The crux of the above proof is that sequences over an alphabet, related in simple
syntactic ways (like the moves of a Turing machine) can be encoded in arithmetic.
Godel was the first to discover this, and he used it in what’s called Godel numbering
in order to encode proofs into numbers; proofs are also sequences whose validity
is syntactic. This was done before a solid notion of computation (such as Turing
machines or lambda calculus) existed. In fact, Godel showed that one can encode
a self-referential formula, where for any reasonable proof system, one can state in
arithmetic a statement that says: “There is no proof of this statement.” A proof system
is damned it it proves this statement, and damned if it does not. If it proves it, then
it’s proved a wrong statement! And if it doesn’t prove it, it’s a correct statement it
cannot prove! Godel’s proof combines encoding proofs/sequences as numbers and a
diagonalization argument. In our proofs, we proved undecidability and hence non-
r.e.-ness of Turing machine non-halting using diagonalization, and a separate proof
of encoding existence of sequences into statements about numbers.

Note that the above proof extends beyond first-order arithmetic. Any logic that
is more powerful than first-order arithmetic does not have a complete proof system.
In fact, it turns out that the above theorem can be strengthened to show that even
quantifier-free arithmetic with addition and multiplication (i.e., implicitly universally
quantified) is undecidable and not recursively enumerable. In fact, the even simpler
problem of solving Diophantine equations (given a set of polynomial equations,
deciding whether there is solution using integer values) is undecidable, and checking
whether there is no solution to them is not r.e.. This is a celebrated problem, called
Hilbert’s Tenth Problem, which was open for a long time and settled in a famous
theorem by Yuri Matiyasevich in 1970.

Axiomatizations

Due to the completeness theorem, we know that any model whose theory is axioma-
tizable is decidable. Since the theory of arithmetic with addition and multiplication
is undecidable, it follows that there can be no recursive axiomatization of it.

The Peano axioms formulated in first-order logic was an attempt to axiomatize
arithmetic. It has an infinite set of axioms, including an axiom schema for induction,
which essentially says that any first-order property about numbers (formulated as a
formula with a single free variable) can be proved by induction. However, as we know
from the results in this section and the completeness theorem, this axiom system,
if sound, must be incomplete. In fact, there are natural concrete theorems that can
be stated in FOL that are not provable in Peano arithmetic (see the results of Paris
and Harrington where a version of Ramsey’s theorem is shown to be unprovable in
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Peano arithmetic). The Principia Mathematica is another formal system for which
the incompleteness theorem applies, showing that there can be no recursive of it that
is consistent and complete.

Returning to Program Verification: The Method using Invariants

Consider the problem of program verification again. How do people actually prove
programs correct (partially correct, i.e., satisfy their assertions) in practice? The
predominant method is the invariant method, which is basically a proof by induction.
People postulate essentially a set of configurations Inv(x) (called an invariant),
captured as a formula in logic over a set of variables X, and prove the following
properties about it:

¢ The initial states are contained in Inv:
Vx.Init(x) = Inv(X)

 If Post(X,x") represents how the program can change configurations in a single
step, then the invariant is closed under Post:

Vx,x : (Inv(X) A Post(x,x)) = Inv(X’)

* The invariant set and the set of unsafe states where the assertion is violated, do
not intersect:
Vx(Inv(x) = —Unsafe(X))

Once we postulate such an invariant set, program verification boils down to
proving validity of the above assertions! Clearly, if there is such an invariant set that
contains all the initial states and closed under any move done by the program, then
the set contains all the reachable states, and since it doesn’t intersect the unsafe sets,
it satisfies the assertion.

Verification methodologies such as that of Floyd and Hoare are essentially stylized
proof techniques that follow the above method (expressing invariants at only loop
headers or method boundaries). In fact, these stylistic methods break down (become
too weak) for complex programs (such as concurrent programs or programs that pass
programs/program-pointers as parameters); however, the global invariant method
above is still robust and always is viable.

Now, one could ask whether such an invariant always exists. It clearly does
whenever the program is correct— choose the invariant to be the set of all reachable
states of the program: it satisfies all the above requirements.

So then where exactly lies the problem in not being able to prove a program
correct? It lies in two aspects: (a) invariants may exists but may not be expressible
in logic, and (b) invariants may be expressible in logic, but there may be no proofs
(in a fixed formal system) that the above formulas are valid, i.e., the logic used to
express the above conditions may be incomplete.
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It turns out that either can happen. If we choose a weak enough logic, say a
decidable logic, then we would be able to decide validity of the above formulas...
but the invariant may not be expressible in logic. However, it turns out that for any
reasonable programming language, the invariant (or the precise set of reachable
states) is always expressible in a powerful enough logic, such as arithmetic with
addition and multiplication! However, then, the logic becomes incomplete, and there
may be no proofs for proving the above properties. And hence program verification,
in general, remains incomplete either way. In automated program verification, one
either chooses a weaker logic and builds automated decision procedures to check the
properties above (this is good for shallow properties), or chooses a very expressive
logic, and builds incomplete automation for logical reasoning to find proofs that
establish the above properties!

Several open mathematical problems can be reduced to program verification.
Consider Goldbach’s conjecture, which asserts that all even integers larger than two
is a sum of two primes. This problem can be reduced to program verification. Build
a program that enumerates all even integers in increasing order, check if they are
a sum of two primes (which can be done since both primes obviously need to be
less than the considered number), and if some number isn’t expressible as a sum of
two primes, halt (or assert false). Then this program does not halt (or is correct) iff
Goldbach’s conjecture is true.

It turns out that there are similar reductions reducing the Riemann hypothesis to
program verification/non-halting [?], even with a focus on building relatively small
TMs.

Do Theorems have Proofs?

The incompleteness theorems raise metamathematical concerns. Is it possible that
theorems may not have proofs? In any consistent formal system that is at least
as expressive as arithmetic with addition and multiplication, the incompleteness
theorem argues that there must be a statement (even expressible in FOL) such that
either it or its negation is not provable. The methods mathematicians use is after
all some formal system, which if consistent, will have unprovable theorems. For
example, one could take any of the various unsolved problems in mathematics or
theoretical computer science, and ask whether the problem is independent of the
formal systems we are assuming.






Chapter 7
Quantifier-free theory of equality

In this chapter, we consider the problem of deciding the validity of sentences of the
kind
VX1, .. . Xn. @

where ¢ is quantifier free, and over an arbitrary signature.

Note that our convention for validity for formulas (with free variables) is that a
formula is valid if it is true in every structure and every valuation of variables over
the structure. Hence validity of the sentence Vxi, . .., x,. ¢ is the same as the validity
of the formula ¢. Since this formula has no quantifiers, this fragment is referred to
as the quantifier-free fragment. Furthermore, since the functions and relations are
not restricted in any way, the only relation that has a fixed interpretation is equality
(interpretation of = symbol). Hence this theory is called the quantifier-free theory of
equality.

We saw in the last chapter that general FOL validity is undecidable. However, the
proof of that undecidability crucially used existential quantification (in particular,
V3 quantification), and hence that proof does not apply for this fragment. We will
show in fact that validity for this fragment is decidable.

Let us consider the dual problem of satisfiability. Given a quantifier-free formula
¢(x), is there a model and interpretation of x that satisfies ¢? Note that this is the
same decision problem as validity, as ¢ is valid iff = is not satisfiable. Hence a
decision procedure for satisfiability gives a decision procedure for validity as well.

7.1 Decidability using Bounded Models

We first make the simple observation that a quantifier-free formula ¢ is satisfiable
iff it is satisfied in a finite model, in fact the finite model needs to be only of size n,
where 7 is the number of ferms mentioned in the formula.

101
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Let ¢(x) be a satisfiable quantifier-free formula. Let M be a (potentially infinite)
model and s be an interpretation of the variables x, under which ¢(x) is true, i.e.,
M [ o(x).

Now let us construct a finite model M’ from M that also satisfies ¢. Let T be the
terms mentioned in ¢; T is finite, and let’s say |T'| = n. Without loss of generality,
assume n > 0 (if not, add a conjunction x = x to the formula to introduce a term
x). Let the universe in M be Ujs. Now, under the interpretation s, each term t € T
evaluates to an element [¢]; € Uy,.

Let us define the model M’ as follows: the universe U’ of M’ is {[t], | t € T}
(i.e., the finite subset of elements that terms evaluate to. For every relation symbol R,
R(w) is true in M’ iff R(u is true in M. Functions are a bit more complex to define.
Let us fix an arbitrary element e in U’. Define M’ () to be fM () if fM (w) € U,
and e otherwise.

The above construction basically takes the sub-universe corresponding to the
terms mentioned in ¢, restricts the relations and functions to this subset, and when
the function maps a vector of elements to an element outside this subset, map it to e
instead.

Our claim now is that M’ with the same interpretation s will also satisfy ¢. First,
we prove that every term in ¢ maps to the same element in M’ as it does in M. And
hence any atomic formula R(_t>) as well as any atomic formula ¢ = ¢’ will evaluate
the same way under both models. It follows that the formula ¢ will evaluate to true.

The above argument shows that satisfiability for quantifier-free formulas is de-
cidable. We can just enumerate all possible models of size n, where n is the set of
terms mentioned in ¢, choosing all possible interpretations for functions, relations,
constants, and variables, and check if any of them satisfy ¢.

If the signature (including arities) are fixed, and validity of formulas only over
the fixed signature is to be decided, we can even do this in Np. We can just non-
deterministically guess the model of size n and the interpretation, and check if the
formula is satisfied. Since checking whether a formula holds in the model can be
done in polynomial time, this gives an Np algorithm.

It is also easy to see that the problem is Np-hard as well, as it essentially includes
Boolean logic. Reduction from SAT: Given a propositional formula «, introduce a
new variable x, and replace each proposition occurrence p in ¢ with the atomic
formula (p =x). This formula is satisfiable iff « is satisfiable. Hence satisfiability of
quantifier-free formulas is Np-complete.

7.2 An Algorithm for Conjunctive Formulas

The above proof that checking satisfiability is Np-hard is a bit unsatisfactory, as
it shows it is hard because of the Boolean logic within in. What is the precise
complexity of reasoning with equality itself?

We can ask the above question more precisely by asking what is the complexity
of deciding conjunctive formulas. Can they be decided in polynomial time?



7.2 An Algorithm for Conjunctive Formulas 103

It turns out that the problem is indeed solvable in polynomial time. We will
consider an algorithm in this section that clearly works in polynomial time if the
arity of functions/relations are fixed (i.e., bounded by k). However, it turns out that
one can implement this algorithm using clever data-structures to get a polynomial
time algorithm even when arities are not fixed (see Calculus of Computation, Chapter
9, Section 9.3, for example).

To simplify the algorithm, let us first get rid of predicates (other than equality)
from the formula. This can be done easily. Let us fix a constant T. We can model
a predicate p C U" as a function f, : U" — U U {T'}, with the understanding that
p(u) is true iff f, (u) = . Hence, given a formula ¢ with functions and relations,
we can replace each occurrence of p(r) with f,(7) = T, to get a formula ¢’ such
that ¢ is satisfiable iff ¢’ is satisfiable. (We leave this as an exercise.)

Let ¢ be a conjunctive formula that is quantifier-free, that uses function symbols
and =, but no relation symbols. Then ¢ = @] Aas A ... @y, where each q; is a literal
of the form ¢t =¢" or =(t = t’).

Since the formula is conjunctive, let us look upon the formula as a set of conjuncts:
{aq,...,a,}. Infact, let us divide these formula into two sets EUD, where E consists
of equalities of the form ¢ =t and D consists of disequalities of the form —(¢ = ¢’).
Let us look upon the elements of E and D as pairs of terms of the form (z,7’).

Our key idea is now to build a model, if the formula is satisfiable, just using the
terms 7" mentioned in the formula ¢, which is finite and linear in |¢|. Furthermore,
our idea is to find the smallest set of equality constraints that are imposed by the set
of equalities in E. It turns out that such a smallest set always exists, and is called
the congruence closure of E, denoted CC(E), and is easy to compute in polynomial
time. We then check whether any of the disequalities are violated in CC(E). Then
there is a violation iff the formula is not satisfiable.

The congruence closure of E, CC(E) is the smallest set such that:

Includes E: Forevery (t,#') € E, (t,t') € CC(E)

Reflexive closure: Foreveryt €T, (t,1) € CC(E)

Symmetric closure: Forevery t,#’ € T, if (t,1"), (¢',t) € CC(E).

Transitive closure For every 7,7/,¢t” € T, if (t,t') € CC(E) and (¢',t") €
CC(E), then (z,1"") € CC(E).

Congruence closure For every function symbol R of arity n, for every
fttn), f(2], .. ty) € T, if (t1,1)), (t2,1}), ... (ta, t;) € CC(E), then
(f(tr,...otn), f(t],..., 1)) € CC(E)

Intuitively, CC(E) is the reflexive, symmetric and transitive closure of E, and
also congruence-closed, in the sense that if two tuples of terms are deemed equal by
it, then the function expressions applied on those terms are also deemed equal.

It turns out that CC(E) exists (i.e., a smallest set of such equalities exists). Here
is a simple proof. Define
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CCy =E
CCiy =CC;
U {(t,1) |t eT}
U {(t)] (¢, 1) € CC;}
U {3 eT, (1), ", ) e CC}
U {(f(t1,.. tn), f(] o atp)) | (21, 1]), .o, (tn, 1) € CCy, f(t1, ..o 1), f(1], ... 1,) €T}

Now, let CC = U;enCC;. Then it is easy to prove that CC has the required
properties and is the smallest set that has these properties (readers should prove this
for themselves). Since T is finite, the above procedure in fact terminates, i.e., there
will be an 7, such that CC; = CCj;, in which case we can stop, as the future sets
will all be the same. It’s easy to see that this is in fact a polynomial time algorithm,
since CC; monotonically increase and can have at most |T|? pairs. We will see later
in this section a concrete algorithm that does this computation a bit better.

Now let M be any model that satisfies the equalities in E. Then it is clear that M
will satisfy the equalities in CC(E) as well, since what we demand of CC(E) are
properties satisfied by equality. Consequently, the equalities in CC(E) are logically
implied by the equalities in E.

Let us now prove:

Lemma 7.1 There exists a model satisfying the equalities in E and the disequalities
in D exist iff CC(EYND =0

Proof In the forward direction, assume M is a model satisfying the equalities in
E and the disequalities in D. Then, as we argued above, the equalities in CC(E)
must be satisfied in M as well, as they are logically implied by the equalities in E.
It follows that since every disequality in D is satisfied by M, CC(E) and D cannot
have a common pair of terms.

