CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

CS 473: Algorithms, Spring 2021

Review session

Lecture 99 May 9, 2021

Topics

Included topics:

Dynamic Programming.

Shortest paths in graphs including negative lengths and negative cycle detection (Bellman Ford).

Basics of randomization.

Network flows and applications to mincuts, matching, assignment problems, disjoint paths.

Basics of LP, modeling, writing a dual of an LP.

 $\label{eq:completeness} Reductions \ and \ NP-Completeness.$

Basics of approximation.

Omitted topics:

FFT and applications.

Advanced topics in randomization including hashing, streaming, finger printing, string matching.

Ruta (UIUC) CS473 3 Spring 2021 3 / 4

We will review

- Basics of LP, modeling, writing a dual of an LP
- Reductions and NP-Completeness.
- Basics of approximation.

Ruta (UIUC) CS473 4 Spring 2021 4 / 45

Part I

Linear Programming

Linear Programs

Problem

Find a vector $\mathbf{x} \in \mathbb{R}^d$ that

maximize/minimize
$$\sum_{j=1}^{d} c_j x_j$$
 subject to
$$\sum_{j=1}^{d} a_{ij} x_j \leq b_i \quad \text{for } i=1\dots p$$

$$\sum_{j=1}^{d} a_{ij} x_j = b_i \quad \text{for } i=p+1\dots q$$

$$\sum_{j=1}^{d} a_{ij} x_j \geq b_i \quad \text{for } i=q+1\dots n$$

Linear Programs

Problem

Find a vector $\mathbf{x} \in \mathbb{R}^d$ that

$$\begin{array}{ll} \text{maximize/minimize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \quad \text{for } i=1\dots p \\ & \sum_{j=1}^d a_{ij} x_j = b_i \quad \text{for } i=p+1\dots q \\ & \sum_{j=1}^d a_{ij} x_j \geq b_i \quad \text{for } i=q+1\dots n \end{array}$$

Input is matrix $A = (a_{ij}) \in \mathbb{R}^{n \times d}$, column vector $b = (b_i) \in \mathbb{R}^n$, and row vector $c = (c_i) \in \mathbb{R}^d$

Ruta (UIUC) CS473 6 Spring 2021 6 / 45

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

maximize
$$\sum_{j=1}^d c_j x_j$$
 subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ for $i=1\ldots n$

Ruta (UIUC) CS473 7 Spring 2021 7 / 45

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

maximize
$$\sum_{j=1}^d c_j x_j$$
 subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ for $i=1\dots n$

Conversion to Canonical Form

• Replace
$$\sum_j a_{ij} x_j = b_i$$
 by \leq

$$\sum_i a_{ij} x_j \leq b_i \quad \text{and} \quad -\sum_i a_{ij} x_j \leq -b_i$$

2 Replace $\sum_i a_{ij}x_j \geq b_i$ by $-\sum_i a_{ij}x_j \leq -b_i$

Ruta (UIUC) CS473 7 Spring 2021

Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize
$$c \cdot x$$
 subject to $Ax \leq b$

where $A = (a_{ii}) \in \mathbb{R}^{n \times d}$, column vector $b = (b_i) \in \mathbb{R}^n$, row vector $c = (c_i) \in \mathbb{R}^d$, and column vector $x = (x_i) \in \mathbb{R}^d$

- Number of variable is d
- Number of constraints is n

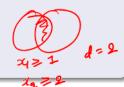
CS473 8 Spring 2021

Feasible Region and Convexity

Canonical Form

Given $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^{n \times 1}$ and $c \in \mathbb{R}^{1 \times d}$, find $x \in \mathbb{R}^{d \times 1}$

 $\max: c \cdot x = s.t. \quad Ax < b$



- Each linear constraint defines a halfspace, a convex set.
- Feasible region, which is an intersection of halfspaces, is a convex **polyhedron**.
- Optimal value attained at a vertex of the polyhedron.
- Simplex method: starting at a vertex, moves to a neighbor where objective improves. Stops if no such neighbor.

Ruta (UIUC) CS473

Dual Linear Program

Given a linear program Π in canonical form maximize $\sum_{j=1}^{d} c_j x_j$ b_i i = 1, 2, ... n > 1| I dual var per primal - control
| I dual - control per pinal - Var the dual $Dual(\Pi)$ is given by minimize subject to $v_i = 1, 2, \dots d$ $v_i = 0$ $i = 1, 2, \dots d$

Ruta (UIUC) CS473 10 Spring 2021 10 / 45

Dual Linear Program

Given a linear program Π in canonical form

maximize
$$\sum_{j=1}^d c_j x_j$$
 subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ $i=1,2,\ldots n$

the dual $Dual(\Pi)$ is given by

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n b_i y_i \\ \text{subject to} & \sum_{i=1}^n y_i a_{ij} = c_j \quad j = 1, 2, \ldots d \\ & y_i \geq 0 \qquad \qquad i = 1, 2, \ldots n \end{array}$$

Proposition

 $Dual(Dual(\Pi))$ is equivalent to Π

Ruta (UIUC) CS473 10 Spring 2021 10 / 45

Dual Linear Program

Succinct representation..

