CS 473: Algorithms

Ruta Mehta

University of lllinois, Urbana-Champaign

Spring 2021

Ruta (UIUC) CS473 1 Spring 2021 1/45

CS 473: Algorithms, Spring 2021

Review session

Lecture 99
May 9, 2021

Ruta (UIUC)

Included topics:

Dynamic Programming.

Shortest paths in graphs including negative lengths and negative
cycle detection (Bellman Ford).

Basics of randomization.

Network flows and applications to mincuts, matching, assignment
problems, disjoint paths.

Basics of LP, modeling, writing a dual of an LP.

Reductions and NP-Completeness. g

Basics of approximation.

Omitted topics:

FFT and applications.

Advanced topics in randomization including hashing, streaming,
finger printing, string matching.

Ruta (UIUC) CS473 3 Spring 2021 3/45

We will review

@ Basics of LP, modeling, writing a dual of an LP
@ Reductions and NP-Completeness.
@ Basics of approximation.

Ruta (UIUC) CS473 4 Spring 2021 4 /45

Part |

Linear Programming

Ruta (UIUC)

Linear Programs

Find a vector x € RY that

maximize /minimize
fori=1...p

fori=p+1...q
Zc.lzla,-jxj 2 b,' fori=q+1...n

subject to

Ruta (UIUC) Csa73 [3 Spring 2021 6 / 45

Linear Programs

Problem
Find a vector x € RY that

.. . d
maximize/minimize }_._; CjX;

subject to Zj‘.f:l ajxi < b; fori=1...p

Z;'I=1aijxj=bi fori=p+1...q
Zf':laijszbi fori=q+1...n

Input is matrix A = (a;;) € R" 9, column vector b = (b;) € R",
and row vector ¢ = (¢;) € R?

Ruta (UIUC) CS473 6 Spring 2021

6/ 45

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

_ d
maximize Z{.fl Cj Xj
subject to > . ; a;x; < by fori=1...n

Ruta (UIUC) CS473 7 Spring 2021 7 /45

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

™
.. d)
maximize =} :_; CjX; %

subject to Zjd 18iix; < b fori=1...n

4

Conversion to Canonical Form

© Replace) ; a;x; = b; by = 2&

Za;ij S b,' and — Za;ij S —b,'
J J

© Replace) ; ajx; > b by — > ajjx; < —b;

Ruta (UIUC) Csa73 7 Spring 2021 7 / 45

Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize C - X
subjectto Ax < b

where A = (a;;) € R™9, column vector b = (b;) € R”, row vector
c = (¢j) € RY, and column vector x = (x;) € R?
© Number of variable is d

@ Number of constraints is n

Ruta (UIUC) CS473 8 Spring 2021 8 /45

Feasible Region and Convexity

Canonical Form
Given A € R™94, b € R"™! and c € R*9, find x € R9x!

max : C - X
s.t. AXSb J';g_

yz +
Ay =%

vy

e

@ Each linear constraint defines a halfspace, a convex set. o

@ Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.=

© Optimal value attained at a vertex of the polyhedron.

@ Simplex method: starting at a vertex, moves to a neighbor
where objective improves. Stops if no such neighbor.

Ruta (UIUC) Csa73 9 Spring 2021 9 / 45

Dual Linear Program

Given a linear program I1 in canonical form

minimize
subject to

Ruta (UIUC) Cs473 10 Spring 2021 10 / 45

Dual Linear Program

Given a linear program I1 in canonical form

.. d
maximize Z{.fl Ci X;
subject to > ._j a;x; < by i=1,2,...n

the dual Dual(I) is given by
minimize Y i_; b;y;

subjectto > yia;=¢ j=1,2,...d
vi>0 i=1,2

Proposition
Dual(Dual(IM)) is equivalent to N

Ruta (UIUC) Cs473 10 Spring 2021 10 / 45

Dual Linear Program

Succinct representation..