In the other direction, assume CC(E) and D are disjoint. Let us define the
equivalence relation ~ over T defined by CC(E) as t ~ ¢’ iff (¢,t') € CC(E). Itis
easy to see that ~ is indeed an equivalence relation.

Let us construct a model M, where the universe U of M is T/~ i.e., the universe is
the set of equivalence classes of ~. Interpret each constant symbol ¢ occurring in ¢ as
the equivalence class [c], and each variable x occurring in ¢ as the equivalence class
[x]. The interpretation for a function symbol f on a vector of elements ey, . .. e, is
defined as follows (for the definition below, fix a particular element e* arbitrarily):

e If there are some terms t| € ey, ...t, € e, such that f(¢;,...,t,)isatermin7,
then map f(ey,...,ey) to [f(t1,...1)].
e Else, map f(ey,...,e,) toe*.

Note that the above model construction is well defined only because CC(E)
satisfies the congruence-closure condition. For example, if #; ~ 7, then we would
need f(t;) ~ f(t2) in order for the definition of f to be well-defined.

It is now straightforward to argue, by induction on structure of terms, that for
every term ¢, the term evaluates to the element [¢] in this model. Consequently all
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the equalities E are satisfied. Also, every disequality (z,t") € D, we are guaranteed
[t] # [t'], since CC(E) N D = 0. Hence the formula holds in the model, and is
hence satisfiable. O

The above shows that in order to check whether a quantifier-free conjunctive
formula ¢ is satisfiable, we just need to compute CC(E) and checkif CC(E)ND = 0,
where E and D are the equalities and disequalities occurring in ¢.

7.2.1 Computing CC(E)

One simple method for computing the congruence closure, especially on paper
manually, is to compute successive equivalence relation using its equivalence classes.

An equivalence relation ~ over T can be represented as a set of sets that form a
partition of 7, i.e., as {E}, ... Ex} where each E; C T, the sets are all disjoint, and
their union is E;.

Given such a representation of ~, let us define a Merge operation on them:
Merge(~, E;, E ), where E;, E; are two equivalence classes of ~ simply merges the
two equivalence classes into one and results in a new equivalence relation. More
precisely, if ~is {E1, ..., Ex}, then Merge(~, E;, E;) is ~' whose representation is
{E, |r+i,r+ j}U{E; UE]'}.

The algorithm for computing congruence closure is then as follows. :

¢ Initialize ~ to {{t} | t € T}. In other words, we start with each term in its own
equivalence class.

e Forevery (¢,t') € E, merge [t] and [¢]’.

* Do the following till ~ stabilizes:

— If there are any terms 71, . . .,tn,ti, ....t;, € Tsuchthatboth f(z;,...,t,) and
f(ti, ...ty)arein T, and if [f(¢#,...,t,)] is not equal to f(ti, ...,1;,), then
merge them.

* Check whether there is any disequality (#,¢") € D such that [¢] = [¢']; if there is,
report formula is unsatisfiable; otherwise, report formula is satisfiable.

Let us illustrate through an example:

Example 7.2 This example is taken from the book Calculus of Computation.
We want to know whether the following formula is satisfiable:

fla,b)=aA f(f(a,b),b) #a

Equalities E are {(f(a, b),a)}.

Disequalities D are {(f(f(a,b),b),a)}

The set of terms T is {a, b, f (a, b), f(f(a,b), D).
We start with the equivalence relation:

{{a}. {b}.{f(a,b)},{f(f(a,b),b)} }
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Since (f(a, b), a) are in E, we merge their equivalence classes to get:

{{a, f(a,b)},{b}.{f(f(a,]),b)} }

Since a and f(a, b) are in the same equivalence class, and since b and b are in
the same equivalence class, we merge f(a, b) and f(f(a, b), b) to get:

{{a.f(a.b), f(f(a,b),b)}.{b}} }

It is easy to verify that the equivalence classes have stabilized.

We can now check whether the disequalities are all satisfied. But since
f(f(a,b),b) and a are in the same equivalence class, we report that the formula is
unsatisfiable.

Let us now illustrate an example where the formula is satisfiable, and also illustrate
the model construction involved in the Lemma above.

Example 7.3 We want to know whether the following formula is satisfiable:
f@=bnfb)=an f(f(a))=cr=(f(a)=a)

The equalities are: E = {(f(a),b), (f(b),a), (f(f(a)),c)}.
The disequalities are: D = {(f(a),a)}
The terms are T = {a, b, ¢, f(a), f(b), f(f(a)).

We start with the equivalence relation:

{{a}. {b}. {c}. {f (@)}, {f(0). {f(f(a)} }

Since (f(a), b) is in E, we merge their equivalence classes to get:

{H{a}. {b, f(@)}. {c}. Af (D)} {f (f (@)} }

Since (f (), a) is in E, we merge their equivalence classes to get:

{{a. f(D)}.Ab, f(@)}. {ch {f(f(a)} }

Since (f(f(a)),c) is in E, we merge their equivalence classes to get:

{{a. f(D)}.{b. f(a)}. {c, f(f(a))} }

Now, since b and f(a) are in the same equivalence class, we must merge the
equivalence classes of f(b) and f(f(a)). We get:

{{a, f(b),c, f(f(a)}, {b, f(a)} }

The equivalence class has now stabilized. We note that there is only one disequal-
ity, (f(a),a), and f(a) and a are in different equivalence classes. So we report the
formula to be satisfiable.
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Let us examine now how the proof of the Lemma above constructs a model. We
have two elements in our model, e; standing for the class {a, f(b),c, f(f(a)) and
e, for the class {b, f(a)}.

Since a is in e and f(a) is in e,, we interpret that f(e}) = ep. Also, since f(a)
is in e and f(f(a)) is in e, we interpret f(ez) = e;. The constants a and ¢ are
interpreted as e; (since they belong to e¢1) and the constant b is interpreted as e, (as
b belongs to e,. This model satisfies the formula.

There are even faster ways to do congruence closure. Notice that the key operations
above have to manipulate disjoint sets and support union (merge) and find (which
equivalence class does an element belong to?). This turns out to be a well-studied
data structure called disjoint-set datastructure (or union-find datastructure for which
efficient algorithms are known. Note that the number of equivalence classes is n,
where n is the number of terms in the formula, which is of course linear in the
size of the formula. Now if the signature is finite and fixed, or if the signature had
functions of fixed arity (the former implies the latter), then it is easy to see that the
above algorithm can be implemented in polynomial time. If the maximum arity is
k, then there are only n* possible considerations of terms to consider for identifying
candidates of equivalence classes to merge. If the signature consists of functions of
arbitrary arity, it turns out that one can still effect a polynomial time algorithm, but
we skip this here.

SMT solvers also implement fast algorithms for congruence closure. In particular,
given a quantifier-free formula (not necessarily conjunctive), they look upon the
formula as a Boolean formula over propositions (each proposition being an atomic
formula), and call a SAT solver to find a satisfying valuation (if the SAT solver finds
it unsatisfiable, then clearly the original formula is also unsatisfiable). The satisfying
valuation can now be interpreted as a conjunctive set of equality and disequality
constraints, which can then be checked for satisfiability using congruence-closure
algorithms. If this conjunctive formula is unsatisfiable, it would return a core set of
atomic formulas that already make it unsatisfiable, and the SAT engine will add that
as a clause, and continue its search for valuations.

7.3 Axioms for The Theory of Equality

In this book/course, we will treat the equality symbol (=) as an interpreted relation
throughout— it is interpreted as equality of elements in the universe. However, in this
section, we are briefly going to suspend that in order to understand what properties
equality really satisfies.

Let us fix a FO signature, and for clarity, let us not have = as a symbol, but
instead have the symbol =. If = was uninterpreted, what properties would we like it
to satisfy?

Here are some properties (which we will call the congruence axioms) that equality
clearly satisfies (we continue to write relations as t=t’)), instead of =(z,¢’):
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Reflexivity” Vx. x=x

Symmetry: Vx. (x=y = y=x)

Transitivity: Vx,y,z. (x=y A y=z) = x=z

Congruence wrt relations:  For any relation R of arity n,

VX1, oo Xy Vise ooy Ve /\ xi=y; | = R(x1,...,x,) © R(Y1,...,Yn)

i€[l,n]

Congruence wrt functions:  For any function f of arity n,

VX1, oo Xy Vise ooy Ve /\ xi=yi|= fOxt, o x0)=f 1,5 Vn)

i€[l,n]

First, notice that the above doesn’t ensure that = will be interpreted as true equality
on the model. For example, if there were two elements e and e; such that all functions
and relations behaved identically on them and no constant was interpreted as either
of them, then we could relate them with = and satisfy all the properties above. In
fact, FO with = (and without =) will not be able to distinguish this model from one
where we removed e; and just had e;. The above properties in fact only insist that =
is an equivalence relation that is also a congruence with respect to the relations and
functions.

However, it turns out that the above properties are sufficient to capture equality as
far as satisfiability/validity of logical formulae are concerned. It doesn’t matter that
the properties above capture only congruence and not true equality.

Let us formalize this. Let M be a model with universe U an interpretation of
the relation = that satisfies the congruence axioms given above. Then let M /= be
the model where we take as the universe the equivalence classes U /=, and interpret
relations and functions as follows:

* For any constant c,
CM/: — [CM]

* For any n-ary relation R,

RM=([e1], [ea], ... [en]) holds iff R™ (e, .., e,) holds

» For any n-ary function f,

ME(er] el [eal) = [fM (er.. . en)]

The above says that constants are interpreted in M /= as the equivalence class
of their interpretation in M, and relations and functions are interpreted in M /=
depending on how the relations and functions are interpreted on the elements in their
equivalence classes. The reason the above is well-defined is because = satisfies the
congruence axioms.

We can now show the following:
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Lemma 7.4 Fix a signature S without = and =. Let ¢ be a formula over S U {=}. Let
¢’ be ¢, where = is replaced with =, and hence is over the signature S U {=}.

o [f ¢ holds in a model M, where = is interpreted as equality in the model, then ¢’
holds in M’ where = is interpreted as equality, and the interpretation of = does
satisfy the congruence axioms.

o [f ¢’ holds in a model M, where = satisfies the congruence axioms, then ¢ holds
in M /= with = interpreted as equality in the model.

We leave the above as an exercise for the reader.

A consequence of the above lemma is that a formula with = is satisfiable (or valid)
iff the formula, with = replaced by = is satisfiable (or valid) over the class of models
that satisfy the congruence axioms.

Hence the above congruence axioms define equality as far as logic goes. Logically,
there is no real difference between true equality and a congruence.






Chapter 8
Completeness Theorem: FO Validity is r.e.

Godel proved in 1929 his first famous theorem that there is a formal proof system
that can prove every valid formula in FOL. As the formal proof system one can
choose a variety of proof systems (Godel showed it for one proposed by Hilbert and
Ackermann). A proof system is a formal set of rules of writing down a finite sequence
(called a proof) that establishes the validity of a formula/sentence. In fact, a stronger
statement is proved (let’s call this the strong completeness theorem): there is a formal
proof system such that for any set of axioms A, the formal system (incorporating
axioms A) can prove any formula/sentence that is semantically entailed by A. In
other words, the system can prove any sentence ¢ where ¢ holds in all models that
satisfy the axioms A.

The above result is remarkable. It basically shows that any theorem that can be
stated in FOL has a proof. Not only that, for any class of axiomatizable structures,
the class of valid FO-formulatable theorems over such structures always has a proof.
For instance, take the class of groups— they can be axiomatized using a few axioms,
as we saw in Chapter 1. Consequently, every first-order formulatable theorem over
groups has a proof.

Given a set of formulae/sentences A, the validity problem for the theory of A is
to determine whether, given a formula/sentence ¢, whether every model and every
interpretation under which A holds also satisfies ¢.

Connection to computability

In this book/course, we won’t be studying proof systems, and hence won’t prove
Godel’s completeness theorem. However, we will prove essentially Gédel’s com-
pleteness theorem, but where we replace proofs with computation.

Consider a set of axioms A which is a decidable set (i.e., it is either empty or finite
or infinite where a TM can check whether a given sentence is an axiom or not). Then
Godel’s completeness theorem says that every logically entailed theorem has a proof.
Proofs are generally finite objects— they are typically finite sequences over some

111
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signature, that closely follow some set of allowed rules, incorporating the axioms
when needed, in order to prove a theorem. Whatever the proof system is, it is always
true that checking whether such a sequence encodes a correct proof is a decidable
problem. Consequently, it is easy to see that validity with respect to the axioms is a
problem solvable in r.e.. This is because a Turing machine can enumerate all possible
finite proofs, systematically, checking if any of them prove a given theorem, and halt
if it does. So Godel’s theorem can be seen as saying that the problem of checking
validity wrt any recursive set of axioms is recursively enumerable.

Our goal in this chapter is hence to prove this version of completeness. For every
formula/sentence, when the TM finds that the sentence is a theorem in the theory of
the given axioms, the computation itself can be viewed as a proof of the theorem.

Outline of Proof

The procedure we are going to outline is not entirely the usual one found in standard
textbooks, and has a more computational flavor. As we will see, it can also be
automated to some extent (we can build an r.e. procedure using calls to an SMT
solver that decides the quantifier-free theory of equality).

The rough outline is as follows. We fix a countable signature. We are given
a countable decidable set of axioms A and we consider the problem of proving
validity of a FOL formula .

1. Our procedure will work through refutation— we will show that ¢’ = = is not
satisfiable in any model satisfying the axioms. In other words, we want to show
there is no model satisfying A U {y'}.

2. We first show that formulas can be translated to equivalent formulas in prenex
normal form. Then we show that we can convert the negated formula to an
equisatisfiable formula y"’ over an expanded signature which has only universal
quantification, and is of the form

VAR SN

This process is called Skolemization.

3. We then show Herbrand’s Theorem for such sets of universally quantified for-
mulas, which roughly says that if the axioms and the formula is satisfiable, then
they satisfiable in a universe that is composed of only ground terms over the
signature modulo a congruence.

4. The above result will show that the universally quantified formula will be un-
satisfiable iff replacing variables with all possible terms, which gives an infinite
set of formulas, is an unsatisfiable set.

5. We will then use compactness of propositional logic to argue why this instanti-
ated infinite set is unsatisfiable iff there is a finite subset of it that is unsatisfiable.

6. The above gives our r.e. procedure: negate the formula, Skolemize the axioms and
formula, and instantiate systematically the formulas by a growing set of terms and
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check whether the the resulting set is unsatisfiable. Any instantiation procedure
that dovetails between the axioms and term instantiation so that all axioms are
instantiated for all terms eventually will do. Each level of instantiation gives a
set of quantifier-free formulae in the theory of equality, which is decidable. The
algorithm will halt only if it finds that there is some level where the instantiated
set is unsatisfiable.

