
CS 473 (Spring 2025)
Homework 2 (due Feb 13 Thu 10am)

Instructions: As in Homework 1.

Problem 2.1:

(a) Consider a function C(·, ·) defined by the following recursive formula: for all i, j ≥ 1,

C(i, j) = max
{
C(i− 1, j − 1) + f(i, j), C(i+ 2, j − 2) + g(i, j), C(i+ j, j) + h(i, j)

}
,

with the base case C(i, j) = 0 if i ≤ 0 or j ≤ 0 or i > n. Here, f, g, h are given functions
that can be evaluated in constant time.

(i) Write pseudocode to evaluate C(n, n) using dynamic programming, and (ii) analyze
the running time and space as a function of n.

(b) Consider a function C(·, ·) defined by the following recursive formula: for all i, j ∈
{1, . . . , n− 1},

C(i, j) = min
k∈{j+1,...,n}: g(i,j,k)≥0

(
C(i− 1, k) + C(i+ 1, k) + f(i, j, k)

)
,

with base cases C(i, j) = 0 if i = 0 or i = n, and C(i, j) = 0 if j = n. Here, f, g are
given functions that can be evaluated in constant time.

(i) Write pseudocode to evaluate C(⌊n/2⌋, 1) using dynamic programming, and (ii) an-
alyze the running time and space as a function of n.

Problem 2.2: Recall the following formulation of the line break problem from class: given a
sequence of positive integers ⟨a1, . . . , an⟩ and a number L, we want to split the sequence
into contiguous subsequences ⟨a1, . . . , ai1⟩, ⟨ai1+1, . . . , ai2⟩, . . ., ⟨aik−1+1, . . . , an⟩, for some
0 = i0 < i1 < · · · < ik−1 < ik = n, such that each subsequence sums to at most L, while
minimizing the penalty

∑k
j=1 f(L− aij−1+1 − · · · − aij ). Here, f is a given function that can

be evaluated in constant time.

(a) Consider a variant of the problem in which we impose an additional constraint that each
subsequence has at most 10 elements and the last subsequence has at most 5 elements
(i.e., ij − ij−1 ≤ 10 for all j = 1, . . . , k − 1 and ik − ik−1 ≤ 5).

Describe a modified dynamic programming algorithm to solve this problem. Include the
following steps: (i) define your subproblems and indicate how the final answer can be
obtained, (ii) derive the recursive formula (including base cases) with brief justifications,
(iii) specify a valid evaluation order, and (iv) analyze the running time and space (as
a function of n). For this problem, you do not need to write pseudocode if your recur-
sive formula and evaluation order are described clearly. And you do not need to write
pseudocode to output the optimal solution; just the optimal value suffices.

1



(b) Consider a variant of the problem in which we are given an additional input parameter m
and we impose an additional constraint that the number of subsequences used (denoted
k above) is exactly m. (But we don’t impose the constraint from part (a).)

Describe a modified dynamic programming algorithm to solve this problem. Include the
following steps: (i) define your subproblems, (ii) derive the recursive formula (including
base cases) with brief justifications, (iii) specify a valid evaluation order, and (iv) analyze
the running time and space (as a function of n and m). For this problem, you do not
need to write pseudocode if your recursive formula and evaluation order are described
clearly. And you do not need to write pseudocode to output the optimal solution; just
the optimal value suffices.

Problem 2.3: We have an ordered list of n customers, all arriving at time 0 (i.e., the time when
the store opens). We have 3 servers. For each i = 1, . . . , n, customer i requires ℓi minutes to
serve, where ℓi is a positive integer at most L. We want to assign customers to servers, so as
to minimize the sum of the waiting times of the customers. The customers need to be served
in the given order, and all customers must be served. Describe a dynamic programming
algorithm to solve this problem in time polynomial in n and L.

Example: for ℓ1 = 5, ℓ2 = 3, ℓ3 = 10, ℓ4 = 20, ℓ5 = 6, ℓ6 = 15, and L = 20, one (not
necessarily optimal) solution is to assign customers 1,3 to server 1, and customers 2,4,5 to
server 2, and customer 6 to server 3. Then customer 3 has to wait 5 minutes, customer 4 has
to wait 3 minutes, and customer 5 has to wait 3 + 20 = 23 minutes. The total waiting time
is 5 + 3 + 23 = 31 minutes.

Include all of the following steps: (i) first define your subproblems precisely, (ii) then derive
the recursive formula (including base cases) with brief justifications, (iii) specify the evaluation
order, (iv) write pseudocode to output the optimal value (i.e., the minimum total waiting
time), (v) write pseudocode to output the optimal solution (i.e., the assignment of customers
to servers), and (vi) analyze the running time and space as a function of n and L.

[Hint: define a class of subproblems with 4 parameters (the number of subproblems may be
a function of both n and L). . . ]

2