Givena A € R"™9 b € R" and ¢ € R?, linear program I

maximize C - X
subjectto Ax < b

the dual Dual(I) is given by Tuke Dued
minimize y-b Givon o

subject to yA = c
y 20~

Proposition
Dual(Dual()) is equivalent to IN

Ruta (UIUC) Cs473 11 Spring 2021 11/ 45

Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to I and y is a feasible solution to

Dual(I) then c X < ;V#_Ig,_

Ruta (UIUC) CS473 12 Spring 2021 12 / 45

Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to I and y is a feasible solution to
Dual(N) thenc-x <y - b.

4

Theorem (Strong Duality)

If x* is an optimal solution to N and y* is an optimal solution to
Dual(M) then c - x* = y* - b.

Many applications! Maxflow-Mincut theorem can be deduced from
duality.

Ruta (UIUC) Cs473 12 Spring 2021 12 / 45

Strong Duality and Complementary Slackness

Definition (Complementary Slackness

x feasible in M and y feasible in Dual(), s.t., '2

Vi =1..n, yi> 0 = (Ax); = b;

o’

Theorem

(x*, y*) satisfies complementary Slackness if and only if strong
duality holds, i.e., c - x* = y* - b.

Ruta (UIUC) Cs473 13 Spring 2021 13 / 45

Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in M and y feasible in Dual(), s.t.,
Vi =1..n, yi > 0 = (AX),' = b;

Theorem

(x*, y*) satisfies complementary Slackness if and only if strong
duality holds, i.e., c - x* = y* - b.

| A

A\

Proof using Farka's Lemma: Given a set of vectors Ay,..., A,, and
a vector c either c is inside the c:one(ﬂll._._._, A,) or outside it.

Either 3y > 0 such that_}iiipg_g_or Jx such that Ax < 0 and
c-x>0. L imie ome
"__,_._._—__-—-:=$"""

Ruta (UIUC) Cs473 13 Spring 2021 13 / 45

“’“M H!!! !! Wy s welgfl dge (dv) £ .

Given a“graph G = (V/, E), write an LP and its dual to find a

Tﬂ““_m_Perfect matching. MJ g
WE , Yyt Gphes it (0 ;s selet
MWE , Fav "

n=V|

Ruta (UIUC) CS473 14 Spring 2021 14 / 45

Consider the load balancing problem: The input consists of n jobs
Ji,...,J, and an integer m denoting the number of machines. The
size of J; is a non-negative number s;. The goal is to assign the jobs
to machines to minimize the makespan (the largest load of any
machine).

@ Describe an integer programming formulation for the problem.

TR Job T is suduled m
W

mia: 0y -1
sk 2115 -
W £T)2 | n }}
12iem ’ $; - %;5¢30-
W gz
iz

Ruta (UIUC) Cs473 15 Spring 2021 15 / 45

Example Contd.

Describe the dual of the LP relaxation of the integer program.

I Ruta (UIUC) Spring 2021 16 / 45

17\ -
J
M@ Mgz= '+ ——
. m .,
q.whqb 4
Dhen upsi 0 MMy
Latkion % ib U ” [

it _g‘_L:-:‘ Afm"j)i)/Irm:
VG N £S5 L fedions

Part 1l

NP-Completeness

Ruta (UIUC) Spring 2021 17 / 45

Types of Problems

Decision, Search, and Optimization

© Decision problem. Example: given n, is n prime?.

@ Search problem. Example: given n, find a factor of n if it
exists.

© Optimization problem. Example: find the smallest prime
factor of n.

We focus on Decision Problems.

Ruta (UIUC) Cs473 18 Spring 2021 18 / 45

Polynomial Time Reduction

Karp reduction

X<pY: a/gorithm:ireduces problem X to problem Y in
polynomial-time:
@ given an instance Ix of X, A produces an instance Iy of Y
@ A runsin time poly(|i)=d) = |ly| = poly(|Ix|)
© Answer to Ix YES iff answer to Iy is YES.

Ruta (UIUC) Cs473 19 Spring 2021

19 / 45

Polynomial Time Reduction

Karp reduction

X <p Y: algorithm A reduces problem X to problem Y in
polynomial-time:
@ given an instance Ix of X, A produces an instance Iy of Y
@ A runs in time poly(|Ix|) = |lv| = poly(|Ix|)
© Answer to Ix YES iff answer to Iy is YES.