We first show Step 2: Skolemization. Then we prove Herbrand’s theorem. We
then will use compactness to argue unsatisfiability can be proved using only a finite
set of terms. And finally give the r.e. procedure.

8.1 Prenex Normal Form

We assume that the formulae/sentences we are considering for validity/satisfiability
have first been convereted to prenex normal form, i.e., to the form:

Q1x1. 02x2 ... QnXp.@

where ¢ is quantifier free, and furthermore, where no variable repeats (for every
i #J,x; #x.,').

We refer the reader to a standard text that shows that any formula in FOL can be
converted to an equivalent formula in prenex form.

8.2 Skolemization / Herbrandization

Recall that for validity, pure universal quantification was easy to handle (we showed
decidability in the last chapter). Hence, for satisfiability, pure existential quantifica-
tion is easy to handle.

We can in fact eliminate all existential quantification in a satisfiability problem
easily.

Consider a formula of the form

U Vxg, o xg Ay, . X, Y)

where ¢ is an arbitrary formula (can have quantifiers). We will show that there is an
equisatisfiable formula (over an expanded signature) where we essentially remove
the quantified variable x.

The formula roughly says:

For every valuation of xi, . . ., x,, there exists a value for y such that ¢ holds.

Assume there is some model that satisfies the above property. Then for every
sequence of values of xy,...,x,, since there is an element y in the universe such
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that ¢ holds, we can fix a particular choice of this element y using a new function f.
This function in the model takes a tuple of values (vi,...,v,) € U" (standing for a
valuation of xy, . .., x,, respectively) and maps it to an element in Y. Now, instead
of saying that there is a value y that satisfies ¢, we can instead say that choosing y
tobe f(xi,...,x,) satisfies ¢.

More precisely, we can write instead the formula:

UiVx, X (X X, (XD X)) YY)

In other words, we remove the existential quantification on y, and instead replace
y in ¢ with f(xy,...x,). Here, f is a new function symbol introduced specifically
for this quantification of y.!.

It should be clear that the original formula i is satisfiable over a signature X iff
the above formula ¢/’ is satisfiable over the signature ¥ U { /}, where f is a function
symbol not occurring in Z. In the forward direction, if ¢ is satisfiable in a model M,
we construct a model M’ over the expanded signature that extends M by interpreting
f on an n-tuple of values to some value y that makes ¢ true when xy,...,x, are
evaluated as the n-tuple. This extended model M’ will satisfy ¢’. In the reverse
direction, if there is a model M’ for ¢/, we can show that the model M which is the
same as M’ except with the interpretation of f erased, satisfies ¢: for every valuation
of x1,...,x,, if we choose choose y to be f(xy,...,x,), then we are guaranteed to
satisfy ¢.

When a formula has no universal quantification preceding an existential quantifier,
the above works too, except that now the function takes no arguments, i.e., itis a 0-ary
function. A function that takes no arguments and returns an element is essentially
a constant. So we can replace such an existentially quantified variable with a new
constant symbol.

More precisely, we can show that for any formula 3x.¢ over a signature X, the
formula ¢[c/x], where ¢ is a new constant symbol that is not in X, is equisatisfiable.

The following lemma captures the above:

Lemma 8.1 For any formula  : Vxy,...x,.3y.0(Z,X1, . ..,Xn,y) over a signature
2, let f be a function symbol not in X, and let

w, . V.x],-~-xn- ('O(Z,X],...,xn,f(xl,...,xn) /)’)

overthe signature XU{ f }, where the arity of f isn. Theny andy’ are equisatisfiable.

Also, for any formula  : 3y.(Z,y) over a signature X, let ¢ be a constant symbol
not in 2, and let

v e(Zc/y)
over the signature X U {c}. Then ¥ and ' are equisatisfiable.

Example 8.2 For example, consider the formula

1 Some readers may wonder if we are using the axiom of choice here; we are.
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Vx.3y.R(x,y)

which says that every element x is R-related to some element The above is equisat-
isfiable to the formula

Vx.R(x, f(x))

Intuitively, the function f chooses one of the (potentially several) elements x is
R-related to. Such a function exists iff every x is indeed R-related to some element.

We can now apply the above procedure of eliminating existential quantifiers
repeatedly to a formula in prenex rectified normal form in order construct a purely
universally quantified formula that is equisatisfiable.

Let us call formulas that are purely universally quantified universal formulas.

Herbrandization:

The above also shows that we can take any formula ¢y and convert it into an equi-valid
formula of the form 3x;. ..., 3x, ¢ over an expanded signature. We can simply take
—psi, Skolemize it to derive an equi-satisfiable formula over an expanded signature,
and then take its negation, to get a formula with purely existential quantification
that is equi-valid to . This process of getting equi-valid formulas with existential
quantification only is called Herbrandization.

8.3 Herbrand’s theorem

One of the the first hurdles for solving satisfiability or proving unsatisfiability is
to figure out what the universe for a formula might be. Clearly, we need elements
to represent constants as they are terms. And we need elements to represent terms
formed by applying functions (any number of times) to terms. But do we need more?
Can a formula/sentence talk about elements that are are not accessible by using
functions that involve constants?

Let us define accessible elements more formally. A ground term is a term without
variables (it it built only using functions and constants). Let M be a model. An
element e in the universe of M is said to be accessible if there is a ground term ¢
such that ¢ evaluates to the element e in the model M. A model is said to be fully
accessible if every element of it is accessible.

We can now ask whether every sentence that is satisfiable has a fully accessible
model. It turns out this is not true. For example, consider a signature that has a
constant 0 and a function s and the formulae that force a number line from 0:

wo: Vx. (ms(x) =0) AVx,y. (s(x) =s(y) = x=y)
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For this formula, it is indeed true that it is satisfied in a fully accessible model,
for example a model that contains elements that serve as interpretations for
0, 5(0), s(s(0)), ... only.

However, consider adding a conjunct:

e1: wo AVx. Iy.( f(Y)=xAs(y)=Y)

This formula means that there must be elements whose f images are 0, s(0), s(s(0)),
etc., and hence these elements must all be distinct as well. These have to be different
from the 0-chain and must be distinct from each other as well (as their f-images are
different). Note that there are no ground terms that access these (infinitely many)
elements. For example, one model that satisfies the above constraints is:

U=NU{/|ieN}

s(iy=i+1, foreveryi e N
s(i’) =1, foreveryi € N
f(i’) =i, foreveryi € N
f(i) =i, foreveryi e N

Note that there are no ground terms that “evaluate” to the elements i’, where
ieN.

It turns out however that universal formulae do indeed have the property that
satisfiable sentences always have fully accessible models. This is called Herbrand’s
theorem which we will prove below.

In fact, in the above example, the formula ¢ is a universal sentence and has a fully
accessible model. The sentence ¢; does not have a fully accessible model, and notice
that it uses an existential quantifier. We can, as argued in the last section, Skolemize
formulas to have an equisatisfiable formula that has only universal quantification.
Skolemizing ¢; gives:

@1 po AVx (f(g(x) =x As(g(x) =g(x))

Notice that the Skolemization introduces a new function g for the existentially
quantified variable y removed. And notice now there is a satisfying fully accessible
model. In the model above sketched, we can make g(i) = i’ to satisfy the formulas
(g for other elements can be defined arbitrarily).

Note that having accessible models is very pleasing. The universe can be thought
of as consisting only of ground terms in the logic! In fact, we can name our elements
using the terms in the logic (more precisely, equivalence classes of terms will be

the elements in our universe). Also, notice that if ground terms #q, ..., #, access the
elements ey, ..., e,, respectively, in a model M, then clearly f(zy,...,t,) accesses
the element f M (ey,...,ey).Consequently, in the models we build, the interpretation
of functions is fixed— the function f will map the ground terms ¢, ..., #, (which

are in the universe as the universe consists only of ground terms) to the ground



8.3 Herbrand’s theorem 117

term f(tq,...,t,). So, really, the universe, and the interpretation of constants and
functions will be fixed. The only things to figure out are the interpretation of relations,
including equality which will cause the universe to be equivalence classes over
ground terms.

We now prove that this is always the case— universal sentences that are satisfiable
have fully accessible models. More precisely, we will define Herbrand models where
elements are equivalence classes of ground terms (with fixed interpretations of
functions), and show that satisfiable universal sentences (also called sentences in
Skolem form) have Herbrand models.

Universal Formulas and Closed Submodels

The key property that universal sentences satisfy is that they are satisfied in any
submodel of a satisfying model, as long as the submodel is closed with respect to
function applications. Let ¢ be a universal sentence and M, with universe U, be a
model satisfying it. Let U’ C U that satisfies the following properties:

* For every constant ¢, cM € U’
* For every function symbol of arity n, if ey, ...,e, € U’, then fM(ey,...,e,) €
U'.

Then the submodel M’ = (U’, I’) define by taking U’ as the universe and interpreting
all constants, functions, and relation symbols on U’ exactly as in M, but restricted to
U’, is called a closed submodel. More precisely, we define the interpretation of the
closed submodel with universe U’ to be:

o M =M for every constant symbol ¢

e For every relation symbol R of arity n, and for every ej,...,e, € U’,
RM (e1,...,en) iff RM(ey, ... en)

e For every function symbol f of arity n, and for every ei,...,e, € U’,

fM/(ela“-»en) =fM(el»~-'aen)

Note that the properties that U’ needs to satisfy is crucial to build the submodel—
we cannot build a submodel using any sub-universe of elements (the values that f
takes tuples of elements in the sub-universe to must be in the sub-universe as well).

If M’ is a closed submodel of M, it turns out that M’ will satisfy all the universal
sentences that M satisfies (the converse does not hold, of course). Note that a sentence
that has an existential quantification, say of the form 3x.R(x), may hold in M but
may not hold in M’ (as the elements witnessing the property may be not in the
sub-universe, for example). But satisfiability is preserved for submodels on universal
formulas. The proof is rather simple:

Lemma 8.3 (Closed submodel property) Let M be a model and let M’ be a closed
submodel of M. Let ¢ be a universal sentence and let M |= ¢. Then M’ |= ¢'.
Furthermore, every term evaluates to the same element in M’ as it does in M.
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Proof Fix a model M, a closed submodel M’, and a universal sentence ¢

Vxq,...,xn.¢" wWhere ¢’ is quantifier free, where M | ¢. Let ey,..., e, be the
interpretation of the variables xj, .. ., x, in the universe of the submodel M’. Then
these belong to the universe in M, and since the universe of M’ is closed under func-
tion applications, and since M’ inherits the interpretations of constants and functions
from M, it follows that every term ¢ involving constants and these variables evaluate
to the same element in M’ as they do in M. Since M’ also inherits the relations from
M (including equality), it follows that all atomic formulas involving these variables
evaluate to the same Boolean value in M and M’. Since ¢’ is quantifier-free, it
too will evaluate to the same value in M as in M’. Since M’ satisfies ¢, for this
interpretation of variables, ¢’ will also evaluate to true. Hence we have shown that
for all possible interpretations of the variables in the universe of the submodel, ¢’
evaluates to true, which means that M’ = ¢. O

Note in the above that we don’t make the claim for universal formulas but just for
universal sentences. The reader should make sure they understand why the lemma
does not hold for universal formulas.

Herbrand Models and Herbrand’s Theorem

Let us now define Herbrand models.

Definition 8.4 Fix a FO signature X. Let GT be the set of all ground terms over X. A
functional congruence over ground terms ~ is an equivalence relation over ground
terms such that for every 71, . . .,tn,ti, ... ty, where foreach 1 <i <mn,t; ~ ¢, itis
the case that f(t,...,t,) ~ f(t],...,t,). For such a congruence ~, we denote the
equivalence class containing ¢ with the notation [[¢]-.

In the notation for equivalence classes, we sometimes write [[¢], if ~ is clear from
context.

Definition 8.5 (Herbrand model with equality) Fix a FO signature X with at least
one constant symbol (hence the set of ground terms over X is non-empty). A Herbrand
model (with equality) is one where:

 The universe of the model is U = {[¢] | # € GT} consists of the set of equivalence
classes of ground terms of £ with respect to some functional congruence over
ground terms ~.

* Any constant c is interpreted as [c].

* Any function symbol f of arity » is interpreted so that for every ¢4, ..., 7, € GT,

MAnl.- D) = [f ()]

The first condition says that the universe of a Herbrand model consists of just
equivalence classes of terms with respect to a functional congruence ~. The second
says that the interpretation of functions is given by the names of the elements
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themselves— a function f will take the equivalence classes of n terms ¢, . .., 1, to
the equivalence class of the term f(¢1,...,t,). This definition of f M is well-defined
since ~ is a functional congruence over terms.’

Let us make some simple observations. First, in a Herbrand model, because of
the way constants and functions are interpreted, it is easy to show, by induction, that
every ground term 7 evaluates to the equivalence class containing it, i.e., [¢]. It hence
follows that in a Herbrand model is fully accessible— every element [[¢] is accessible
using the term 7.

In fact the converse is also true: every fully accessible model is a Herbrand model,
which will be evident in the proof of Herbrand’s theorem below.

Let us now prove Herbrand’s theorem. * Herbrand’s theorem states that if a
universal sentence has a model, it has a Herbrand model.

The intuition of the proof is quite simple. Let M be a model satisfying a univer-
sal sentence ¢. Then we can simply take the sub-universe that corresponds to all
accessible elements (elements accessible using terms). Clearly, this subset is closed
under function applications. And hence it defines a closed submodel that satisfies ¢
as well. This closed submodel, having accessible elements only, is isomorphic to a
Herbrand model— we can relabel every element e using the equivalence class of all
ground terms that evaluate to the element e, in order to make it a Herbrand model.

Theorem 8.6 (Herbrand’s theorem with equality) Ler ¢ be a universal sentence.
Then o is satisfiable iff it is satisfiable in a Herbrand model.

Proof We prove the forward direction (the reverse direction is trivial as if ¢ has a
Herbrand model, then it is clearly satisfiable).

Let ¢ be satisfiable. Let M be a model for ¢, with universe U.

Let U’ = {tM | t is a ground term }. Then, clearly, U’ satisfies the properties for
defining a closed submodel of M— it includes the interpretations of all constant
symbols, and for any function symbol of arity n and any n-tuple of elements, say
M, i) it clearly contains fM (1M, ..., M), as that is precisely f(11,...1,)M.

Now let M’ be the closed submodel of M defined by U’. By the previous lemma,
M’ .

