CS 473, Spring 2025
Homework 3 (due Feb 20 Thu 10am)

Instructions: As in previous homeworks.

Problem 3.1: (Social distancing for koalas?) We are given a binary tree 7" with n nodes, and a
number k£ < n. (You may assume that every non-leaf node has exactly 2 children.) We want
to pick a largest subset S of leaves such that every two different leaves in S have distance at
least k. (The distance between two nodes u and v refers to the length of the (unique) path
from » to v in T

In the example below, a feasible subset S for k& = 5 is shown in red, of size 5. (Turn the
picture upside down if you are a koala :-)

Describe a dynamic programming algorithm to solve this problem. Include the following steps:
(i) first define your subproblems precisely, (ii) then derive the recursive formula (including
base cases) with brief justifications, (iii) specify the evaluation order, and (vi) analyze the
running time and space as a function of n and k (think of k& as smaller than n but k is
not necessarily a constant). For this problem, you do not need to write pseudocode if your
recursive formula and evaluation order are described clearly. And you do not need to write
pseudocode to output an optimal solution; just the optimal size suffices.

[Hint: in defining subproblems, use an additional parameter ¢ € {0,...,k} and add an extra
constraint that all selected nodes must be of distance at least ¢ from the root. ..]|

Problem 3.2: (Turning a sequence into a tree) We are given a sequence of n numbers (ai, ..., a,).
We want to compute a proper binary tree T with nodes a1, ..., a, such that the inorder traver-
sal is precisely (a1, . .., an), while minimizing the cost function ¢(T') = 34, ;) is an edge of T @i —
aj|. (A proper binary tree refers to a rooted tree where each internal node of T" has exactly
2 children.)

For example, for the input sequence (5,6,16,13,2,11,14,3,12,8,7), one feasible solution is
the following tree, with cost |3 — 6|+ |3 — 8|+ (6 — 5| + |6 — 11|+ |8 — 12| + [8 — 7| + |11 —
13| + |11 — 14| + |13 — 16] + |13 — 2| = 38 (we do not claim that this is optimal).

Describe a dynamic programming algorithm to solve this problem. For full credit, the running
time should be at most O(n?). Include the following steps: (i) first define your subproblems
precisely, (ii) then derive the recursive formula (including base cases) with brief justifications,
(iii) specify the evaluation order, and (vi) analyze the running time and space. For this
problem, you do not need to write pseudocode if your recursive formula and evaluation order
are described clearly. And you do not need to write pseudocode to output an optimal solution;
just the optimal cost suffices.

[Hint: define C(i,7,m) to be the minimum cost over all binary trees 7" for the subsequence
(@i, @it1,...,a;) with the extra constraint that the root is ap,. . .]

Problem 3.3: We are given a directed graph G = (V, E) with n vertices and m edges (with
m > n), where each edge e has a weight w(e) and each vertex v has a penalty p(v).

In addition, we are given a source vertex s € V, and a number K < n.

We want to find a path m from s to some vertex v using at most K edges, minimizing
cost(m) = (P cer w(e)) +p(v) (ie., the weight of the path 7 plus the penalty at v). Note that
in this problem, we want to output not just the optimal cost but also an optimal path.

(a) (50 pts) Describe a dynamic programming algorithm to solve this problem in O(mK)
time and O(nK) space.
Include all of the following steps: (i) first define your subproblems precisely, (ii) then de-
rive the recursive formula (including base cases) with brief justifications, (iii) specify the
evaluation order, (iv) write pseudocode to output the optimal cost, (v) write pseudocode
to output an optimal path, and (vi) analyze the running time and space.

[Hint: define C(u, k) to be the minimum cost of a path from u using at most k edges. . .|

(b) (50 pts) Design and analyze a slightly slower but more space-efficient algorithm to solve
this problem in O(mK log K') time and O(nlog K) space.
[Hint: use divide-and-conquer in combination with your algorithm from (a) (somewhat
similar to the space-saving trick from class but with a different recurrence).]

