Tree Decompositions and Tree Width
\(\varepsilon \)-labeled ordered \(n \)-ary trees Structures

over the signature

\[\mathcal{L} = (\lt, \exists s : \mathbb{N} \rightarrow, \exists \alpha : \mathbb{N} \rightarrow \varepsilon) \]

Doner, Thatcher-Wright Theorem. The set of \(\varepsilon \)-labeled trees definable in MSO is exactly the set of regular tree languages.

Corollary Consider a MSO sentence \(\varphi \).

Given any \(\varepsilon \)-labeled tree \(T \), the decision problem of determining if \(T \models \varphi \) is decidable in \(O(|T|) \).

Proof Construct a tree automaton \(A_{\varphi} \) corresponding to \(\varphi \).

On an input \(T \), run \(A_{\varphi} \) on \(T \) in linear time.

MSO on Graphs.

Signature \(\mathcal{L}_E = \varepsilon E^3 \)

3-colorability A graph \(G = (V, E) \) is 3-colorable if \(\exists c : V \rightarrow \{1, 2, 3\} \) s.t.

\(u \neq v \in E, c(u) \neq c(v) \).
Theorem 3-colorability is NP-complete.

Define 3-colorability

\[P_{3\text{col}} = \exists x_1 \exists x_2 \exists x_3 \]

"every vertex belongs to exactly one set"

\[\land \forall x \forall y \forall z \land \exists \sum_{i=1}^{3} (\exists x_i \lor \exists x_i y) \]

Independent Set is \(I \subseteq V \) in \(G = (V, E) \) such that \(\forall u, v \in I, \exists u, v \notin E \).

Max Independent Set Given a graph \(G = (V, E) \) and \(k \in \mathbb{N} \), determine if there is an independent set of size \(\geq k \).

- NP-complete.

\[P_{\text{ind}} = \exists I \exists x_1 \exists x_2 \ldots \exists x_k \]

\[\land \land (x_i \neq x_j) \land \land I x_i \]

\[\land \forall x \forall y, I x \land I y \rightarrow \exists x \exists y \]

Question Can these NP-complete problems be solved efficiently on more general graphs than just lines?

- Can we solve problems definable in...
For a graph $G = (V, E)$, a tree decomposition is a 2-ℓ-labeled tree $T = (V_T, E_T, L_T)$

Node coverage $\forall u \in V, \exists t \in V_T, u \in L_T(t)$

Edge coverage $\forall \{u, v\} \in E, \exists t \in V_T, \{u, v\} \subseteq L_T(t)$

Coherence $\forall u \in V, \forall x, y \in V_T, x \neq y$

such that $u \in L_T(x) \cap L_T(y)$ then

$\forall z$ that appears on the unique path from x to y in T, $u \in L_T(z)$

- Every graph has a trivial tree-decomposition
- A graph may have many tree-decompositions

Definition: A tree decomposition $T = (V_T, E_T, L_T)$
of graph $G = (V, E)$ has width $w \in \mathbb{N}$ if

$$\forall t \in V, \quad |L_t(t)| \leq w + 1$$

Tree Width of graph $G = (V, E)$ is w if there is a tree decomposition of G

of width $\leq w$.

Proposition Every tree $G = (V, E)$ has a tree decomposition of width 1.

Proof

$$T = (V_T, E_T, L_T)$$

$V_T = E$

$L_T(e = \langle u, v \rangle) = \langle u, v \rangle$

$(e_1, e_2) \subseteq E_T$ if $L_T(e_1) \cap L_T(e_2) \neq \emptyset$

Proposition If G is a connected graph of width 1 then G is a tree.

Constructing Tree Decompositions of small width.

Problem Given a graph $G = (V, E)$ and

$$1 \leq w \leq |V|$$

find G's tree width w.
Given a graph $G = (V,E)$, there is an algorithm A that computes a tree decomposition T of G in time $T(f(W) \text{ poly } |V|)$, where W is the tree width of G.

Let $T = (V_T, E_T, L_T)$ be a tree decomposition.

An edge $(t_1, t_2) \in E_T$ is redundant if $L_T(t_1) \subseteq L(t_2)$.

A tree decomposition is non-redundant if it has no redundant edges.

Proposition: Every graph G of width w has a non-redundant tree decomposition of width w.

- Redundant edge E_{t_1, t_2} can be contracted. [Remove vertices t_1, t_2 and add a vertex E_{t_1, t_2}]
a tree decomposition of width w that is binary.