We now prove M’, with its elements renamed, is in fact a Herbrand model. Define
a congruence on ground terms as follows: ¢ ~ ¢’ iff tM = 'M_ Verify that this is
indeed a congruence on ground terms (proof: verify it is an equivalence relation,
and note that if 7, .. .,tn,ti, ..., t; are such that each for each i, #; ~ ], then

2 If you were a student in elementary school and you knew Herbrand models, and your math teacher
asked you what 2 + 3 is, you would say it’s “2 + 37! The value of the function + applied on the
terms (2, 3) is simply the term/element +(2, 3). You may not pass your elementary school exams
though!

3 Herbrand’s theorem is generally proved in a signature without equality. Then one can show that
purely universally quantified formulas have a model where the elements are terms, not equivalence
classes of terms. Since we want to treat equality as an interpreted relation that is always in the
signature, our treatment has equivalence classes of terms. One could instead take Herbrand’s
theorem and introduce equality as an uninterpreted relation that satisfies the congruence axioms,
and get the same result too.
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it follows that M = /™ and hence f(11,...,1t,)™ = f(¢],...,1;,)™, and hence
flt, oo tn) ~ f(E, . 1)

Let us rename every element e as the nonempty set [¢]), the equivalence class of ¢
wrt ~, where ¢ is some ground term that evaluates to e in M (such a term must exist
since every element in U’ is accessible). It is easy to prove that no two elements get
named by the same equivalence class. Also, every equivalence class [¢] is the label
of some element in U’, namely ™ . We can easily prove, by induction on terms, that
that every ground term ¢ evaluates to [¢] in M’.

It immediately follows that this is a Herbrand model satisfying ¢. O

Now, notice that in the proof of Herbrand’s theorem, given a model that satisfies a
formula, we built the submodel independent of the formula. The submodel consisted
of all elements accessible using any ground term in the signature. Consequently, the
same model construction works in showing that if a set of universal sentences S has
a model, then it has a Herbrand model as well.

Corollary 8.7 (Herbrand’s theorem with equality for sets of formulas) Lez S be
a set of universal sentences. Then S is satisfiable iff it is satisfiable in a Herbrand
model.

8.4 Some consequences of Herbrand’s theorem

Before we move to completeness, let us observe some simple consquences of Her-
brand’s theorem. First, it follows that if the signature is countable, then a set of
sentences S has a model iff it has a countable model. In fact, this is true for any set
of formulas as well.

Theorem 8.8 (Downward Lowenheim-Skolem Theorem) Fix a countable signa-
ture X. If a set of formulas S over X has a model then it has a countable model.

Proof Every formula in S can be made closed (i.e., made into a sentence) and
made universal by Skolemizing it (by replacing variables by new constant symbols
and removing existential quantification) to result in equisatisfiable formulas. The
resulting set S’ and S are equisatisfiable. In fact, it is easy to see that models
for S work as models for S’, and vice-versa (we can keep the universe, and the
interpretation of constants, functions, and relations in the common vocabulary the
same). Let S be satisfiable. Then S’ is satisfiable as well, and by Herbrand’s theorem,
there is a Herbrand model for S’, which, by definition, is countable. This model can
be converted back to a model for S (we keep the same universe, we just throw away
the interpretations of the added constants and functions during Skolemization, and
interpret variables using the interpretations of constants that replaced them). Hence
S has a countable model. O

The above is a surprising result. Every set of axioms A (even infinite ones)
that has a model also has a countable model. Recall that there are several complete
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axiomatizations of theories where the infended models are uncountable. For example,
there is an axiomatization of reals with addition and multiplication, i.e., for the theory
of (R, 0, 1,+,-). How then do they have a countable model? The only explanation is
that even for such theories, there is a countable model that is elementary equivalent
(which means it satisfies the same first-order sentences) as the model of reals with
addition and multiplication! This is truly bizarre, but true!

There is n generalization of the Downward Lowenheim-Skolem Theorem, called
the Lowenheim-Skolem Theorem, which we will not prove in this book, that says
that if a formula over a countable signature has a satisfying model that is infinite,
then it has models satisfying it of cardinalities . In particular, there will always be
an uncountable satisfying model. This result is surprising too, as there are complete
axiomatizations for certain countable models, like (N, 0, 1, +). The result then says
that this set of axioms also has uncountable satisfying models! These are often
referred to as nonstandard models of arithmetic. Again, the key thing is though
such models exist, they agree with the standard model on all first-order expressible
properties.

The above results can also be seen as saying that first-order logic is not pow-
erful enough to talk about infinite cardinalities. A set of first-order sentences
can say that the model has at most k elements, for any particular k € N
(3x1, - xXk-¥Y Vier.x) (v = xi)). However, there is no set of first-order formulae
that ensure that the models that satisfy it are countable, or have any particular car-
dinality. First-order logic also cannot ensure that satisfying models are finite— this
is true since validity of first-order logic over finite models is not in r.e., but validity
over arbitrary models is in r.e. (as we shall see soon in this chapter).

8.5 Godel’s completeness theorem: FO Validity is recursively
enumerable

Let us fix a countable signature X.

An instance of the validity problem is a set (finite or infinite, but recursive) A
of axioms, which are FO sentences, and a sentence ¢. Our goal is to show that the
problem of checking validity of such instances, i.e., checking if A | ¢, is recursively
enumerable.

We first negate the formula ¢. A | ¢ iff A U {neg¢} is unsatisfiable. Hence our
goal is to prove that S = A U {—¢} is unsatisfiable. We convert each formula in S to
prenext rectified normal form. We then Skolemize the sentences in S to obtain a set
X of sentences over an expanded signature X’ such that § and X are equisatisfiable.
Note that X is itself a recursive set. Our goal is now to show that checking whether
X is unsatisfiable is recursively enumerable.

Since X has only universal formulas, we know by Herbrand’s theorem that to
prove X is unsatisfiable iff X has no satisfying Herbrand model.

Since the signature is countable, the set of all formulas is countable, and hence
either X is finite or countable. Let us fix an enumeration of X: ¢1, ¢3, . . ..
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Now any universal formula Vxy is true in a Herbrand model iff it is true when
the variables x are interpreted to be elements corresponding to all possible ground
terms, since Herbrand models have only interpretations of ground terms in their
universe. Consequently, such a universal formula is true in a Herbrand model iff for
every tuple of ground terms 7, ¥ [f / X] holds in the model.

Consequently, itis easy to see that X is satisfied in a Herbrand model iff {/[7] / X |
Vx ¢ € X,t € GT(X)} is satisfied in the Herbrand model. This leads us to:

Lemma 8.9 (Term Expansion Lemma) A set of universal formulas 1 is satisfiable
ifT*={y[t /x] | Vx ¥ €T, t € GT(X)} is satisfiable.

Proof If T is satisfiable, then clearly I'* is satisfied in any model satisfying I", and
hence is satisfiable as well. Conversely, if I'* is satisfiable, then consider a Herbrand
model satisfying it (which must exist since the sentences are universal, in fact
quantifier-free). Clearly, in this Herbrand model, since all elements are accessible
using terms, the formulas in I are satisfied as well, and hence I" is satisfiable. O

Due to the above lemma, we can now take
X ={y[t/x|Vxy e X,t € GT(2)}

and our problem now reduces to showing X* is unsatisfiable. Note that formulas in
X* are quantifier-free. And quantifier-free formulas admit a decidable satisfiability
procedure (see previous chapter). However, even if A = 0, X* can be infinite.
Consequently, we cannot subject the X™* to a satisfiability decision procedure.

We now want to show a compactness theorem for such quantifier-free sets of
formulas. This will allow us to prove unsatisfiability of X* by just looking at finite
subsets of it for unsatisfiability. Note that finite subsets of X* can be conjuncted and
subject to a satisfiability decision procedure, as given in the previous chapter.

Compactness Theorem for quantifier-free grounded formulas

We want to show the following lemma:

Lemma 8.10 Let I be a set of quantifier-free grounded sentences. Then T is satisfi-
able iff every finite subset of T is satisfiable.

Proof If T is satisfiable, then, of course, every finite subset of I' is satisfiable. We
hence need to show only the converse.

We will use the propositional compactness theorem to prove this lemma. Note
that since every sentence is I is grounded, each atomic formula is of the form r = ¢’
or R(ty,...,t,), wheret,t’,11,...,t, are grounded terms.

Let us introduce a set of propositions p, for every atomic grounded formula a.
We can now form a set I, that contains the propositional abstraction of formulas
in I', obtained by replacing every atomic formula a in any formula in I with the
proposition p,.
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Now, of course, an arbitrary satisfying assignment of I";, may not correspond to a
way of satisfying I, since equalities obey a set of properties, namely the congruence
axioms detailed in the last chapter. Let us now introduce a set of propositional
constraints that capture these axioms, called A.

A contains the following formulae:

e pi= forevery t € GT(X)
* Pi=rr = pr=, forevery t,t’ € GT(X)
* (Pti=ty N Piry=t3) = P1=1;, for every t1, 1,13 € GT(X)

/\ DPy=t] | = (PR(:I,...,t,,) 4 PR(t’,...,t,’,))
]

i€[l,n

for every relation symbol R of arity .

ie[l,n]
for every function symbol f of arity n.

It is now easy to show that I' is satisifiable iff I'), U A is satisfiable. (Proof: If
I' is satisfied in a model M, define a valuation that assigns the propositions p, to
true iff a is true in the model, and argue that I',, and A will be satisfied under this
valuation. Conversely, if I', U A is satisfied by a propositional valuation, it is easy
to see that the equality relation defined by the propositional formulas is a functional
congruence over ground terms, and hence defines a Herbrand model of equivalence
classes of terms. Interpreting each relation according to the propositional valuation
will satisfy the formulas in I".

Now, using compactness theorem for propositional logic, we know that I', U A is
satisfiable iff every finite subset of I" U A is satisfiable.

Now let us show the required property. If I' is unsatisfiable, then I', U A is
unsatisfiable, and hence there is a finite subset F' of I U A that is satisfiable. Consider
F’" =T, NF, which is finite. Then the set of FO formulas corresponding to /" in T,
i.e., the set of formulas whose propositional abstractions are in F’, is unsatisfiable
(since F” UA is unsatisfiable). Hence there is a finite subset of I" that is unsatisfiable.O

The Algorithm

We now continue and finish our recursively enumerable procedure. Recall that we
had left off in showing X* is unsatisfiable, where X* was obtained by replacing each
universally quantified sentence with all possible instantiations of ground terms.
Using the above lemma, we know that X* is unsatisfiable iff there is some finite
subset of X* that is unsatisfiable.
We can now build a procedure to find such a finite subset. Recall that for any
finite subset of quantifier-free formula, there is a decision procedure (that always



124 8 Completeness Theorem: FO Validity is r.e.

halts) whether the set is satisfiable, from the previous chapter. Let’s call this decision
procedure D P-Q FE (decision procedure for quantifier-free equality).

8.5.1 The case of finite sets of formulas

We first consider the case when the set of axioms is finite, and hence X is finite. Note
that in this case, we can assume the signature is finite too (as the functions/relations
not mentioned in the set of formulas clearly do not matter). Note that X is finite, but
X* can be, however, infinite.

Let us consider the following increasing sets that cover X*. For any d € N, let
T, denote the ground terms of depth at most d. Formally, these sets are defined
recursively as:

e To={c | c is aconstant symbol in X}
o Ty =TaU{f(t1,....tn) | t1,...,tn € Ty, f is a function symbol of arity n}

Note that 7; € T; for any i < j, and ;e 7; is the set of all ground terms.
Our procedure is as follows: Given X, a finite set of universal sentences, we do the
following:

1. Seti:=0;

2. Repeat forever: {

3. R:={ylt/x] |1 isatuple of elements in T;}.

4. Check if R is satisfiable, by calling DP-QFE(R).

If it is not satisfiable, then report X is unsatisfiable and exit (concluding A [ ¢).
Increment 7;

}

The correctness of the algorithm is straightforward to see. If A |= ¢, then AU{—¢},
and hence X would be unsatisfiable. Hence X is unsatisfiable. Hence there is a finite
subset of F C X™ that is unsatisfiable. Let FT be the set of terms mentioned in F;
then FT is finite. Let i be the maximum depth of the terms in F7. Then in iteration
i, the algorithm will instantiate X with all terms of depth i, and hence the set R it
constructs will be a superset of F', and hence will be unsatisfiable. Hence the decision
procedure call to D P-Q F'E will report unsatisfiable, and the algorithm will halt and
report A | ¢.

On the other hand, if A |~ ¢, then A U {—¢}, and hence X would be satisfiable.
Hence X* is satisfiable. In each iteration, the algorithm constructs R which is a
subset of X*, and hence the call to D P-QFE will report satisfiable in each round.
Hence the algorithm will not halt, and will never declare A = ¢ holds.

AN



8.5 Godel’s completeness theorem: FO Validity is recursively enumerable 125

8.5.2 The case for infinite sets of formulas

Let us assume the signature is finite. Let us assume we are asked whether A | ¢,
where A is infinite, but recursive. Again, we know that A | ¢ iff A U {—¢} is
unsatisfiable iff the set X constructed by converting formulas in the set to universal
formulas is unsatisfiable. This set X is unsatisfiable iff X* is unsatisfiable. And X* is
unsatisfiable iff there is a finite subset of X* that is unsatisfiable. The key difficulty
is to explore larger and larger finite subsets of X* systematically such that for every
finite subset F of X*, we eventually will explore a superset of F. There are two
infinities to consider here— the set of formulas in X is infinite and the set of terms to
instantiate the formulas is also infinite. We need to dovetail through the two infinities
in order to build our procedure.

Let En : Yy, Y, Ys, ... be an enumeration of certain finite subsets of X*. Such an
enumeration is said to be fair if for every finite subset ' Cs, X*, there is some7 € N
such that F C ;.

There are several ways to achieve a fair enumeration. We give just one example.
Consider the enumeration where Y; consists of the first i sentences in X enumerated
by all possible ground terms of depth i. Then clearly this is a fair enumeration. Let
F be a finite subset of X*. Let i be the largest number such that the i’th formula in
X, instantiated in some way, belongs to F. Let j be the depth of the largest term that
was used to instantiate some element in F. Now, let k = max(i, j). Then it follows
that F C Yi.

For any fair enumeration, we have the following semi-algorithm: Given X, a recursive
but infinite set of universal sentences, we do the following:

1. Fix a fair enumeration Yy, Yy, ... of X*
2. Seti:=0;
3. Repeat the following forever: {
4. Check if Y; is satisfiable, by calling DP-QFE(Y;).
If it is not satisfiable, then report X is unsatisfiable and exit (concluding A = ¢).
5. Increment i;
6. }

Again, the proof that the above algorithm always halts when A |= ¢ and reports
that it is so, and the proof that when A £ ¢, the algorithm runs forever, is easy to
see.

