
February 12, 2025 12:12 PM

More DP

Max-Perimeter Subpolygon

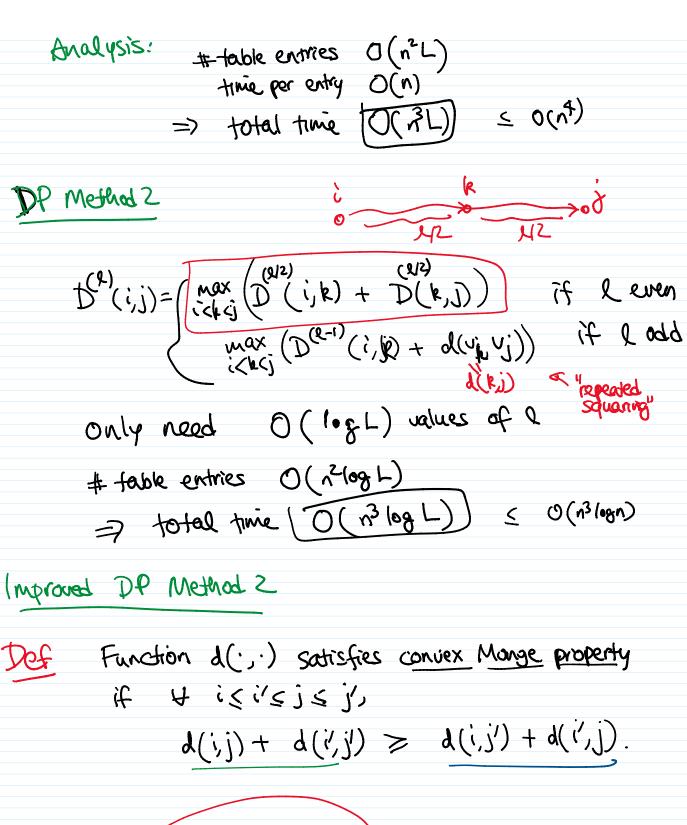
Given convex polygon vi, ve, --, vn, v, and L & n, find subpolygon with L vertices in aximizing perimeter

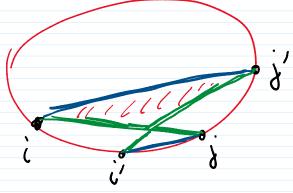
DP Method 1

Define subproblems:

for each $1 \le i < j \le n$, $1 \le L$,

let $D^{(Q)}(i,j) = \max dist of path


from ui to vj with <math>1 \text{ links}/\text{links}$ in ccw order


Want max $D^{(L-1)}(i,j) + d(v_j,v_i)$.

Recursive formula:

$$D^{(Q)}(i,j) = \max_{i < k < j} \left(D^{(i,k)} + d(v_k,v_i) \right)$$

Base case:
$$\mathcal{D}^{(i)}(i,j) = d(\nu i, \nu j)$$

property 13
true for our problem
by applying
trangle ineq
twice

Let $D(i,j) = \max_{i < k < j} (d(i,k) + d(k,j))$ K(i,j) = k that attains this max. [smma If d is convex Monge, then K is monotonically increasing in each now e in each column. (Also, D is convex Monge.) DP Speedup Thin (F. Yao '82) If d is convex Mores, can compute D from d in O(n2) time. Pf: Fix D. Assume given $D(i, i+\Delta)$ $\forall i$. Want to compute D(i, i+ b+1) 4i Know $K(i,1+0) \leq K(i,i+0+1) \leq K(i+1,i+0+1)$ $\mathcal{D}(i,i+\delta+1) = \max \left(d(i,k) + d(k,j) \right)$ $K(i,i+\delta) \leq k \leq K(i+i,i+\Delta+i)$

total time $\sum_{i} (K(i+1,i+\Delta+1) - K(i,i+\Delta) + 1)$ telescoping $\leq O(n)$ per Δ

overall time $O(n^2)$.

RMK: Schieber 198 O(n1+E) time

Optimal Binary Search Tree

Given n elements a, -, an
their frequencies fi..., fn,
build a bilivary search tree for a, ., an
that minimizes total search cost
i.e. \(\sigma_i \) depth(ai).

e.g. a: 1,2,3,4,5 f: 4,10,1,2,8

$$2^{1}$$

$$2^{2}$$

$$3^{2}$$

$$3^{3}$$

$$2^{4}$$

$$3^{4}$$

$$3^{4}$$

$$2^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4}$$

$$3^{4$$