Given a
$$A \in \mathbb{R}^{n \times d}$$
, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}^d$, linear program $\mathbf{\Pi}$

maximize $c \cdot x$
subject to $Ax \leq b$

the dual $\mathbf{Dual}(\mathbf{\Pi})$ is given by

minimize $y \cdot b$
subject to $yA = c$
 $y \geq 0$

Proposition

Proposition

 $Dual(Dual(\Pi))$ is equivalent to Π

Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to Dual(Π) then $c \cdot x \leq y \cdot b$

Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to Π and y is a feasible solution to Dual(Π) then $c \cdot x \leq y \cdot b$.

Theorem (Strong Duality)

If x^* is an optimal solution to Π and y^* is an optimal solution to Dual(Π) then $c \cdot x^* = y^* \cdot b$.

Many applications! Maxflow-Mincut theorem can be deduced from duality.

Ruta (UIUC) CS473 12 Spring 2021 12 / 45

Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

$$x$$
 feasible in Π and y feasible in $\mathrm{Dual}(\Pi)$, s.t., $\forall i=1..n, \quad y_i>0 \Rightarrow (Ax)_i=b_i$

Theorem

 (x^*, y^*) satisfies complementary Slackness if and only if strong duality holds, i.e., $c \cdot x^* = y^* \cdot b$.

Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in Π and y feasible in $\operatorname{Dual}(\Pi)$, s.t., $\forall i = 1..n, \quad y_i > 0 \Rightarrow (Ax)_i = b_i$

Theorem

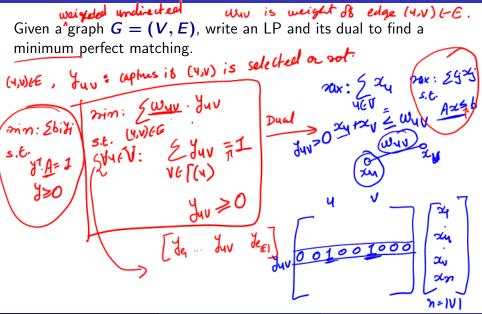
 (x^*, y^*) satisfies complementary Slackness if and only if strong duality holds, i.e., $c \cdot x^* = y^* \cdot b$.

Proof using Farka's Lemma: Given a set of vectors A_1, \ldots, A_n , and a vector c, either c is inside the $cone(A_1, \ldots, A_n)$ or outside it.

Either $\exists y > 0$ such that $y^T A = c$ or $\exists x$ such that $Ax \leq 0$ and $c \cdot x > 0$.

Ruta (UIUC) CS473 13 Spring 2021 13 / 45

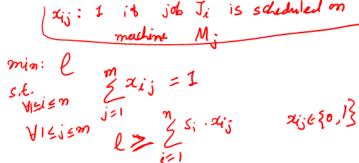
Example



Example

Consider the load balancing problem: The input consists of n jobs J_1, \ldots, J_n and an integer m denoting the number of machines. The size of J_i is a non-negative number s_i . The goal is to assign the jobs to machines to minimize the makespan (the largest load of any machine).

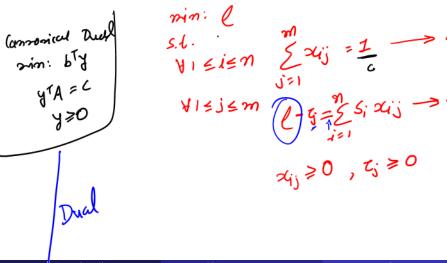
Describe an integer programming formulation for the problem.



Ruta (UIUC) CS473 15 Spring 2021 15 / 45

Example Contd.

Describe the dual of the LP relaxation of the integer program.



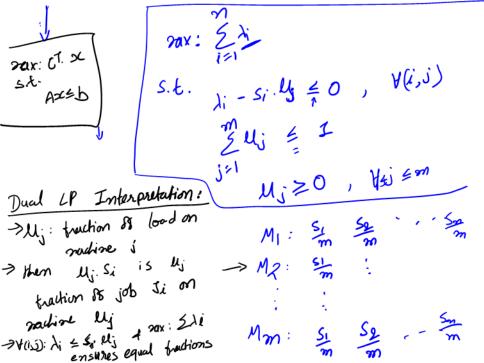
Ruta (UIUC)

CS473

16

Spring 2021

16 / 45



of I load, Since load each sadine is , rax-loud = Esi And can t do better Han His.