Consequences:
@ poly-time algorithm for Y => poly-time algorithm for X.
e X is "hard" = Y is “hard”.

Ruta (UIUC) Cs473 19 Spring 2021 19 / 45

Polynomial Time Reduction

Karp reduction

X <p Y: algorithm A reduces problem X to problem Y in
polynomial-time:
@ given an instance Ix of X, A produces an instance Iy of Y
@ A runs in time poly(|Ix|) = |lv| = poly(|Ix|)
© Answer to Ix YES iff answer to Iy is YES.

Consequences:
@ poly-time algorithm for Y => poly-time algorithm for X.
e X is "hard" = Y is “hard”.

Note. X <p Y = Y <pX

Ruta (UIUC) Cs473 19 Spring 2021 19 / 45

Problems with no known polynomial time

algorithms

© Independent Set
© Vertex Cover

© Set Cover

Q@ SAT

© 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?

Ruta (UIUC) Cs473 20 Spring 2021 20 / 45

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution

that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.

Ruta (UIUC) Cs473 21 Spring 2021 21/ 45

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution
that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.

Examples:

© SAT formula : proof is a satisfying assignment.
@ Independent Set in graph G and k:

Ruta (UIUC) Cs473 21 Spring 2021 21/ 45

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution
that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.

Examples:
© SAT formula : proof is a satisfying assignment.
@ Independent Set in graph G and k: a subset S of vertices.

Ruta (UIUC) Cs473 21 Spring 2021 21/ 45

Definition
An algorithm C(-,-) is a certifier for problem X if for every I, € X
there is some string t such that C(/,, t) = "yes’, and conversely, if

for some I, and t, C(I,, t) ="yes" then I, € X.
The string t is called a certificate or proof for s.

Ruta (UIUC) Cs473 22 Spring 2021 22 / 45

Definition

An algorithm C(-, -) is a certifier for problem X if for every I, € X
there is some string t such that C(/y, t) = "yes", and conversely, if
for some I, and t, C(I, t) ="yes" then I, € X.

The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(-) such that for every string s, we have that
*x I, € X if and only if
* There is a string t:
Q [t < p(|/x]).
Q C(l,t) ="yes",
© and C runs in polynomial time in |/].

o’

Ruta (UIUC) Cs473 22 Spring 2021 22 / 45

Example: Independent Set

© Problem: Does G = (V, E) have an independent set of size
> k?
O Certificate: Set $ C V.
@ Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.

Ruta (UIUC) Cs473 23 Spring 2021 23 / 45

Class NP

NP: languages/problems that have polynomial time certifiers/verifiers

A problem X is NP-Complete iff
o Xisin NP_
o X is NP-Hard.
4

X is NP-Hard if for every Y in NP, Y <p X

—

Theorem (Cook-Levin)
SAT is NP-Complete.

Ruta (UIUC) CS473 24 Spring 2021 24 / 45

Class NP contd

Theorem (Cook-Levin)
SAT is NP-Complete.

Establish NP-Completeness via reductions:

SAT is NP-Complete.

SAT <p 3-SAT and hence 3-SAT is NP-Complete.

3-SAT <p Independent Set (which is in NP) and hence
Independent Set is NP-Complete.

Clique is NP-Complete

Vertex Cover is NP-Complete

Set Cover is NP-Complete &~

Hamilton Cycle and Hamiltonian Path are NP-Complete
3-Color is NP-Complete

Ruta (UIUC) Cs473 25 Spring 2021 25 / 45

00000 000

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Consequence of proving NP-Completeness
If X is NP-Complete

@ Since we believe P # NP,
@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

Ruta (UIUC) Cs473 26 Spring 2021 26 / 45

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Consequence of proving NP-Completeness
If X is NP-Complete

@ Since we believe P # NP,
@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

Ruta (UIUC) Cs473 26 Spring 2021 26 / 45

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Consequence of proving NP-Completeness
If X is NP-Complete

@ Since we believe P # NP,
@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)

Ruta (UIUC) Cs473 26 Spring 2021 26 / 45

Vertex Cover <p Set Cover

Vertex Cover <p Set Cover

Input: Graph G = (V, E) and an integer k.