We can extend the above argument also to countably infinite signatures and in-
finite but recursive set of axioms. In this case, we need to dovetail between several
infinities— exploring more symbols in the signature, exploring more axioms in-
volving this expanding signature, and systematic term instantiation involving this
expanding signature. Again, any fair enumeration will give an r.e. procedure.
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8.5.3 Completeness Theorem

We can now phrase our completeness theorem, which follows from the above results.

Theorem 8.11 (Completeness) Let X be a finite or countable signature. Let A be
a finite set of sentences or an infinite recursive set of sentences over X, and let ¢
be a sentence over X. Then the problem of checking whether A |= ¢, is recursively
enumerable.

Let us now work out an example.

Example 8.12 Consider the group axioms, where we have a special constant e for
the identity element:

 Associativity: Vx, y,z. f(f(x,y),2) = f(x, f(¥,2))
e Identity: Vx.f(x,e) =x A f(e,x) =x
e Inverse: Vx3dy.f(x,y) =e A f(y,x) =e

Let us now take the above three sentences as the set of axioms A. And let us try
to prove the following formula, which says the identity is unique, i.e.,

p:VYe'. (Vx.(f(x,e')=x A f(e/,x) =x) = (e=¢")))

Of course, the above property is true even of monoids, i.e., even when the first
two axioms hold. However, let’s consider all group axioms for this example.

The first two formulas are already in prenex rectified normal form and universal.
Skolemizing the third axiom using a new function g gives:

Vxf(x,g(x)) =en f(gx),x) =e

The new function symbol g intuitively corresponds to a function that provides the
inverse of an element. (We don’t need to know it is unique in order to ask that such
a function exists.)

The formula ¢ is not in prenex form; bringing it to prenex form gives:

p=Ve'. (=(Vx.(f(x,e') =x A f(e',x) =x) V (e =¢')))
=Ve'. (Fx.(=(f(x,e') =x) V=(f(e/,x) =x)) V(e =¢)))
=Ve'. Ix.(=(f(x,e’) =x) V(f(e',x) =x) V(e=¢"))

The negation of ¢ is hence:
=3’ . Vx.(f(x,e') =x A f(e',x) =x A=(e=¢"))

Skolemizing the above, by replacing the quantified variable ¢’ by a new constant
symbol c gives:

Vx.(f(x,c) =x A f(c,x) =x A=(e=c))
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We now have a set X containing four universal formulas:

o Vx,y,z f(f(xy).2) = fx, f(y,2))

e Vx.f(x,e) =xA f(e,x)=x

o Vxf(x,g(x)) =en f(g(x),x) =e

o Vx.(f(x,c)=xA f(c,x) =xA=(e=c))

And our task is to check whether they are simultaneously satisfiable.

Let us instantiate with the depth O ground terms, i.e., by constants e and c.
Then we get the formulae where all quantified variables are replaced by all possible
combinations of e and c. That’s 14 quantifier-free formulas!

Note that this set includes the following formulae:

* The second formula with x replaced by c:

f(c,e)=cA f(e,c)=c
e The fourth formula with x replaced by e:

(fle,c) =eA flc,e) =eA—(e=0))

Clearly these two formulas are not satisfiable in any model. If f(c,e) = ¢ and
f(c,e) = e, then we must have ¢ = e, which contradicts the conjunction =(e = ¢).

Hence when we ask the decision procedure for quantifier-free formulae whether
the 14 formulas have a model, it will report unsatisfiable, and the algorithm above
would conclude A [ ¢.

We invite the reader to in fact generate the above formulae, and give them to an
SMT solver, like Z3 or CVC4, in order to check that the quantifier-free formulae are
unsatisfiable.

Example 8.13 We can take the same axioms above, and try to show that the following
holds, which says that inverses are unique. Since we have used the function g, during
Skolemization of the axioms, to give us the inverse of elements, let’s use the same
function g (for brevity).

@Yy (f(x,y)=en f(y,x)=e) = (y=g(x))

Negating the above and Skolemizing using two new constant symbols ¢ and d
gives:

(fle.d)=en f(d,c)=e) AN=(d =g(c))

Instantiating the Skolemized axioms and the above formula with depth O terms
(i.e., by the constants e,c, and d) gives a large set of quantifier-free formulae, and it
turns out that they are already unsatisfiable. We encourage the reader to write these
formulae and feed it to an SMT solver to check that this is indeed so. Consequently,
A = .
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8.6 Observations and Consequences

Using SMT solvers:

The above presentation was carefully done so that we get an r.e. procedure that re-
peatedly calls a solver to check satisfiability of quantifier-free formulae with equality.
One can instead also go all the way down to propositional logic satisfiability, and
implement the satisfiability of quantifier-free formulae using satisfiability of a propo-
sitional encoding of it. This was in fact proposed by Gilmore in 1960! Since SMT
solvers already implement satisfiability of quantifier-free formulae with equality, and
avoids the blow-up that the propositional encoding entails, we prefer this technique.
Furthermore, we will see another application of this term instantiation in a later
chapter that allows us to combine quantified theories.

The Bernays-Schonfinkel-Ramsey/EPR class

Let us now consider a signature without any function symbols, and a finite set S of
formulas of the form JxVy¢p. We are asked to check if § is satisfiable. Skolemizing
these formulas could introduce new constants but no new functions. Consequently,
we end up with a set of universal formulas X that we need to check for satisfiability.
Since there are no function symbols, the only ground terms are the constants, and
we can assume that the constants are only those that occur in the formula, without
loss of generality. Consequently, the r.e. procedure outlined earlier in this section
can stop after the first instantiation of constants! Hence it is a decision procedure
(which always halts on all inputs) and decides satisfiability of such formulae. This
fragment of FO formulae, namely 3*V* sentences over a signature that has no
function symbols, hence admits a decidable satisfiability problem, and is called the
Bernays—Schonfinkel-Ramsey class or the effectively propositional reasoning (EPR)
class. Note that for validity, the fragment that is decidable is the V*3* fragment where
the signature has no function symbols. This is one of the few quantified fragments
of first-order logic that admits decidable validity.

Decidability when Axioms are Negation Complete

A set of axioms A is said to be consistent (without contradiction) if there is no
sentence such that A = ¢ and A E -, ie., ¢,~¢ € Th(A). Note that a set of
axioms A is consistent iff there is at least one model satisfying the axioms A.

A set of axioms A is said to be complete (or negation complete) if for every
sentence ¢, either A |= ¢ or A | —¢. In other words, the theory of A, Th(A),
contains either ¢ or —¢.

For example, the set of axioms of Presburger arithmetic is consistent and complete.
The set of axioms of groups is consistent but not complete.
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A consequence of the results of this section is that the theory any complete and
consistent axiomatizations is decidable. Given a sentence ¢, we can execute two
copies of the r.e. procedure defined in this section to check whether A = ¢ and
whether A = —¢. These two executions must be simulated essentially in parallel—
for example, running one procedure k steps and then switching to the other for k
steps, and then switching back, forever, for some fixed k. Since either A | ¢ or
A E -, one of these procedures will terminate, in which we can halt, and report
whether ¢ is in the theory or not.

Theorem 8.14 Let A be a recursive set of sentences that is complete. Then the theory
of A, Th(A) is decidable.

The above also means that if the theory of a single structure is undecidable, then it
is not axiomatizable. We will prove (see next chapter) that the theory of (N, 0, 1, +, X)
is undecidable. This means that there is no recursive set of FO axioms A such that
the theory of A is identical to the theory of this model! This is in fact a version of
Godel’s first incompleteness theorem.

Axiomatizability and recursive enumerability

We proved completeness for any recursive set of axioms. However, it is easy to
extend the result even when the axioms are recursively enumerable— the procedure
will enumerate axioms and instantiate them systematically.

Consider a class of structures C. The notions of having a recursively enumerable
set of axioms A that characterize the theory (i.e., Th(A) = Th(C and having Th(C)
itself being recursively enumerable are synonymous. If a r.e. set of axioms A exists
characterizing C, then by the completeness theorem, Th(A) is r.e. as well. On the
other hand, if Th(C) is r.e., then we can choose as axioms this theory itself.

Axiomatic Systems

The most important consequence of the completeness theorem is that it justifies
the axiomatic approach. We are typically interested in logic over a particular single
structure, or interested in a class of structures. There are many ways to define such
a single structure or a class of structures, even using finite means (for example, we
can define them using computable functions— giving functions that decide which
strings over an alphabet are the elements of a univers, and providing programs that
oeprationally define functions and relations). The axiomatic method, in contrast, asks
the class of structures to be defined using properties which are themselves written in
FOL. And the completeness theorem gives the guarantee that validity of such a set
of axioms is always r.e., which roughly means that every theorem has a proof.
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Compactness Theorem for FOL

Another consequence of the results of this section is that the compactness theorem
holds for first-order logic sentences as well.

Theorem 8.15 Let T be a set of first-order sentences over a countable signature X.
I is satisfiable iff every finite subset of T is satisfiable.

Proof The forward direction is trivial. For the converse, assume I" is unsatisfiable.
Then, by the results of this section, we can assume I" is a set of universal sentences.
Then, by Lemma 6.3 (Term Expansion Lemma), I = {¢[f/X | Vx¢ € Tt €
GT (%)} is unsatisfiable. In other words, the set of quantifier-free sentences obtained
by instantiating variables by all possible ground terms is unsatisfiable. By Lemma 6.4,
there exists a finite subset F* of I'* that is unsatisfiable. Let F' C I" be a finite subset
of I' from which the elements of F* were obtained (using term instantiation). Then F
is unsatisfiable as well (since even instantiations of variables by ground terms make
it unsatisfiable). Hence there is a finite subset of I" that is unsatisfiable. |



Appendix A
Computability and Complexity Theory

A Brief Primer

We will now review the basic definitions and theorems in the area of computational
complexity, which tries to study various models of computation with the goal of un-
derstanding their relative computational power, and classify computational problems
in terms of computational resources they need. Here, we will primarily consider time
and space as the principal resources we will measure for an algorithm.

Recall that the computational problems one studies in the context of theoretical
computer science are usually decision problems. Decision problems are those where
given an input, one expects a Boolean answer. Typically, input instances are encoded
as strings over some alphabet of symbols. A decision problem partitions inputs into
those for which the expected answer is “yes”/”’true” and those for which the answer
is “no”/"false”. Therefore, a decision problem is often identified with a language, or
a collection of strings, namely, those for which the problem demands a “yes” answer.
Similarly, the machines we will define, will answer “yes”/”accept” or “no”/’reject”
on input strings, and we associate a language L(M) with machine M, which is
the collection of all strings it accepts. Given this interpretation of problems and
machines, we will typically say that a machine M solves a problem L (or rather
acceptsirecognizes) if L = L(M), i.e., M answers “yes” on exactly the inputs that
the problem demands the answer to be “yes”.

The main model of computation that we will consider is that of a Turing machine.
However before introducing this model, let us recall some of the notation on strings
and languages that we will use.

Alphabet, Strings, and Languages.

An alphabet ¥ is a finite set of elements. A (finite) string over X is a (finite)
sequence w = aopaj ---ay over X (i.e., a; € X, for all i). The length of a string
w = apay - - - ag, denoted |w|, is the number of elements in it, which in this case
is k + 1. The unique string of length O, called the empty string, will be denoted
by €. For a string w = apay - - - ai, the ith symbol of the string a; will be denoted
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Fig. A.1 Turing machine with a read-only input tape, finitely many read/write worktapes, and a
write-only output tape.

as w[i] '. For strings u = aga; ---ax and v = bgby - - - by, their concatenation
is the string uv = apa; - - - axbobi - - - byy. The set of all (finite) strings over X is
denoted by £*; we will sometimes use X to denote the set of strings of length i. A
language A is a set of strings, i.e., A C X*. Given languages A, B, their concatenation
AB = {uv|u € A, v € B}. For a language A, A° = {&}, and A’ denotes the i-fold
concatenation of A with itself, i.e., A" = {ujup---u; | Vj. u; € A}. Finally, the
Kleene closure of alanguage A, is A* = | J;5 A

A.1 Turing Machines

We now recall the definition of a Turing machine. Since we will use this model to
define the time and space bounds during a computation, as well as define computable
functions, the most convenient model to consider is that of a multi-tape Turing
machine shown in Fig. A.1 . Such a model has a read-only input tape, a write-only
output tape and finitely many read/write work tape, and a write-only output tape.
Intuitively, the machine works as follows. Initially, the input string is written out on
the input tape, and all the remaining tapes are blank. The tape heads are scanning the
leftmost cell of each tape, which we will refer to as cell 0. This cell contains a special
symbol > in every take except the output tape. This is the left end marker, which
helps the machine realize which cell is the leftmost cell. We will assume these cells
are never overwritten by any other symbol, and whenever > is read on a particular
tape, the tape head of the Turing machine will move right. At any given step of the
Turing machine does the following. Based on the current state of its finite control,
and symbols scanned by each tape head, the machine will change the state of its
finite control, write new symbols on each of the work tapes, and move it’s heads on
the input and work tapes either one cell to the left or one cell to the right. During
the step, the machine may also choose to write some symbol on its output tape. If

! Here we are assuming the the Oth symbol is the “first”.
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it writes something on the output tape, then the output tape head moves one cell to
the right. If it does not write anything, then the output tape head does not move. We
will assume that the machine has two special halting states — gacc and grej — with
the property that the machine cannot take any further steps from these states. These
are captured in the formal definition of deterministic Turing machines below.

Definition A.1 A deterministic Turing machine with k-work tapes is a tuple M =
(Q’ Za F» 5’ C](), tIacc» Clrej, |—|’ D) Where

* ( is a finite set of control states

e X is a finite set of input symbols

e TI' 2 X is a finite set of tape symbols. We assume that {LI,>>} C T"\ X.

* go € Q is the initial state

* gacc € Q is the accept state

* grej € Q is the reject state, with grej # gacc, and

o 61 (0\ {daco grei}) XTH! = QX (=1, +1} x (T x {~1,+1})¥ x (TU {s}) is the
transition function; here —1 indicates moving the head one position to the left and
+1 indicates moving the head one position to the right. For 6(p, vo,¥1,-.-Yx) =
(q,do,y;,dl,yé,dz, .. ,7,’€,dk,o),foranyi €{0,1,...k},ify; =>theny; =
and d; = +1.