Part II

NP-Completeness

Ruta (UIUC) CS473 17 Spring 2021 17 / 45

Types of Problems

Decision, Search, and Optimization

- **Decision problem**. Example: given *n*, is *n* prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

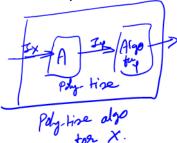
We focus on **Decision Problems**.

Polynomial Time Reduction

Karp reduction

 $X \leq_P Y$: algorithm \mathcal{A} reduces problem X to problem Y in polynomial-time:

- **1** given an instance I_X of X, A produces an instance I_Y of Y
- ② \mathcal{A} runs in time $poly(|I_X|) \Rightarrow |I_Y| = poly(|I_X|)$
- **3** Answer to I_X YES iff answer to I_Y is YES.



Polynomial Time Reduction

Karp reduction

 $X \leq_P Y$: algorithm $\mathcal A$ reduces problem Y to problem Y in polynomial-time:

- **1** given an instance I_X of X, A produces an instance I_Y of Y
- 2 \mathcal{A} runs in time $poly(|I_X|) \Rightarrow |I_Y| = poly(|I_X|)$
- **3** Answer to I_X YES iff answer to I_Y is YES.

Consequences:

- poly-time algorithm for $Y \Rightarrow$ poly-time algorithm for X.
- X is "hard" $\Rightarrow Y$ is "hard".

Polynomial Time Reduction

Karp reduction

 $X \leq_P Y$: algorithm $\mathcal A$ reduces problem Y to problem Y in polynomial-time:

- **1** given an instance I_X of X, A produces an instance I_Y of Y
- 2 \mathcal{A} runs in time $poly(|I_X|) \Rightarrow |I_Y| = poly(|I_X|)$
- **3** Answer to I_X YES iff answer to I_Y is YES.

Consequences:

- poly-time algorithm for $Y \Rightarrow$ poly-time algorithm for X.
- X is "hard" $\Rightarrow Y$ is "hard".

Note.
$$X \leq_P Y \implies Y \leq_P X$$

Problems with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- **Independent Set** in graph G and k:

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: a subset S of vertices.

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a **certifier** for problem X if for every $I_x \in X$ there is some string t such that $C(I_x, t) = "yes"$, and conversely, if for some I_x and t, $C(I_x, t) = "yes"$ then $I_x \in X$. The string t is called a **certificate** or proof for s.

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a **certifier** for problem X if for every $I_x \in X$ there is some string t such that $C(I_x, t) = "yes"$, and conversely, if for some I_x and t, $C(I_x, t) = "yes"$ then $I_x \in X$. The string t is called a **certificate** or proof for s.

Definition (Efficient Certifier.)

A certifier C is an **efficient certifier** for problem X if there is a polynomial $p(\cdot)$ such that for every string s, we have that

- $\star I_x \in X$ if and only if
- ★ There is a string t:

 - **2** $C(I_x, t) = "yes",$
 - 3 and C runs in polynomial time in $|I_x|$.

Ruta (UIUC) CS473 22 Spring 2021 22 / 45

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subseteq V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Ruta (UIUC) CS473 23 Spring 2021 23 / 45

Class NP

NP: languages/problems that have polynomial time certifiers/verifiers

A problem X is NP-Complete iff

- X is in NP
- X is NP-Hard.

X is NP-Hard if for every Y in NP, $Y \leq_P X$.

Theorem (Cook-Levin)

SAT is NP-Complete.

Class NP contd

Theorem (Cook-Levin)

SAT *is* NP-Complete.

Establish NP-Completeness via reductions:

- **SAT** is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is NP-Complete.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Clique is NP-Complete
- Vertex Cover is NP-Complete
- Set Cover is NP-Complete
- Mamilton Cycle and Hamiltonian Path are NP-Complete
- **3-Color** is NP-Complete

Ruta (UIUC) CS473 25 Spring 2021 25 / 45

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Consequence of proving NP-Completeness

If X is NP-Complete

- Since we believe $P \neq NP$,
- ② and solving X implies P = NP.
- X is unlikely to be efficiently solvable.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Consequence of proving NP-Completeness

If X is NP-Complete

- Since we believe $P \neq NP$,
- ② and solving X implies P = NP.
- X is unlikely to be efficiently solvable.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Consequence of proving NP-Completeness

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for \boldsymbol{X} .