Goal: Construct a universal set U and subsets S;,...,S4 of U, and
. =

an integer k’.

b U= E
JOEE
i 54’2(“')/ e 3
k'zK

VES - S S

Ruta (UIUC) Cs473 27 Spring 2021 27 / 45

Problem: Show that k-Color is NP-complete

Input: Given a graph G = (V, E),—ard-animnieger k—

Goal: Check if vertices of G can be colored with at most k colors
such that if (u, v) € E then color-of-u # color-of-v

. (olo
Glon §1.9, ... K} | 5:€ ;iw) Y

3- (o £p I<'(”{0’1- ra {mm _

Ruta (UIUC) Spring 2021 28 / 45

(po-s'tucl'fo‘ﬂ @ éJ . "o,

| N, ... -
65 Eudfatutm ‘ Wh{a}Mh
Ny, -7 s d.qw\lj
(D2
kj"

Example — Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian

cycle or not and a graph G, find a Hamiltonian cycle in G. b
¥gs » BHC 7
H .
Ts-HC }LWL '5 ”

60‘

G #@@ | 't)ihL 'Sao.e.

Ruta (UIUC) Cs473 29 Spring 2021 29 / 45

tuam ,d .
-NO Hen .’"Lo
: A He(6) = e i
[\\?onm n \J:G

v 6 2 B2 edger
rs-HC iw b i

e Yo
eroue

V)
in 4§ exwf’f (

U

Rasak

Example — Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian
cycle or not and a graph G, find a Hamiltonian cycle in G.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 45

Part |11

Approximation Algorithms

Ruta (UIUC) Spring 2021 31/ 45

What is an approximation algorithm?

An algorithm A for an optimization problem X is an
a-approximation algorithm if the following conditions hold:

@ for each instance I of X the algorithm A correctly outputs a
valid solution to /
@ A is a polynomial-time algorithm ¢~
o Letting OPT (/) and A(/) denote the values of an optimum
solution and the solution output by .4 on instances /,
ﬂ(t)aﬁf’ﬂ%) If X is a minimization problem: A(/)/OPT(l) < o = AR
A 49PS o If X is a maximization problem: OPT(I)/A(l) < az pDzAKT

Definition ensures that a > 1

To be formal we need to say a(n) where n = |l| since in some cases
the approximation ratio depends on the size of the instance.

Ruta (UIUC) Cs473 32 Spring 2021 32 / 45

We saw

@ 2 approximation for vertex cover — LP rounding

@ (2 — 1/m) and 3/2 approximation for the Load Balancing
problem, where m is number of machines.

@ log n approximation for setcover
@ 3/2 approximation for undirected TSP
@ log n approximation for directed TSP

Ruta (UIUC) Cs473 EE Spring 2021 33/ 45

Load Balancing

Given n jobs Ji, Jo, ..., J, with sizes s1,Sp,...,S, and m identical
machines My, ..., M, assign jobs to machines to minimize
maximum load (also called makespan).

Formally, an assignment is a mapping

Fi{l,2,...,n} = {1,....m}.

@ The load £¢(j) of machine M; under f is >

@ Goal is to find f to minimize max; £¢(j).

if (i)=j Si

——

A £ ’“‘;
¢ A

Ruta (UIUC) CS473 34 Spring 2021 34 / 45

Greedy List Scheduling

List-Scheduling
Let J1,J2,...,J, be an ordering of jobs
for i=1 to n do
Schedule job J; on the currently least loaded machine

OPT is the optimum load

Lower bounds on OPT:

Ruta (UIUC) Cs473 35 Spring 2021 35 / 45

Greedy List Scheduling

List-Scheduling
Let J1,J2,...,J, be an ordering of jobs
for i=1 to n do
Schedule job J; on the currently least loaded machine

OPT is the optimum load

Lower bounds on OPT:
e average load: OPT > "7 | s;/m. Why?
@ maximum job size: OPT > max!_, s;. Why?
E—

Ruta (UIUC) Cs473 35 Spring 2021 35 / 45

Analysis of Greedy List Scheduling

Let L be makespan of Greedy List Scheduling on a given instance.
Then L < (2 —1/m)OPT where OPT s the optimum makespan
for that instance.