We will now formally describe how the Turing machine computes. For this we
begin by first identifying information about the Turing machine that is necessary to
determine it’s future evolution. This is captured by the notion of a configuration.
A single step of a Turing machine depends on all the factors that determine which
transition is taken. This clearly includes the control state, and the symbols being
read on the input tape and the work tape. However this is not enough. The contents
of the work tape change, and what is stored influences what will be read in a future
step. Thus we need to know what is stored in each cell of the work tape. Since
the input tape is read-only, its contents remain static and so we don’t need to carry
around its contents. We also need to know the position of each tape head because
that determines what is read in this step, how the contents of a tape will change based
on the current step, and what will be read in the future as the heads move. Because
of all of these observations, a configuration of a Turing machine is taken to be the
control state, the position of the input head, the contents of the work tape, and the
position of the work tape head. The work tape contents and head position is often
represented as a single string where a special marker indicates the head position.
These are captured formally by the definition below.

Definition A.2 (Configurations)

A configuration ¢ of a Turing machine M = (Q, %, T, 6, qo, Gacc, grej, LU, ) is a
member of the set Q x N x (I {#}I'T*1“)k 2 where we assume that = ¢ I" indicates
the position of the head. For example, a configuration ¢ = (g, i, u; * a;viU®, uy *

2 U@ is an infinite sequence of blank symbols. Recall that almost all cells contain L, and so the
tape contents are a string of the form ulI1’, where u is initial portion of the tape containing some
non-blank symbols.
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av, 1) is the configuration of a 2-work tape Turing machine, whose control state
is currently ¢, the input head is scanning cell i, work tape i (i € {1,2}) contains u;
to left of the head, head is scanning symbol a; and v;LI*’ are the contents of cells to
the right of the head.

The initial configuration (the configuration of the Turing machine when it starts)
is (go, 0, > LY, ..., %> LU“). An accepting configuration is a member of the set
{gacc} X N x (I {+}T'T*U“)¥. In other words, it is a configuration whose control
state iS gacc. A halting configuration is a configuration whose control state is either
Gacc OF (rej, i.€., it is a member of the set {gacc, grej} X N X (T {}TT* @)k,

Having defined configurations, we can formally define how configurations change
in a single step of the Turing machine. We begin by defining a function that updates
the work tape. For a work tape u * avl®, upd(u * avLi®’, b, d) is the resulting work
tape when b is written and the head is moved in direction d. This can be formally
defined as

ubxUU” ifd=+landv=c¢
upd(u x avl®,b,d) = ub = cv'U® ifd =+1 and v = ¢V’
u xcbhbvu® ifd=-1landu =u'c

Recall also that for a finite string w € I'*, w[i] denotes the ith symbol in the string.
We can extend this notion to tape contents that are sequences of the form w1 as
follows.

i Jwlilifi <|w]
w U ] = {l_l otherwise
Definition A.3 (Computation Step)
Consider configurations C; = (qi,i1,u; * aivy,...ux * agvg) and C; =

(q2,i2,11,...t) of Turing machine M = (Q,Z,T,6, g0, qacc, qrej> U, >). Let the
input string be w. We say C; N C, (machine M moves from configuration C; to
C, in one step and writes o on the output tape) if the following conditions hold. Let
6(q1,wu® [i1],ai,...ar) = (p,do, by,dy,...bg,dy). Then,
* gy=p,andir =i +d,
e foreachi,t; = upd(ui *a;vi, b, dl)

When the output symbol written during a step is not important, we will write
C| + C; to indicate a step from C; to C,.

Having defined how the configuration of a Turing machine changes in each step,
we can define the result of a computation on an input.
Definition A.4 (Computation)

A computation of Turing machine M on input w, is a sequence of configurations
Ci,Ca, ... Cy such that ¢ is the initial configuration of M, and for eachi, C; — C;4 ;.

Definition A.5 (Acceptance)

An input w is accepted by Turing machine M if there is a computation
Ci,Cy, .. .Cy, such that C,, is an accepting configuration.
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The language recognized/accepted by M is L(M) = {w | w is accepted by M }.
We say that a language A C X* is accepted/recognized by M if L(M) = A.

Definition A.6 (Halting)

A Turing machine M is said halt on input w if there is a computation Cy, Cp, ... Cy
such that C,, is a halting configuration.

The Turing machine model we introduced with an output tape can be used to
compute (partial) functions as follows.

Definition A.7 (Function Computation)

The partial function computed by a Turing machine M, denoted f);, is as follows.
If on input w, M has a halting computation C; 2L C N e Cy, then £y, (w)
is defined and equal to 0105 - - - 0,,—1. On inputs w such that M does not halt, fp; (w)
is undefined.

We say that a (partial) function g is computable if there is a Turing machine M
such that for every w, g(w) is defined if and only if f3; (w) is defined, and whenever
g(w) is defined, g(w) = fpr(w).

Most of the time we will be considering Turing machines that accept or recognize
languages, rather than those that compute functions. In this context, the symbols
written on the output tape don’t matter, and so we will often ignore the output tape
when describing transitions and computations of such machines.

A.2 Church-Turing Thesis

The Turing machine model introduced in the previous section, is a canonical model
to capture mechanical computation. The Church-Turing thesis embodies this state-
ment by saying that anything solvable using a mechanical procedure can be solved
using a Turing machine. Our belief in the Church-Turing thesis is based on decades
of research in alternate models of computation, which all have turned out to be
computationally equivalent to Turing machines. Some of these models include the
following.

* Non-Turing machine models: Random Access Machines, A-calculus, type 0 gram-
mars, first-order reasoning, x calculus, . . .

* Enhanced Turing machine models: Turing machines with multiple 2-way infinite
tapes, nondeterministic Turing machines, probabilistic Turing machines, quantum
Turing machines, . ..

» Restricted Turing machine models: Single tape Turing machines, Queue machines,
2-stack machines, 2-counter machines, . . .

We will choose to highlight two of these results, that will play a role in our future
discussions. The first is the observation that a one work tape Turing machine is com-
putationally as powerful as the multi-work tape model introduced in Definition A.1.
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Theorem A.8 For any k work tape Turing machine M, there is a Turing machine
with a single work tape single(M) such that L(M) = L(single(M)) and fy; =

3
fsingle(M) :

Proof of Theorem A.8 can be found in any standard textbook and its precise details
are skipped. The idea behind the proof is as follows. The single work tape machine
single(M) will simulate the steps of the k-work tape machine M on any input. But
in order to simulate M, single(M) needs to keep track of M’s configuration at each
step. That means keeping track of M’s state, its work tape contents, and its tape
head. This single(M) accomplishes by storing M’s state in its own state, and the
contents of all k work tapes of M (including the head positions) on the single work
tape of single(M). In general, cell i of the single work tape, stores cell (i + k) + 1 of
tape i mod k; here i =~ m denotes the quotient when i is divided by m and i mod m
denotes the remainder. Then to simulate a single step of M, single(M) will make
multiple passes over its single work tape, to first identify the symbols on each tape
read by M to determine the transition to take, and then update the contents of the
tape according to the transition.

The second result relates to the nondeterministic Turing machines. The Turing
machine model introduced in Definition A.1 is deterministic, in the sense that at
any given time during the computation of the machine, there is at most on possible
transition the machine can take. Nondeterminism, on the other hand, is the com-
putational paradigm where the computing device, at each step, may have multiple
possible transitions to choose from. As a consequence, on a given input the machine
may have multiple computations, and the machine is said to accept an input, if any
one of these computations leads to an accepting configuration. Formally, we can
define a nondeterministic Turing machine as follows.

Definition A.9 A nondeterministic Turing machine with k work tapes (and
one input tape Y is a tuple M = (Q,Z,T,6,490,Gacc, qrej» LI, >), where
0,%,T, qo, qace qrej> L, &> are just like that for deterministic Turing machine, and

6:(0\ {Qacc,LIrej}) x TF1 2QX{_1’+1}X(FX{_1’+1})k

is the transition function. The transition function, given current state and symbols
read on the input and work tapes, returns a set of possible next states, direction to
move the input head, and symbols to be written and direction to move the head in
for each work tape.

The definition of configurations, initial configuration, accepting and halting con-
figurations is the same as in Definition A.2. The definitions of computation step
(Definition A.3), computation (Definition A.4), and acceptance and language recog-
nized (Definition A.5) are also the same. Hence we skip defining these formally.

3 For partial functions f and g, we write f = g to indicate that f and g have the same domains (i.e.,
they are defined for exactly the same elements), and further when f(x) is defined, f(x) = g(x).
4 We assume there is no output tape for a nondeterministic Turing machine since such machines
are used for function computation.
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Every deterministic Turing machine is a special kind of nondeterministic machine,
namely, one which has the property that at each time step there is at most one
transition enable. One of the important results concerning nondeterministic Turing
machines is that the converse is also true, i.e., nondeterministic Turing machines are
not more powerful than deterministic Turing machines.

Theorem A.10 For every nondeterministic Turing machine N, there is a determin-
istic Turing machine det(N) such that L(N) = L(det(N)).

A detailed proof of Theorem A.10 is skipped. It can be found in any standard text-
book in theory of computation. The broad idea behind the result is the observation
that once the length of computation, and the nondeterministic choices at each step
are fixed, a deterministic machine can simulate N for that length, on those choices.
Thus, the deterministic Turing machine det(/N) simulates N for increasingly longer
computations, and for each length, det(N) will cycle through all possible nondeter-
ministic choices at each step. If any of these computations is accepting for N, then
det(N) will halt and accept.

A.3 Recursive and Recursively Enumerable Languages

The Church-Turing thesis establishes the canonicity of the Turing machine as a model
of mechanical computation. The collection of problems solvable on Turing machines
is, therefore, worthy of study. Recall that when a Turing machine M is run on an
input string w there are 3 possible outcomes — M may (halt and) accept w, M may
(halt and) reject w, or M may not halt on w (and therefore not accept). Depending
on how a Turing machine behaves we can define two different classes of problems
solvable on a Turing machine.

Definition A.11 A language A is recursively enumerable/semi-decidable if there is
a Turing machine M such that A = L(M).

A language A is recursive/decidable if there is a Turing machine M that halts on
all inputs and A = L(M).

Observe that when a problem A is recursive/decidable, it has a special algorithm
that solves it and in addition always halts, i.e., on inputs not in A, this algorithm
explicitly rejects. Thus, by definition, every recursive language is also recursively
enumerable.

Proposition A.12 If A recursive then A is recursively enumerable.

We will denote the collection of recursive languages as REC and the collection
of all recursively enumerable languages as RE; thus, Proposition A.12 can be seen
as saying that REC C RE. The collection of recursive and recursively enumerable
languages enjoy some closure properties that are worth recalling.

Theorem A.13 REC is closed under all Boolean operations while RE is closed
under monotone Boolean operations. That is,
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e IfA,B€RE, then AU B and AN B are also in RE.
o IfA,B € REC, then A, AUB, and AN B are all in REC.

Proof We will focus on the two most interesting observations in Theorem A.13;
the rest we leave as an exercise for the reader. The first observation we will prove
is the closure of RE under union. Let us assume M4 and Mp are Turing machines
recognizing A and B, respectively. The computational problem A U B asks one to
determine if a given input string w belongs to either A or B. We could determine
membership in A and B by running M4 and Mp, respectively, but we need to be
careful about how we run M4 and Mp. Suppose we choose to first run M4 on w
and then run Mg on w, then we could run into problems. For example, consider the
situation where M4 does not halt on w, but w € B. Then, running M4 followed by
M g will never run M g and therefore never accept, even though w € AU B. Switching
the order of running M4 and Mp also does not help. What one needs to instead do
is, to run M4 and Mp simultaneously on w. How does one M4 and Mp at the same
time? There are many ways to achieve this. One way is to initially run one step of M4
and then one step of Mp on w from the initial configuration. If either them accept,
the algorithm for A U B accepts. If not, it will run M4 for two steps, and Mp for two
steps, again starting from the respective initial configurations. Again, the algorithm
for A U B accepts if either simulation accepts. If not the computations of M4 and
Mg are increased by one more step, and this process continues, until at some point
one of them accepts.

The second result we would like to focus on is the observation that REC is closed
under complementation. Let A € REC and let M be a Turing machine that halts
on all inputs and L(M) = A. The algorithm M for A, runs M on input w, and if
M accepts it rejects and if M rejects then it accepts. Notice that L(M) = A only
because M halts on all inputs — if M does on halt on (say) w, then w € A but M
would never accept w! O

The following theorem is a useful way to prove that a problem is decidable.
Theorem A.14 A is recursive if and only if A and A are recursively enumerable.

Proof 1f A € REC then A € REC by Theorem A.13. Then both A and A are
recursively enumerable by Proposition A.12.

Conversely, suppose A and A are recognized by M, and M respectively. The
recursively algorithm M for A, on a given input w, will run both M4 and M7
simultaneously (as in the proof of Theorem A.13), and accept if either M4 accepts
or M7 rejects. Notice, that any given input w belongs to either A or A, and therefore
at least one out of M4 and M is guaranteed to halt on each input. Therefore M will
always halt. O

Encodings.

Every object (graphs, programs, Turing machines, etc.) can be encoded as a binary
string. The details of the encoding scheme itself are not important, but it should be
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simple enough that the data associated with the object should be easily recoverable
by reading the binary encoding. For example, one should be able to reconstruct
the vertices and edges of a graph from its encoding, or one should be able to
reconstruct the states, transitions, etc. of a Turing machine from its encoding. For
a list of objects 01, 0>, ...0,, we will use (01, 0>, ...0,) to denote their binary
encoding. In particular, for a Turing machine M, (M) is its encoding as binary string.
Conversely, for a binary string x, M, denotes the Turing machine whose encoding
is the string x.

Once we establish an encoding scheme, we can construct a Universal Turing
machine, which is an interpreter that given an encoding of a Turing machine M
and an input w, can simulate the execution of M on the input string w. This is an
extremely important observation that establishes the recursive enumerability of the
membership problem for Turing machines.

Theorem A.15 There is a Turing machine U (called the universal Turing machine)
that recognizes the language MP = {{M,w)|w € L(M)}. In other words, MP € RE.

Not every decision problem/language is recursively enumerable. Using Cantor’s
diagonalization technique, one can establish the following result.

Theorem A.16 The language K= {x | x ¢ L(My)} is not recursively enumerable.

Proof The proof of Theorem A.16 relies on a diagonalization argument to show
that the language of every Turing machine differs from K, and therefore K is not
recursively enumerable.

