
CS 473: Algorithms, Spring 2020

HW 11 (due Wednesday, May 5nd at 8pm)

This homework contains three problems. Read the instructions for submitting homework
on the course webpage.

Collaboration Policy: For this home work, each student can work in a group with up to three
members. Only one solution for each group needs to be submitted. Follow the submission instruc-
tions carefully.

For problems that ask for approximation algorithm, a full credit solution requires the following
components:

• An algorithm that runs in polynomial time and retuns a valid solution (although sub-optimal).

• Proof of correctness and running time of the algorithm.

• Proof of approximation factor of the algorithm. This typically involve lower bounding OPT,
and then obtaining an upper bound on the value of the solution returned by your algorithm
as a function of lower bounds of OPT.

1. Provide a 1/2-factor, polynomial time, approximation algorithm for the Acyclic Subgraph
problem:

Input. An directed graph G = (V,E).

Output. A maximum-cardinality set of edges E′ ⊆ E such that G[E′] is acyclic.

Hint. Arbitrarily number the vertices from 1 to n. Let E+ be the edges going in an increasing
direction, and E− be those in a decreasing direction. Pick the biggest of E+ and E−.

2. Recall as discussed in class, that one possible 2-approximation for the Vertex Cover prob-
lem involves solving the LP relaxation of the standard integer linear program, and rounding
up to 1 every coordinate where the optimal value was at least 1/2. This question asks you to
extend this technique to the Set Cover problem:

Input. A ground set U = {1, 2, . . . , n}, and a collection of m subsets S1, . . . , Sm ⊆ U
with weight wi > 0 for each subset i ∈ {1, . . . ,m}.

Output. The minimum weight collection of these subsets which “covers” U , namely, a
collection I ⊆ {1, . . . , m} such that

⋃
i∈I Si = U , and

∑
i∈I wi is minimized.

(a) For the unit weight case, i.e., wi = 1,∀i ∈ {1, . . . ,m}, get a factor k polynomial time
approximation algorithm for Set Cover, where k is the largest size of a subset, i.e.,
k = maxi |Si|.

1

(b) Extend the Vertex Cover LP-rounding technique to get a factor f , polynomial time,
approximation algorithm for Set Cover, where f is the maximum number of times
some element appears in the subsets. Formally, if fi := |{j : Sj 3 i}|, then f = maxi fi.

(Note that Vertex Cover is the special case where f = 2.)

3. Consider the LP relaxation for Set Cover from the previous problem. Let xi be the variable
in the relaxation for set Si. Suppose x∗ is an optimum solution to the LP relaxation. Define
yi = min{1, 2 lnn · x∗i } for each set Si. Pick each set Si independently with probability yi.

• Prove that the expected weight of the sets chosen is at most 2 lnn ·OPT .

• Prove that the probability that any fixed element in the universe is not covered by the
chosen sets is at most 1/n2.

• Prove that, with probability at least 1− 1/n all the elements of the universe are covered
by the chosen sets. Hint: Use union bound.

• Prove that with probability at least (1/2 − 1/n) the algorithm outputs a set cover for
the universe whose weight at most 4 lnn ·OPT where OPT is the weight of an optimum
Set Cover. Hint: Use Markov’s inequality.

The remaining problems are for self study. Do NOT submit for grading.

• In the Metric-TSP problem the goal is to find a minimum cost tour in a metric (V, d) that
visits all the vertices. We saw Christofides’s heuristic that gives a 3/2-approximation. Now
consider the s-t TSP-Path problem in a metric space (V, d). Here the goal is to find an s-t
walk of minimum cost that visits all the vertices. This differs from the tour version in that
one does not need to come back to s after reaching t.

– Given an example to show that the TSP tour can be twice the cost of a TSP Path. Also
show that TSP tour is always at most twice the cost of a TSP path.

– Obtain a simple 2-approximation for the TSP-Path problem via the MST heuristic.

– Hard: Obtain a 5/3-approximation for the TSP-Path problem by modifying the Christofides
heuristic appropriately.

• Hard: Consider the load balancing problem we discussed in lecture. One can obtain a (1+ε)-
approximation in polynomial time for any fixed ε > 0. The goal of this problem is to give you
an outline of this algorithm. Suppose we knew the optimum load is α∗. Partition the jobs
into “large jobs” L which consists of all jobs which are bigger than εα∗ and “small jobs” S
which consists of all jobs which are smaller than εα∗.

– Suppose we have scheduled the big jobs L first and obtained a schedule with makespan
at most (1 + ε)α∗. Describe an adaptation of the greedy list scheduling we discussed in

2

class to schedule the small jobs on top of the schedule for big jobs, and show that the
resulting makespan is at most (1 + 2ε)α∗.

– Consider the big jobs L. Round up each job’s size to next highest power of (1+ ε). That
is, if a job’s size is between (1 + ε)i and (1 + ε)i+1 we treat it as a job of size (1 + ε)i+1.

∗ Show that the number of distinct job sizes that remain after the rounding is O(1/ε2).

∗ Describe a dynamic programming based algorithm to find an optimum schedule for
the rounded up jobs — recall that we saw a special case of this for 3 job sizes in a
previous home work. What is the running time of your algorithm?

∗ Prove that if there is a schedule of makespan α∗ for the original big jobs then there
is a schedule of makespan at most (1 + ε)α∗ for the rounded up big jobs.

– Can you put the ingredients together to obtain a (1+ε)-approximation in npoly(1/ε) time?
In particular, you also need to show how to guess α∗ via binary search. This last step
may be a bit hard.

• See Jeff’s homework 11 from Spring 2016. https://courses.engr.illinois.edu/cs473/

sp2016/hw/hw11.pdf

3

https://courses.engr.illinois.edu/cs473/sp2016/hw/hw11.pdf
https://courses.engr.illinois.edu/cs473/sp2016/hw/hw11.pdf