Ruta (UIUC) Cs473 36 Spring 2021 36 / 45

Analysis of Greedy List Scheduling

Let L be makespan of Greedy List Scheduling on a given instance.
Then L < (2 —1/m)OPT where OPT s the optimum makespan
for that instance.

@ Let M} be the machine which achieves the load L for Greedy
List Scheduling.
@ Let J; be the job that was last scheduled on Mj,.

@ Why was J; scheduled on M},? It means that M}, was the least
loaded machine when J; was considered. Implies all machines
had load at least L — s; at that time.

/,'q' -‘sl e Jl‘"a‘rj

M'j.;»,l L-S. LF It

Ruta (UIUC) Cs473 36 Spring 2021 36 / 45

Analysis continued

L—s < (Xisise)/m.

Ruta (UIUC) Spring 2021 37 /45

Analysis continued

L—s < (Xisise)/m.

But then

el S € 7
s G pEras oS3

o
< (Z se)/m+ (1 — E)Si
< OPT+(1-— %)OPT

1
= (2— =)OPT.
m

Ruta (UIUC) Cs473 37 Spring 2021 37 /45

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy

Ruta (UIUC) Cs473 38 Spring 2021 38 / 45

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy

Does it lead to an improved performance in the worst case? How
much?

Ruta (UIUC) Cs473 38 Spring 2021 38 / 45

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy

Does it lead to an improved performance in the worst case? How
much?

Greedy List Scheduling with jobs sorted from largest to smallest gives
a 3/2-approximation and this is essentially tight.

Ruta (UIUC) Cs473 38 Spring 2021 38 / 45

Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy

Does it lead to an improved performance in the worst case? How
much?

Greedy List Scheduling with jobs sorted from largest to smallest gives
a 3/2-approximation and this is essentially tight.

New lower bound: s, + spmye1 < OPT.

Ruta (UIUC) Cs473 38 Spring 2021 38 / 45

Traveling Salesman /Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem
Input: A (un)directed complete graph G = (V/, E) with edge costs

C . E — R+.
Goal: Find a Hamiltonian Cycle of minimum total edge cost

Ruta (UIUC) Cs473 39 Spring 2021 39 / 45

Traveling Salesman /Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem
Input: A (un)directed complete graph G = (V/, E) with edge costs
C . E — R+.

Goal: Find a Hamiltonian Cycle of minimum total edge cost

Observation: Inapproximable to any polynomial factor.

Ruta (UIUC) Cs473 39 Spring 2021 39 / 45

Traveling Salesman /Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A (un)directed complete graph G = (V/, E) with edge costs
C . E — R+.
Goal: Find a Hamiltonian Cycle of minimum total edge cost

Observation: Inapproximable to any polynomial factor.

Metric-TSP: G = (V, E) is a complete graph and ¢ define& a
metric space. c(u,v) = c(v, u) for all u, v and

c(u,w) < c(u,v) + c(v, w) for all u, v, w. W W

| Theorem
Metric-TSP is NP-Hard.

Ruta (UIUC) Cs473 39 Spring 2021 39 / 45

Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V/, E) with

edges costs ¢, find a tour of minimum cost that visits all vertices but
can visit a vertex more than once — A closed walk.

Ruta (UIUC) CS473 Spring 2021 40 / 45

Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V/, E) with
edges costs ¢, find a tour of minimum cost that visits all vertices but
can visit a vertex more than once — A closed walk.

Because, any such tour can be converted in to a simple cycle of
smaller cost by adding “short-cuts”.

Ruta (UIUC) CS473 40 Spring 2021 40 / 45

Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V/, E) with
edges costs ¢, find a tour of minimum cost that visits all vertices but
can visit a vertex more than once — A closed walk.

Because, any such tour can be converted in to a simple Cyde,jf"»lk
smaller cost by adding “short-cuts”. (v

Shortcut

(gwned"-"a
B N (V) 1S Evem VeV

Essentially need to find an Eulerian subgraph.

