

Some reminders about logistics. See the course webpage for full details.

- **Submission Policy:** Submit psets via gradescope. Student psets must obey the following constraints:
 - Each problem starts on its own page.
 - The first page has the following metadata:
 - * author(s) of the problem set
 - name(s)
 - netid(s)
 - * pset number
 - * list of collaborators
- **Collaboration Policy:** For *this* problem set, each student must work independently and submit their *own* solutions. For the *remaining* problem sets, students are allowed to work in groups of up to three.
- **Late Policy:** Late psets are not accepted. Instead, several lowest-scoring pset problems will be dropped from a students score.

All problems are of equal value.

1. Solve the following recurrences, by giving an asymptotically tight bound of the form $\Theta(f(n))$ where $f(n)$ is a standard and well-known function. Assume as a base case that $T(n) = 2$ for $n \leq 16$. No proofs are necessary.
 - (a) $T(n) = 3T(n/3) + n$.
 - (b) $T(n) = 5T(n - 3) + 7$.
 - (c) $T(n) = n^{1/2}T(n^{1/2}) + n$.
 - (d) $T(n) = T(n/3) + n$.
 - (e) $T(n) = 4T(n^{1/3}) + \log n$.

Hint: For a review on how to solve recurrences, see Kleinberg-Tardos §5.1–5.2.

2. French Flag Walk. Erickson Chapter 5, Problem #16 (<http://jeffe.cs.illinois.edu/teaching/algorithms/book/05-graphs.pdf>).

Hint: For a review of basic graph algorithms, see Kleinberg-Tardos §3.

3. A college university has n^2 buildings on a grid $\{1, \dots, n\} \times \{1, \dots, n\}$. The grid has roads connecting adjacent grid points, that is (i, j) is connected to the (at most 4) neighbors $\{(i+1, j), (i-1, j), (i, j+1), (i, j-1)\}$ (some of these points may not exist, due to edge conditions).

After a snowstorm, the university must plow the roads of snow. A building is considered *accessible* if all roads segments leading to it are cleared. For example a building at $(1, 1)$ is accessible if the road segments $(1, 1) - (1, 2)$ and $(1, 1) - (2, 1)$ are cleared.

Suppose the university hires a new snow plow company that clears each road in the university with probability $0 \leq p \leq 1$.

- (a) Calculate the expected number of roads that will be cleared.
- (b) Calculate the expected number of buildings that will be accessible.
- (c) Calculate the expected number of buildings that will be accessible, *conditioned* on the event that exactly n roads are cleared.

Hint: For a review of probability see Kleinberg-Tardos §13.12, and Shoup §8.1-8.4 (<https://shoup.net/ntb/ntb-v2.pdf>).