
CS 473: Algorithms, Spring 2021

HW 8 (due Wednesday, April 7th at 8pm)

This homework contains three problems. Read the instructions for submitting homework
on the course webpage.

Collaboration Policy: For this home work, each student can work in a group with up to three
members. Only one solution for each group needs to be submitted. Follow the submission instruc-
tions carefully.

For problems that use maximum flows as a black box, a full-credit solution requires the following.

• A complete description of the relevant flow network, specifying the set of vertices, the set of
edges (being careful about direction), the source and target vertices s and t, and the capacity
of every edge. (If the flow network is part of the original input, just say that.)

• A description of the algorithm to construct this flow network from the stated input. This
could be as simple as “We can construct the flow network in O(n3) time by brute force.”

• A description of the algorithm to extract the answer to the stated problem from the maximum
flow. This could be as simple as “Return True if the maximum flow value is at least 42 and
False otherwise.”

• A proof that your reduction is correct. This proof will almost always have two components.
For example, if your algorithm returns a Boolean, you should prove that its True answers
are correct and that its False answers are correct. If your algorithm returns a number, you
should prove that number is neither too large nor too small.

• The running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in your flow network.

• You may assume that maximum flows can be computed in O(V E) time. Minimum-cost flows
can be computed in O(E2 log2 V) time. Do not regurgitate the maximum flow algorithm
itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-
disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard graph
problems (for example: reachability, minimum spanning tree, shortest paths) have similar require-
ments.

1. Consider a bipartite (undirected) graph represented by G = (L ∪ R,E) where L and R are
sets of n nodes each, and for each edge (u, v) ∈ E, u ∈ L and v ∈ R. Matching M ⊆ E in G
is a set of edges such that every node has at most one edge incident on it from M ; the nodes
covered by the edges of M are called matched nodes. M is said to be a perfect matching if
every node of L and R are matched. See Figure ?? for an example.

Figure 1: Bipartite Graph where the red edges represent a perfect matching

Hall’s theorem states that G has a perfect matching if and only if for every subset S ⊆ L,
|S| ≤ |N(S)| where N(S) = {v ∈ R | ∃u ∈ S, (u, v) ∈ E} is the neighborhood of S (or
equivalently N(S) = S ×R ∩ E).

Prove Hall’s theorem using the maxflow-mincut theorem.

[Hint: Use the construction covered in the class to compute maximum matching using max-
flow]

2. Let G = (V,E) be a directed graph and let C = {C1, C2, . . . , Ch} be a collection of cycles in
G. We say that C is a cycle partition of G if each vertex of V is in exactly one of the cycles.
In other words the cycles of C are vertex disjoint and together contain all vertices. Describe
an algorithm that given G decides whether G contains a cycle partition. Follow the two steps
below.

(a) Argue that a set of edges E′ ⊆ E forms a cycle partition if and only if each vertex v has
exactly one incoming edge and one outgoing edge in E′.

(b) Use bipartite matching to check if there is an E′ ⊆ E satisfying the property in the
previous part.

3. Suppose we are given an n× n grid, some of whose cells are marked; the grid is represented
by an array M [1..n, 1..n] of booleans, where M [i, j] = True if and only if cell (i, j) is marked.
A monotone path through the grid starts at the top-left cell, moves only right or down at
each step, and ends at the bottom-right cell. Our goal is to cover the marked cells with as
few monotone paths as possible.

• Not to submit: Describe an algorithm to find a monotone path that covers the largest
number of marked cells.

• Not to submit: There is a natural greedy heuristic to find a small cover by monotone
paths: If there are any marked cells, find a monotone path Π that covers the largest

2

Algorithms Lecture ��: Extensions of Maximum Flow [Faâ��]

Describe and analyze an efficient algorithm to compute a feasible flow of maximum value.

�. Suppose we are given an n⇥n grid, some of whose cells are marked; the grid is represented
by an array M[1 .. n, 1 .. n] of booleans, where M[i, j] = T��� if and only if cell (i, j) is
marked. A monotone path through the grid starts at the top-left cell, moves only right or
down at each step, and ends at the bottom-right cell. Our goal is to cover the marked cells
with as few monotone paths as possible.

Greedily covering the marked cells in a grid with four monotone paths.

(a) Describe an algorithm to find a monotone path that covers the largest number of
marked cells.

(b) There is a natural greedy heuristic to find a small cover by monotone paths: If there
are any marked cells, find a monotone path ⇡ that covers the largest number of
marked cells, unmark any cells covered by ⇡ those marked cells, and recurse. Show
that this algorithm does not always compute an optimal solution.

(c) Describe and analyze an efficient algorithm to compute the smallest set of monotone
paths that covers every marked cell.

�. Suppose we are given a set of boxes, each specified by their height, width, and depth in
centimeters. All three side lengths of every box lie strictly between ��cm and ��cm. As you
should expect, one box can be placed inside another if the smaller box can be rotated so
that its height, width, and depth are respectively smaller than the height, width, and depth
of the larger box. Boxes can be nested recursively. Call a box is visible if it is not inside
another box.

Describe and analyze an algorithm to nest the boxes so that the number of visible boxes
is as small as possible.

�. Let G be a directed flow network whose edges have costs, but which contains no negative-
cost cycles. Prove that one can compute a minimum-cost maximum flow in G using a
variant of Ford-Fulkerson that repeatedly augments the (s, t)-path of minimum total cost in
the current residual graph. What is the running time of this algorithm?

�. An (s , t)-series-parallel graph is an directed acyclic graph with two designated vertices s
(the source) and t (the target or sink) and with one of the following structures:

• Base case: A single directed edge from s to t.

• Series: The union of an (s, u)-series-parallel graph and a (u, t)-series-parallel graph
that share a common vertex u but no other vertices or edges.

�

number of marked cells, unmark any marked cells covered by Π, and recurse. Show that
this algorithm does not always compute an optimal solution.

• Describe and analyze an efficient algorithm to compute the smallest set of monotone
paths that covers every marked cell.

3

