4 matrix additions) =7 $O(n^{69}2^8) = O(n^3)$ not faskr

more clever idea.

 $C_{1} = A_{11} (B_{11} - B_{21})$ $C_{2} = (A_{11} + A_{12}) B_{21}$ $C_3 = A_{22}(B_{22} - B_{12})$ $C_4 = (A_{21} + A_{22}) B_{12}$ $C_{r} = (A_{11} + A_{22}) (B_{21} + B_{12})$ $C_{6} = (A_{12} - A_{22}) (B_{21} + B_{22})$ $C_{7} = (A_{21} - A_{11}) (B_{11} + B_{12})$ =) $T(n) = 7T(\frac{9}{2}) + O(n^2)^{2}$ $O(n^{109_27}) \leq IO(n^{2.81})$

Better?

3-way D&C: $T(n) = \frac{23}{5}T(\frac{n}{3}) + O(n^2)$ $\Rightarrow O(n^{(932)} \leq O(n^{2.85})$ 12-4k + 6f $T(n) = 143640 T(\frac{n}{70}) + O(n^{2})$ Pan 178: =) $O(n^{10970}(43640) \leq O(n^{2.796})$ Pan'79: $O(n^{2.781})$ Bini et al. '80: $O(n^{2.780}) \leq$ Schönhage '81! O(n^{2,522}) Strassen '86! O(n^{2,479}) <--(oppersmith, Wiringrad 190: O(n^{2,376}) 3-

Coppersmith, Wixograd (90:
$$O(n^{2.376})$$

Strothers (10: 7 $O(n^{2.374})$
Uassilvusta us. (12: 7 $O(n^{2.3719})$
Uassilvusta us. (12: 7 $O(n^{2.3719})$
Uassilvusta, Xu, Xu, 2400/24: $O(n^{2.3716})$
matrix mult. exponent CO
undr.
Applin: Griven, graph G = (V, E) with n vertices,
decide $\exists cycle of length 3$
called triangle
Not 485
trivial algin: $O(n^{3})$
let aux = {1 if uveE (adj mains)
for u e V do
for v e V do
compute $C_{u2} = \sum_{v \in U} auwawv$
if $C_{uv} > 0$ & $uv \in E$ return yes
Voturn NO
 $\Rightarrow O((n^{2.3716} + n^{2}) = O(n^{2.3716})$

next time: Dynamic programming