Consider an arbitrary Turing machine M, whose encoding as a binary string is
x. We will show that L(M,) # K, thereby proving the theorem. Observe that if
x € L(M,) then by definition x ¢ K and if x ¢ L(M,) then again by definition
x € K. Therefore x € (K \ L(M,)) U (L(My) \ K) # 0. o

A.4 Reductions

Theorem A.16 is the first result that establishes that there are problems that are
computationally difficult. Further results on the computational hardness of problems
are usually established using the notion of reductions. Reductions demonstrate how
one problem can be converted into another in such a way that a solution to the second
problem can be used to solve the first. Formally, it is defined as follows.

Definition A.17 A (many-one/mapping) reduction from A to B is a computable
(total) function f : ¥* — X* such that for any input string w,

w € A if and only if f(w) € B

In this case, we say A is (many-one/mapping) reducible to B and we denote it by
A <, B.
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Since many-one/mapping reductions are the only form of reduction we will study,
we will drop the adjective “many-one” and “mapping” and simply call these reduc-
tions. Let us look at a couple of examples of reductions.

Example A.18 Let us consider the complement of MP, i.e., MP = {(M,w) | w ¢
L(M)}. One can show that K <,, MP as follows. The reduction f is the following
function: f(x) = (M, x).

To prove that f is a reduction, we need to argue two things. First that f is
computable, i.e., we need to come up with a Turing machine M that always halts
and produces the string f(x) on input x. In this example, to construct f(x), we
simply need to “copy” the string x which clearly is a computable function. Second
we need to argue that x € K iff f(x) € MP. This can be argued as follows: x € K
iff x ¢ L(M,) (definition of K) iff (M, x) € MP (definition of MP) iff f(x) € MP
(definition of f).

Example A.19 Consider the problem
HP = {{M,w) | M does not halt on w}.

We will prove that K <. HP.
Given a binary string x, let us consider the following program H,.

Hy(w)
result = M, (x)
if (result = accept)
return accept (* on input w *)
else
while true do

In other words, the program H, on input w, ignores its input and runs the program
M, on x. If M, halts and accepts x then H, halts and accepts w. Otherwise, H, does
not halt. Thus, the program H, halts on some (all) inputs if and only if x € L(M,).

Let us now describe the reduction from K to HP: f(x) = (Hy, x). Observe first
that f satisfies the properties of a reduction because x € K iff x ¢ L(M,) iff H,
does not halt on x (and all input strings) iff (H,,x) € HP. To establish that f is a
reduction, we also need to argue that f is computable. On input string x, we need a
program that produces the source code for H, (given above) and copies the string x
after the source code. This is clearly computable.

Reductions are a way for one to compare the computational difficulty of problems
— if A reduces to B then A is at most as difficult as B, or B is at least as difficult as
A. This is formally captured in the following proposition.

Theorem A.20 If A <,, B and B is recursively enumerable (recursive) then A is
recursively enumerable (recursive).
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Algorithm for Problem A

yes
Algorithm for
Problem B

Reduction f

no

Fig. A.2 Schematic argument for Theorem A.20.

Proof Let f be areduction from A to B that is computed by Turing machine M ¢, and
let Mp be a Turing machine that recognizes B. The algorithm for A is schematically
shown in Fig. A.2 — on input w, compute f(w) using My and run Mg on f(w).
Notice that this algorithm always halts if Mp always halts. Thus, if B is recursive
then A is also recursive. O

Theorem A.20 can be seen to informally say “if A reduces to B and B is compu-
tationally easy then A is computationally easy”. It is often used in the contrapositive
sense and it is useful to explicitly state this observation.

Corollary A.21 If A <, B and A is not recursively enumerable (undecidable) then
B is not recursively enumerable (undecidable).

We can use the above corollary to argue the computational hardness of some
problems.

Theorem A.22 MP is not recursively enumerable. Therefore, MP is undecidable.

Proof Example A.18 establishes that K Zm MP. Together with Theorem A.16 and
Corollary A.21, we can conclude that MP is not recursively enumerable. Finally,

since MP is not recursively enumerable, Theorem A.14 establishes that MP is not
decidable/recursive. O

Since MP € RE (Theorem A.15) and MP ¢ RE (Theorem A.22), we have
a witness to the fact that RE is not closed under complementation. Just like
Theorem A.22, we could establish similar properties for the halting problem.

Theorem A.23 HP  is  not recursively — enumerable. Therefore, HP =
{{M,w) | M halts on w} is undecidable.

Proof Follows from Example A.19 and the argument in the proof of Theorem A.22.0

Reductions are transitive and hence a pre-order; thus, the use of < to denote them
is justified.

Theorem A.24 The following properties hold for reductions.
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B.
C then A <, C.

e IfA <, BthenA <,
o I[fA <, Band B <,,
Proof 1f f is areduction from A to B, then one can argue that f is also a reduction
from A to B. And, if f is a reduction from A to B and g a reduction from B to C
then g o f is a reduction from A to C. Establishing these observations to prove the
theorem is left as an exercise. O

Having found a lens to compare the computational difficulty of two problems
(namely, reductions), one can use them to argue that a problem is at least as difficult
as a whole collection of problems, or something is the “hardest” problem in a
collection. This leads us to notions of hardness and completeness.

Definition A.25 A language A is RE-hard if for every B € RE, B <,,, A.
A language A is RE-complete if A is RE-hard and A € RE.

Thus, an RE-complete problem is the hardest problem that is recursively enu-
merable, while an RE-hard problem is something that is at least as hard as any other
RE problem. Are there examples of such problems? It turns out that MP, HP, and
K are all RE-complete. We establish this for MP in the following theorem.

Theorem A.26 MP is RE-complete.

Proof Membership in RE has been established in Theorem A.15. So all we need
to prove is the hardness. Let B be any recursively enumerable language, and let M
be a Turing machine recognizing B. The reduction from B to MP is as follows:
f(w) =(M,w).Itis easy to see that w € Biff w € L(M) (since M recognizes B) iff
(M,w) € MP (definition of MP) iff f(w) € MP (definition of f). It is also easy to
see that f is computable — in order to compute f(w), all we need to do is prepend
the source code of M. O

Establishing RE-hardness of a problem is sufficient to guarantee it’s undecidabil-
ity.
Theorem A.27 If A is RE-hard then A is undecidable.

Proof 1If A is RE-hard then since MP € RE, we have MP <,, A. Since MP is
undecidable (Theorem A.22), by properties of a reduction (Corollary A.21) A is
undecidable. O

A.5 Complexity Classes

Computational resources needed to solve a problem depend on the size of the input
instance. For example, it is clearly easier to compute the sum of two one digit
numbers as opposed to adding two 15 digit numbers. The resource requirements
of an algorithm/Turing machine are measured as a function of the input size. We
will only study time and space as computational resources in this presentation. We
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begin by defining time bounded and space bounded Turing machines, which are
defined with respect to bounds given by functions 7 : N — N and S : N — N that
are non-decreasing, i.e., for alln < m € N, T(n) < T(m) and S(n) < S(m). Our
definitions apply to both deterministic and nondeterministic machines.

Definition A.28 A (deterministic/nondeterministic) Turing machine M is said to run
in time T (n) if on any input u, all computations of M on u take at most 7' (|u|) steps;
here |u| refers to the length of input u.

A (deterministic/nondeterministic) Turing machine M is said to use space S(n)
if on any input u, all computations of M on u use at most S(|u|) work tape cells. In
this context, a work tape cell is said to be used if it is written to at least once during
the computation. Notice that, if a work tape cell is written multiple times during
a computation, it counts as only one cell when measuring the space requirements;
thus, work tape cells can be reused without adding to the space bounds.

It is worth examining Definition A.28 carefully. Our requirement for a Turing
machine running within some time or space bound applies to all computations,
whether they are accepting or not. Notice also that the definition is the same for
both deterministic and nondeterministic models — in a deterministic machine the
unique computation on a given input must satisfy the resource bounds, and in a
nondeterministic machine, all computations on the input must satisfy the bounds.
In particular, if a Turing machine (deterministic or nondeterministic) runs within a
time bound, then it halts in every computation of every input.

Having defined time and space bounded machines, we can define the basic com-
plexity classes which are collections of (decision) problems that can be solved within
certain time and space bounds.

Definition A.29 We define the following basic complexity classes.

e A language A € DTIME(T (n)) iff there is a deterministic Turing machine that
runs in time 7'(n) such that A = L(M).

e A language A € NTIME(T (n)) iff there is a nondeterministic Turing machine
that runs in time 7' (n) such that A = L(M).

e Alanguage A € DSPACE(S(n)) iff there is a deterministic Turing machine that
uses space S(n) such that A = L(M).

» A language A € NSPACE(S(n)) iff there is a nondeterministic Turing machine
that uses space S(n) such that A = L(M).

Our computational model of Turing machines, and our definitions of time and
space bounded computations are robust with respect to constant factors. This obser-
vation is captured by two central results in theoretical computer science, namely, the
linear speedup and compression theorems. It says that one can always improve the
running time or space requirements for solving a problem by a constant factor.

Theorem A.30 (Linear Speedup)

If A € DTIME(T (n)) (or A € NTIME(T (n))) and ¢ > 0 is any constant, then
A € DTIME(cT (n) +n) (A € NTIME(cT (n) + n)).
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Proof (Sketch) Let A = L(M). We will describe a machine M’ which will simulate
k steps of M in 8 steps; if k > %, we will get the desired result. M’ will have one
more work tape, a much larger tape alphabet, and control states than M.

e M’ copies the input onto the additional work tape in compressed form: k succes-
sive symbols of M will be represented by one symbol in M’. Time taken is n. M’
will maintain M’s work tape contents in compressed form on the second work
tape as well.

e M’ uses the additional work tape as “input tape”. The head positions of M, within
the k symbols represented by current cells, is stored in finite control.

One basic move of M’ (consisting of 8 steps), will simulate k steps of M as follows.

¢ At the start of basic move, M’ moves its tape heads one cell left, two cells right
and one cell left, storing the symbols read in the finite control. Now, M’ knows
all symbols within the radius of k cells of any of M’s tape heads. This takes 4
steps.

¢ Based on the transition function of M, M’ can compute the effect of the next k
steps of M.

e Using any additional (at most) 4 steps, M’ updates the contents of its tapes as a
result of the k steps, and moves the heads appropriately. O

Theorem A.31 (Linear Compression)

If A € DSPACE(S(n)) (or A € NSPACE(S(n))) and ¢ > 0 is any constant then
A € DSPACE(cS(n)) (A € NSPACE(cS(n))).

Proof Increase the tape alphabet size and store work tape contents in compressed
form as in Theorem A.30. a

Theorems A.30 and A.31 suggest that when analyzing the time and space require-
ments of an algorithm we can ignore constant terms. This leads to the use of the
order notation.

Definition A.32 Consider functions f : N - Nand g : N — N.

e f(n) = O(g(n)) if there are constants c, ny such that for n > ng, f(n) < cg(n).
g(n) is an asymptotic upper bound.

e f(n) = Q(g(n)) if there are constants ¢, ny such that for n > ny, f(n) > cg(n).
g(n) is an asymptotic lower bound.

The complexity classes identified in Definition A.29 are a very fine classification
of problems. They include complexity classes whose classification of problems is
sensitive to our use of Turing machines as a model of computation. Ideally we would
like to study complexity classes such that if a problem is classified in a certain
class then that classification should be “platform independent”. That is, whether we
choose to study complexity on Turing machines or Random Access Machines, our
observations should still hold. They should also be invariant under small changes to
the Turing machine model, like changing the number of work tapes, alphabet, nature
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of the tapes, etc. There is a strengthening of the Church-Turing thesis, called the
invariance thesis articulated by Church, that underlies our belief in the robustness of
the Turing machine model, subject to small changes in the time and space bounds.
It says that

Any effective, mechanistic procedure can be simulated on a Turing machine using the same
space (if space is > log n) and only a polynomial slowdown (if time > n)

In addition to the requirement that complexity classes be robust to changes to
the computational platform, we would like the classes to be closed under function
composition — making function/procedure calls to solve sub-problems is a standard
algorithmic tool, and we would like the complexity to remain the same as long as the
sub-problems being solved are equally simple. Finally, we would like our complexity
classes to capture natural, “interesting”, real-world problems. For these reasons, we
typically study the following complexity classes that provide a coarser classification
of problems than that provided in Definition A.29.

Definition A.33 Commonly studied complexity classes are the following.

L = DSPACE(log ) NL = NSPACE (log )

P = U.DTIME(n¥) NP = UNTIME (%)
PSPACE = U,DSPACE (n¥) NPSPACE = U NSPACE (n¥)
EXP = U,DTIME(2"") NEXP = UNTIME(2"")

In addition to the above classes, for any class C, coC = {A | A € C}. Please note
that coC is not the complement of C but instead is the collection of problems whose
complement is in C.

A.6 Relationship between Complexity Classes

We begin by relating time and space complexity classes.

Theorem A.34 DTIME(T(n)) < DSPACE(T(n)) and NTIME(T(n)) ¢C
NSPACE(T (n))

Proof A Turing machine can scan at most one new work tape cell in any step.
Therefore, the number of work tape cells used during a computation cannot be more
than the number of steps. O

Theorem A.35 DSPACE(S(n)) € DTIME(n - 2°25()) and NSPACE(S(n)) C
NTIME (n-29SD)) In particular, when S(n) > log n, we have DSPACE(S(n))
DTIME(29(5()) and NSPACE(S(n)) € NTIME(29(S(m)),

We will skip giving a direct proof of Theorem A.35. It will follow from The-
orem A.37 and Theorem A.38. An immediate consequence of Theorems A.34
and A.35 are the following relationships between the complexity classes.
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Corollary A.36
L ¢ P ¢ PSPACE c EXP
NL € NP € NPSPACE ¢ NEXP

We will establish relationships between deterministic and nondeterministic com-
plexity classes.

Theorem A.37 DTIME(T(n)) < NTIME(T(n)) and DSPACE(S(n)) ¢C
NSPACE(S(n)).

Proof This follows from the fact that, by definition, every deterministic Turing
machine is a special nondeterministic Turing machine, namely, those that have
exactly one transition enabled from every non-halting configuration. O

Nondeterministic complexity class can also be related to deterministic complexity
classes. In fact, we now prove a result that subsumes the containment results for
nondeterministic classes established in Theorems A.34 and A.35.

