
CS 473: Algorithms, Spring 2018

HW 7 (due Wednesday, March 31st at 8pm)

This homework contains three problems. Read the instructions for submitting homework
on the course webpage.

Collaboration Policy: For this home work, each student can work in a group with up to three
members. Only one solution for each group needs to be submitted. Follow the submission instruc-
tions carefully.

For problems that use maximum flows as a black box, a full-credit solution requires the following.

• A complete description of the relevant flow network, specifying the set of vertices, the set of
edges (being careful about direction), the source and target vertices s and t, and the capacity
of every edge. (If the flow network is part of the original input, just say that.)

• A description of the algorithm to construct this flow network from the stated input. This
could be as simple as “We can construct the flow network in O(n3) time by brute force.”

• A description of the algorithm to extract the answer to the stated problem from the maximum
flow. This could be as simple as “Return True if the maximum flow value is at least 42 and
False otherwise.”

• A proof that your reduction is correct. This proof will almost always have two components.
For example, if your algorithm returns a boolean, you should prove that its True answers
are correct and that its False answers are correct. If your algorithm returns a number, you
should prove that number is neither too large nor too small.

• The running time of the overall algorithm, expressed as a function of the original input
parameters, not just the number of vertices and edges in your flow network.

• You may assume that maximum flows can be computed in O(V E) time. Do not regurgitate
the maximum flow algorithm itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-
disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard graph
problems (for example: reachability, minimum spanning tree, shortest paths) have similar require-
ments.

0. Not to submit: Please do Problems 1 and 2 from https://courses.engr.illinois.edu/

cs473/sp2017/homework/hw6.pdf.

1

https://courses.engr.illinois.edu/cs473/sp2017/homework/hw6.pdf
https://courses.engr.illinois.edu/cs473/sp2017/homework/hw6.pdf


1. Consider a directed network G = (V,E) with capacity c(e) on edge e ∈ E, and a feasible s-t
flow f : E → R+.

We say that flow f is acyclic if the subgraph of directed edges with positive flow contains no
directed cycle.

(a) Show that given any feasible flow f in G, there is a feasible acyclic flow of the same
value (This implies that some maximum flow is acyclic).

(b) Show that if f is an integral flow in G, then there is a feasible acyclic integral flow of
the same value.

2. Let G = (V,E) a directed unit-capacity graph, i.e., c(e) = 1 for each e ∈ E.

• (Menger’s Theorem) Given an integer k > 0, show that G has k edge disjoint paths from
s to t if and only if there is an s-t flow of value k in G. (This shows that the maximum
number of edge disjoint paths from s to t is exactly the value of the maximum s-t flow.)

• Let G = (V,E) be a directed graph and let u, v, w be distinct vertices. Suppose there
are k edge disjoint paths from u to v in G, and k edge disjoint paths from v to w in G.
Note that the paths from u to v can share edges with the paths from v to w. Prove that
there are k edge disjoint paths from u to w in G.

[Hint: Use Maxflow-Mincut or the Menger’s theorem.]

3. The Computer Science Department at UIUC has n professors. They handle department
duties by taking part in various committees. There are m committees and the j’th committee
requires kj professors. The head of the department asked each professor to volunteer for a set
of committees. Let Si ⊆ {1, 2, . . . ,m} be the set of committees that professor i has volunteered
for. A committee assignment consists of sets S′

1, S
′
2, . . . , S

′
n where S′

i ⊆ {1, 2, . . . ,m} is the
set of committees that professor i will participate in. A valid committee assignment has
to satisfy two constraints: (i) for each professor i, S′

i ⊆ Si, that is each professor is only
given committees that he/she has volunteered for, and (ii) each committee j has kj professors
assigned to it, or in other words j occurs in at least kj of the sets S′

1, S
′
2, . . . , S

′
n.

(a) Not to submit: Describe a polynomial time algorithm that the head of the department
can employ to check if there is a valid committee assignment given m, k1, k2, . . . , km the
requirements for the committees, and the lists S1, S2, . . . , Sn. The algorithm should
output a valid assignment if there is one.

(b) The head of the department notices that often there is no valid committee assignment
because professors naturally are inclined to volunteer for as few committees as possible.
To overcome this, the definition of a valid assignment is relaxed as follows. Let ` be
some integer. An assignment S′

1, S
′
2, . . . , S

′
n is now said to be valid if (i) |S′

i − Si| ≤ `
and (ii) each committee j has kj professors assigned to it. The new condition (i) means
that a professor i may be assigned up to ` committees not on the list Si that he/she
volunteered for. Describe an algorithm to check if there is a valid committee assignment
with the relaxed definition.

No proof of correctness necessary but we recommend a brief justifaction. And make sure you
have a clear and understandable algorithm.

2