Ruta (UIUC)

Spring 2021 40 / 45

Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)

Compute a minimum spanning tree (MST) T in G

Ruta (UIUC) CS473 41 Spring 2021 41 / 45

Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)

Ruta (UIUC) CS473 41 Spring 2021 41 / 45

Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost, matching M on S in G

Ruta (UIUC) CS473 41 Spring 2021 41 / 45

Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G &
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H

Ruta (UIUC) CS473 41 Spring 2021 41 / 45

Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour

Ruta (UIUC) CS473 41 Spring 2021 41 / 45

Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour

msT

t
3 s
L7

Ruta (UIUC) CS473 41 Spring 2021 41 / 45

10 Euler Tour Shortcut

Analysis of Christofides Heuristic

Main lemma:

c(M) < OPT /2. \

Ruta (UIUC) CS473 42 Spring 2021 42 / 45

Analysis of Christofides Heuristic

Main lemma:

c(M) < OPT /2. l

Assuming lemma:

Christofides heuristic returns a tour of cost at most 30PT /2. \

c(H) = ¢(T) + ¢(M) < OPT + OPT /2 < 30PT /2. Cost of
tour is at most cost of H.]

Ruta (UIUC) Cs473 42 Spring 2021 42 / 45

Example — Metric-TSP Path

In the Metric-TSP problem the goal is to find a minimum cost tour in
graph G = (V, E) with costs ¢ : E — R, that visits all the
vertices. We saw Christofides's heuristic that gives a
3/2-approximation. Now consider the s-t TSP-Path problem. Here
the goal is to find an s-t walk of minimum cost that visits all the
vertices. This differs from the tour version in that one does not need

-.—-——. .
to come back to s after reaching t.

@ Give an example to show that the TSP tour can be twice the
cost of a TSP Path. Also show that TSP tour is always at most
twice the cost of a TSP path.

q' - _:-_“""‘"—06
Lee 1sp b L2

S v < £ € _

Ruta (UIUC) Cs473 43 Spring 2021 43 / 45

Obtain a simple 2-approximation for the TSP-Path problem via the
MST heuristic.

gbs 1 -

s-1 wniklw‘ stk
al s, eods o € ¢

y oM
3 pHT) isits e whex

gt at JwJV ;s? fw_rw
tfm“‘ff"’ hores

BhS3: LA T be MST

¢ Rewmise optind ST

. . mrﬂk'
i DA
R s
oty s &
Ai‘f‘ b orkr @4
baogle -1, I
(ot L’r) = Of Toaun.

[5p-pote s abeo

o possbe Py bt

Ruta (UIUC) Cs473

44

Spring 2021 44 / 45

7: M $ 'IC: qu:;: ?;5“51 Doublicy ed 7> ¥
/\ P T\P cuoter
H: disjoiot Eﬂ'ﬂa"‘m
s gub s PLS -
L“‘M he viewsd
ab

Digipink Puloria”? st

- baest o -t pall. At sacds ,,,,h_ visit Bnlo
rourdd il swbparls

Hard: Obtain a 5/3-approximation for the TSP-Path problem by
modifying the Christofides heuristic appropriately.

Ruta (UIUC) CS473 45 Spring 2021 45 / 45

https://www.sciencedirect.com/science/article/pii/016763779190016I

Hard: Obtain a 5/3-approximation for the TSP-Path problem by
modifying the Christofides heuristic appropriately.

Claim: 3 s-t Eularian path iff s, t have odd degree all other nodes
have even degree.

(90 :
910@ T: MmsT ovmf ot

5
@ s odd deg noles Msf e wo-!-ﬁ s\t
' m S t
@ fir A‘?,‘?ﬂ,\(\{s_tg Just
I e on ek

For details lookup [Hoogeven'91] https://www.sciencedirect.com/science/article/pii/0167637791900161

Ruta (UIUC) CS473 45 Spring 2021 45 / 45

https://www.sciencedirect.com/science/article/pii/016763779190016I

	Linear Programming
	NP-Completeness
	Approximation Algorithms