Theorem A.38 NTIME(T(n)) < DSPACE(T(n)) and NSPACE(S(n)) C
DTIME (1205 (),

Proof Let us begin by proving the first inclusion. Consider A € NTIME(T (n))
and let M be T (n)-time bounded nondeterministic machine recognizing A. On any
input w of length n, the computations of M can be organized as a tree, and since
M runs in time T (n), this tree has height T'(n). Now the deterministic algorithm D
to solve A will perform a depth first search (DFS) on this computation tree of M,
constructing this tree as it is explored, and accepting if some node in this computation
tree corresponds to an accepting configuration. The space needed by D to perform
this DFES is the memory needed to store the call stack. The stack during a DFS keeps
track of the path being currently explored in the tree to enable backtracking. Since
the computation tree of M is of height T'(n), the height of the call stack is also
T(n). A naive implementation of the DFS algorithm will store the sequence of tree
vertices on the current path; since in this case each vertex is a configuration of M,
these can be represented by strings of length 7'(n) (as work tape cells cannot exceed
T(n) as in Theorem A.34). This gives us a space bound of T'(n)? for algorithm
D. However, instead of storing the actual configurations in the computation being
currently explored, D can just store the sequence of nondeterministic choices made
by M in the current computation. With this information about the nondeterministic
choices, D can reconstruct the configuration at the end of a sequence of steps, by
resimulating M from the beginning — this increases the running time of D, but
reduces the space requirements of D which is what we care about for this result. If
M has k choices at each step, the stack of D during DFS is simply a k-ary string of
length < T'(n), which means that D is T (n)-space bounded.

For the second result, let us consider A € NSPACE(S(n)) and a nondeterministic
Turing machine M that recognizes A in S(n) space. On a given input w of the length
n, it is useful to define the notion of a configuration graph of M. The configuration
graph is a directed graph that has as vertices, configurations of M, and has an edge
from C; to Cp, if M can move from configuration C; to configuration C; in one step
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NP
/ o PSPACE

L—NL—P = — EXP — NEXP

N P NPSPACE

coNP

Fig. A.3 Relationship between Complexity Classes. — indicates containment, though whether it
is strict is unknown.

given input w. Observe that M accepts w if an accepting configuration is reachable
from the initial configuration in this configuration graph. Notice also that since M
is S(n)-space bounded, the total number of vertices in this graph is < n29(S()
(see proof of Theorem A.35). Now we can run our favorite graph search algorithm
(depth first search or breadth first search) on this configuration graph to see if an
accepting configuration is reachable; the graph will be constructed on-the-fly as it is
being explored. Such an algorithm (which deterministic), takes time that is linear in
the size of the graph, which gives us a 122 (S(") deterministic algorithm for A. O

Our new observations relating deterministic and nondeterministic complexity
classes gives us the following relationships.

Corollary A.39
L € NL ¢ P ¢ NP ¢ PSPACE ¢ NPSPACE ¢ EXP ¢ NEXP

An important result due to Savitch, relates nondeterministic and deterministic
space complexity classes. The interested reader can find its proof in textbooks like [?].

Theorem A.40 (Savitch)
For S(n) > logn, NSPACE(S(n)) € DSPACE(S(n)?). In particular, this means
that PSPACE = NPSPACE.

Putting all our observations together we get the relationships shown in Fig. A.3
. It is worth observing that for any deterministic complexity class C, C = coC; this
is because an algorithm for A is to run the deterministic algorithm for A and flip the
final answer. Thus, P = coP. Further, from Theorem A.37, we have coP € coNP,
giving us the containment P € cONP. Finally, due the space hierarchy theorem, we
also know that L # PSPACE and NL # PSPACE, and from the time hierarchy
theorem, we know that P # EXP and NP # NEXP; the hierarchy theorems are
beyond the scope of this brief primer.

A.7 P and NP

Cobham-Edmonds Thesis, named after Alan Cobham and Jack Edmonds, asserts
that the only computational problems that have “efficient” or “feasible” algorithmic
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solutions are those that belong to P. In other words, P is the collection of tractable
computational problems. There are many features of P that justify this view.

e The invariance thesis suggests that any problem in P can be solved in polynomial
time on any reasonable computational model. Thus, the statement of a problem
being efficiently computable is platform independent.

* Most encodings of an input structure are polynomially related in terms of their
length. Thus, if a problem is in P for one encoding, it will be in P even if input
instances are encoded in a different manner. Therefore, P is insensitive is problem
encodings.

* Most natural problems in P have algorithms whose running time is bounded by
a low-order polynomial. Thus, their running times are likely to be low for most
problem instances.

e The asymptotic growth of polynomials is moderate when compared to the as-
tounding growth of exponential functions. Thus, problems in P are likely to be
feasibly solved even on large problem instances.

The crux of the Cobham-Edmonds thesis is that for problem to be solvable in
practice, it should have a polynomial time algorithm. Therefore, much effort in the
past 50 years has been devoted to understanding the class of problems in P. In
particular, can we prove that the complexity classes containing P in Fig. A.3, like
NP and PSPACE, also have efficient solutions, i.e., are contained in P? Or can we
say for certain that some problems in NP and PSPACE cannot be solved efficiently?

A.7.1 Alternate characterization of NP

We defined NP as the collection of problems that can be solved in polynomial time
on a nondeterministic Turing machine. In this section, we will give an alternate
definition, namely, as those problems that are efficiently “verifiable”.

Definition A.41 A language A is polynomially verifiable if there is a k € N and a
deterministic Turing machine V such that

A ={w|3p.V accepts (w, p)}

and V takes at most |w|¥ steps on input (w, p), i.e., V running time is independent
of the length of p. Here V is called a verifier for A, and for w € A, the strings p such
that (w, p) is accepted by V are called a proof of w (with respect to V).

The notion of a language A being polynomial verifiable says that when a string
w € A, there is a proof p (maybe even more than one) such that w augmented with
p “convinces” V, i.e., causes V to accept. However, if w ¢ A then there is no proof
string p that can convince V of w’s membership in A. Notice also that V’s running
time on input (w, p) is independent of the length of p; it always runs in time |w|*
no matter what p is. Now, since in |w|¥ steps, V cannot read more that |w|* — |w]|
bits of p, we can without loss of generality assume that p is a string whose length
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is bounded by a polynomial in the length of w. Thus, we could informally say that
A is polynomially verifiable, if for any string w € A there is a “short” proof (of
polynomial length) that can be efficiently checked (in polynomial time) by a verifier,
and if w ¢ A there is no proof that can convince a verifier.

A language being polynomially verifiable is equivalent to a problem having a
nondeterministic polynomial time verifier.

Theorem A.42 A € NP if and only if A is polynomially verifiable.

Proof Consider A € NP, and let M be nondeterministic Turing machine recognizing
A in time n* for some k. We can assume without loss of generality that M has at most
two choices at any given step. The verifier V for A will work as follows. On input
(w, p), where p is a binary string, it will first copy w onto a work-tape, and compute
nk. It will then simulate M for n* steps using the work-tape with w as the input
tape, taking p to be the sequence of nondeterministic choices. V accepts (w, p) if M
accepts w with p as the nondeterministic choices. Observe that V is a deterministic
algorithm running in O (n*) time on |w| = n. Further A = {w|3p.V accepts (w, p)}.

Conversely, suppose V is a polynomial time verifier for A. Suppose V runs in time
[w|* on input (w, p). The nondeterministic algorithm M for A will work as follows.
On input w, M will guess a string p of length |w|¥. Then M will simulate V on w
and the guessed string p, accepting if and only if V accepts. It is easy to see that
L(M) = A and M runs in time O (n¥). O

Thus, NP is the collection of all problems A whose membership question has
short, efficiently checkable proofs. The question of whether all problems in NP have

polynomial time algorithms — whether P Z NP — is thus the question of whether
every problem that has a short, efficiently checkable proofs also have the property
that these proofs can be found efficiently. Phrased in this manner, the likely answer
seems to be no. There are also results that seem to suggest that P is likely to be not
equal to NP, though a firm resolution of this question has eluded researchers for the
past 50 years.

A.7.2 Reductions, Hardness and Completeness

In an effort to resolve the P versus NP question, researchers have tried to identify
canonical problems whose study can help address this challenge. The goal is to
identify, in some sense, the most difficult problems in NP such that either (a) they
are candidate problems that may not have polynomial time algorithms, or (b) finding
a polynomial time algorithms for these problems will constructively demonstrate
that P = NP. In order to identify such difficult problems, we need to be able to
compare the difficulty of two problems. For this the most convenient technique is
that of reductions. Unlike, many-one reductions introduced before, we will require
that these be computed in polynomial time.
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Definition A.43 A polynomial time reduction from A to B is a polynomial time
computable function f such that for every input w,

w € A if and only if f(w) € B.

In such a case we say that A is polynomial time reducible to B and is denoted by
A <p B.

Example A.44 Consider the following problems.

SAT = {{¢) | ¢ is in CNF and ¢ is satisfiable}
k—COLOR = {(G, k) | G is an undirected graph that can be colored using k colors}

Proposition 1.35 shows that for any graph G and k € N there is a set of clauses I'
such that G is k-colorable if and only if I'g  is satisfiable. The number of clauses in
I'G  is proportional to the number of vertices and edges in G, and the each clauses
has at most k-literals. It is also easy to see that I'g x can be constructed from G

in time that linear in the size of G. Thus, these observations together establish that
k—COLOR <p SAT.

Example A.45 A formula ¢ in CNF is said to be in 3-CNF if every clause in ¢ has
exactly 3 literals. For example, (x1V—x V-x3) A (=) V=xg) A(xg) A (=x V—x3 Vixg)
is not in 3-CNF, while (x; V —=x3 V =x3) A (=x1 V x4 V x2) is in 3-CNF. Recall the
SAT problem is one whether given a formula ¢ in CNF, we need to determine if ¢ is
satisfiable. A special case of this problem is one where the input formula is promised
to be in 3-CNF. Formally we have,

3—SAT = {{¢) | ¢ is in 3-CNF and is satisfiable}.

Since 3—SAT is a “special” version of SAT, the identity function is a reduction from
3—SAT to SAT; thus, 3—SAT <p SAT. It turns out the one also has a reduction the
other way around.

The reduction from SAT to 3—SAT is as follows. Consider a CNF formula ¢; it will
be convenient to this of ¢ as a set of clauses. Our reduction will convert (in polynomial
time) each clause ¢ € ¢ into a 3-CNF formula f(c) such that ¢ and f(¢) are satisfied
by (almost) the same set of truth assignments. Then f(¢) = {f(c) | ¢ € ¢}, and it
will be the case that ¢ is satisfiable iff f(¢) is satisfiable.

Let us now describe the translation of clauses. The translation of clause ¢ will
depend on how many literals ¢ has. Letc = £; V V&, V - - - V {,. Depending on k, we
have the following cases.

Case k =1 Letu and v be “new” propositions not used before. Define f(c) to be
GvVuvY)ANE VUV -V)ANY-uNVv)A LV -uV )
Case k =2 Letu be a “new” proposition. f(c) is given by

&V vu) ANV &V —u)
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Case k =3 In this case f(c) =c.
Case k >3 Letyj,ys,...Yk—3 be new propositions. Then f(c) is

(Givevy) A3V -y Vy) A (lyV-y2Vys) A
AN(Ck—2V =yr-aV ye-3) AN (Eem1 V€V —yi-3)

Itis easy to see that f can be computed in time that is linear in the size of ¢. Moreover,
@ is satisfiable iff f(¢) is satisfiable (left as exercise). Thus, f is a polynomial time
reduction showing SAT <p 3-SAT.

Polynomial time reductions satisfy properties similar to many-one reductions:
they are transitive and if A reduces to B then A reduces to B.

Proposition A.46 The following properties hold for polynomial time reductions.

o JfA <p B then A <p B.
o I[fA <p Band B <p Cthen A <p C.

Proof Detailed proof of these observations is left as an exercise. But the sketch is as
follows. If f is a polynomial time reduction from A to B then f is also a polynomial
time reduction from A to B. And if f is a polynomial time reduction from A to B
and g is a polynomial time reduction from B to C, then g o f is a polynomial time
reduction from A to C. O

Finally, polynomial time reductions do serve as a way to compare the computa-
tional difficulty of two problems. We show that if A <p B and B is “easy” then A
is easy.

Theorem A.47 [f A <p Band B € P then A € P.

Proof Let f be a polynomial time reduction from A to B and let M be a deterministic
polynomial time algorithm recognizing B. Then the polynomial time algorithm N
for A does the following: On input w, compute f(w) and then run M on f(w). Itis
easy to see that N recognizing A from the properties of a reduction.

The tricky step is to argue that N runs in polynomial time. Let us assume that f
is computed in time 7* and let M run in time n¢. Since f can be computed in time
n*, it means that | f(w)| < |w|¥; this is because a single step in the computation of
f can produce at most one bit of f(w). Therefore, the total running time of N is
[w|* (time to compute f(w)) + (Jw|%)¢ (time to run M on f(w) which is a string of
length [w|¥). This is bounded by O (n*¢) which is polynomial. o

In Theorem A.47, we could have replaced P by any of the complexity classes
in Fig. A.3 that contain P, and the proof would go through. Thus, polynomial
time reductions are an appropriate lens by which measure the relative difficulty of
problems that belong to complexity classes that contain P.

Definition A.48 (Hardness and Completeness)

Let C be a complexity class in Fig. A.3 that contains P. A is said to be C-hard
iff forevery Be C, B <p A.

A is said to be C-complete iff A € C and A is C-hard.
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In other words, informally, a problem is C-hard if it is at least as difficult as any
problem in C. It is C-complete if in addition it also belongs to C. Fixing C to be
NP, we could say that a problem is NP-complete if it is the “hardest” problem that
belongs to NP. Because of their status as the most difficult problems in NP, they
are candidate problems to study to help resolve the P versus NP question. This is
captured by the following observation.

Proposition A.49 If A is NP-hard and A € P then NP = P.

Proof Consider any problem B € NP. Since B <p A and A € polytime, by
Theorem A.47, we have B € P. O

In the absence of a firm resolution of the P versus NP questions, classifying a
problem as NP-hard suggests that it is unlikely that the problem has a polynomial
time algorithm given our belief that P # NP.

Many natural problems are NP-complete. The historically (and pedagogically)
first problem known to be NP-complete is SAT (Cook-Levin Theorem Theo-
rem 1.23).

Observe that from Fig. A.3 , we have P € NP and P € coNP. From this
we can conclude that P € NP N coNP. Related but independent of the P versus

NP question is whether P Z NP n coNP. This question also remains open. Many
problems that were previously known to be in NP N cONP were proved to be in P
years later. Two classical examples are Linear programming that was shown to be in
P by Khachiyan in 1979 and testing whether a number is prime, which was proved by
Agarwal-Kayal-Saxena in 2002 to be in P. However, there are some natural problems
in NP n coNP whose status with respect to P is still unresolved. One is the problem
of solving parity games, and the other is the factoring problem.



