CSE 473 Algorithms: Lecture 12 (2022-03-29)

Logistics:
- Problem set due Fri
- Exam 3 next Fri

Today: Randomized alg.

Q: When does randomness help algorithm design?
A: Almost always. If Pr ≤ 1

- Breaking symmetry
- Divide and conquer
- Dynamic programming
- Randomized divide
- Randomized greedy
- Randomized search
- Randomized rounding

Q: What is a min cut problem?
A: The capacity of a min cut problem is to compute \(\min \{ w(C) \} \)

Q: What is a min cut in a directed undirected graph?
A: The min cut of a graph is \((S, T) \) where

\[C = \sum_{(u, v) \in E} w(u, v) \]

Then to my cut \(C \) with \(V = A \cup B \), \(x \in A \), \(y \in B \), \(|C| = |C| \)

Directed min cut in deterministic \(O(n^2m) \) time

For \(t = v, y \), arbitrary choice of \(w(\cdot, \cdot) \) in \(G' \)

Return min of \(O(n^2m) \)
Theorem: Consider a graph $G = (V, E)$ with $\delta(G)$.

1. **Random Correlation** (H)
 - H is a multigraph on V.
 - V is a set of vertices $V = V_1, \ldots, V_k$.
 - V_i is a set of vertices V_i.
 - $e = (u, v)$ if $u \in V_i$ and $v \in V_j$ with $i \neq j$.
 - $e = (u, u)$ if $u \in V$.
 - $e = (u, v)$ if $u, v \in V$.

2. **Minimum Cut** $\delta(G)$
 - $\delta(G)$ is the minimum cut set.
 - $\delta(G)$ is a set of edges that separate the graph into two parts.
 - $\delta(G)$ is a set of vertices that are incident to the cut edges.
 - $\delta(G)$ is a set of edges that have one endpoint in each part of the cut.

Proof:

- Consider a graph $G = (V, E)$ with $\delta(G)$.
- The minimum cut set $\delta(G)$ is a set of edges that separate the graph into two parts.
- $\delta(G)$ is a set of vertices that are incident to the cut edges.
- $\delta(G)$ is a set of edges that have one endpoint in each part of the cut.

Optimal Solution

- The optimal solution is a set of edges that minimize the cut.
- The optimal solution can be found using the Ford-Fulkerson algorithm.

Random Correlation Algorithm

- The random correlation algorithm is simple.
- The algorithm yields a better solution than the optimal solution.
- The random correlation algorithm is a way to approximate the optimal solution.

Diagram

- The diagram shows a random correlation $G = (V, E)$.
- The random correlation algorithm is applied to find the minimum cut set.
- The minimum cut set is found by finding the minimum number of edges that separate the graph into two parts.
- The minimum cut set is a set of edges that minimize the cut.

Formulas

- $\delta(G)$ is the minimum cut set.
- $\delta(G)$ is a set of edges that separate the graph into two parts.
- $\delta(G)$ is a set of vertices that are incident to the cut edges.
- $\delta(G)$ is a set of edges that have one endpoint in each part of the cut.

Notations

- $G = (V, E)$ is a graph.
- $\delta(G)$ is the minimum cut set.
- V is a set of vertices.
- E is a set of edges.
- $e = (u, v)$ is an edge between vertices u and v.
\[E : \text{no edge of } C \text{ is connected in } T \]\\
\[L : T \text{ is a } S \text{-tree, where } S \text{ is any edge of } C. \]

If the edge is not in \(C \), then \(A \cap B = \emptyset \) and \(A \cup B = V \setminus \{v, w\} \).

If the edge is in \(C \), then \(A \cap B = \{v, w\} \) and \(A \cup B = \emptyset \).

Similarly, \(C \) can be connected in \(T \).}

\[E : \text{success probability.} \]

\[C_{ij} = \begin{cases} 0 & \text{if } i = j, \\
1 & \text{if } i \neq j \text{ and } i, j \in V. \end{cases} \]

For an \(n \times n \) upper triangular matrix, it is possible to select \(n-1 \) rows and columns to form a non-zero submatrix.

\[\text{Select a non-zero submatrix} \]
Lemma I: \[E_1 = m \]

Proof: \[E_1 = \min \{ \text{no edge of } C \text{ connected in } \chi \} \]

- If \(|C| = 1 \), then \(\chi \) is a tree, and it is connected in \(\chi \).

- If \(|C| > 1 \), then \(\chi \) is a forest, and it is connected in \(\chi \).

Thus, \(E_1 \) is the minimum number of edges necessary for \(\chi \) to be connected.

\[E_1 = 1 - \frac{1}{|C|} \]

\[E_1 = \frac{n^n - 1}{n - 1} \]

\[E_1 = \frac{n^n - 1}{n - 1} \]

- For \(n \geq 2 \), \(E_1 \) is the minimum number of edges necessary for \(\chi \) to be connected.

\[E_1 \geq 1 - \frac{2}{(n - 1)} \]

- For \(n \geq 2 \), \(E_1 \) is the minimum number of edges necessary for \(\chi \) to be connected.

\[E_1 \geq 1 - \frac{2}{(n - 1)} \]

\[E_1 \geq 1 - \frac{2}{(n - 1)} \]

- For \(n \geq 2 \), \(E_1 \) is the minimum number of edges necessary for \(\chi \) to be connected.

\[E_1 \geq 1 - \frac{2}{(n - 1)} \]

- For \(n \geq 2 \), \(E_1 \) is the minimum number of edges necessary for \(\chi \) to be connected.

\[E_1 \geq 1 - \frac{2}{(n - 1)} \]

\[E_1 \geq 1 - \frac{2}{(n - 1)} \]

\[E_1 \geq 1 - \frac{2}{(n - 1)} \]

Thus, \(E_1 \) is the minimum number of edges necessary for \(\chi \) to be connected.