(This is proof by mob opinion — take with a grain of salt.)

Ruta (UIUC) CS473 26 Spring 2021 26 / 45

Vertex Cover \leq_P Set Cover

Vertex Cover \leq_P Set Cover

Input: Graph G = (V, E) and an integer k.

Goal: Construct a universal set U and subsets S_1, \ldots, S_d of U, and an integer k'.

$$U = E$$

$$V \in V, \quad S_v = \{(v,v) \mid (v,v) \in E\}$$

$$K' = K$$

$$Y \in S. \quad W \in S$$

Ruta (UIUC) CS473 27 Spring 2021 27 / 45

Problem: Show that k-Color is NP-complete

loo I

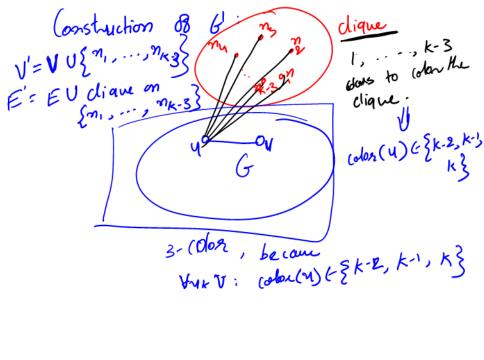
k-Color Problem

Input: Given a graph G = (V, E), and an integer k.

Goal: Check if vertices of G can be colored with at most k colors such that if $(u, v) \in E$ then color-of- $u \neq$ color-of-v.

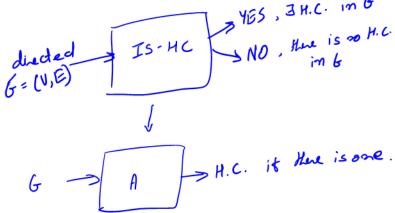
NP-lad: (olor:
$$\{1,2,...,k\}$$
 | $f:E \Rightarrow$ (olons st. $g(x) \neq g(y)$ (4, v) $f:E \Rightarrow$ (olons 3-(olor) $f:E \Rightarrow f(y) \neq g(y)$ (4, v) $f:E \Rightarrow f:E \Rightarrow f(y) \neq g(y)$ (4, v) $f:E \Rightarrow f:E \Rightarrow$

Ruta (UIUC) CS473 28 Spring 2021 28 / 45

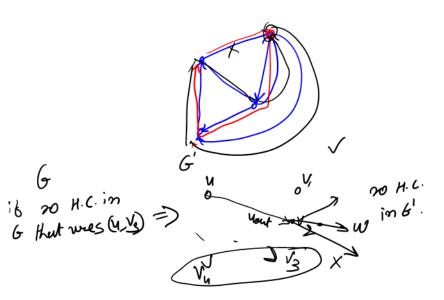


Example – Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian cycle or not and a graph G, find a Hamiltonian cycle in G.



Ruta (UIUC) CS473 29 Spring 2021 29 / 45



Algoriam A: 6 It Is-HC(G) = NO Hen return Ø. 1) Init: 4= a rade in V, G'= G, 1=0 for each V & Out (4) (4, V), addedges (4, yout), (Youl, V)

IS IS-HC (6") = YES Ken Remove all out going edges from u in 6' except (4, V);

Broak;

Example – Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian cycle or not and a graph G, find a Hamiltonian cycle in G.

Ruta (UIUC) CS473 30 Spring 2021 30 / 45

Part III

Approximation Algorithms

What is an approximation algorithm?

An algorithm ${\cal A}$ for an optimization problem ${\it X}$ is an α -approximation algorithm if the following conditions hold:

- for each instance I of X the algorithm A correctly outputs a valid solution to I
- ullet A is a polynomial-time algorithm \leftarrow
- Letting OPT(I) and $\mathcal{A}(I)$ denote the values of an optimum solution and the solution output by \mathcal{A} on instances I,
- A(D) α If X is a minimization problem: $\alpha(I)/OPT(I) \leq \alpha \in A(I) \leq \alpha \in A(I$

Definition ensures that $lpha \geq 1$

To be formal we need to say $\alpha(n)$ where n = |I| since in some cases the approximation ratio depends on the size of the instance.

Ruta (UIUC) CS473 32 Spring 2021 32 / 45

We saw

- 2 approximation for vertex cover LP rounding
- (2 1/m) and 3/2 approximation for the Load Balancing problem, where m is number of machines.
- log n approximation for setcover
- 3/2 approximation for undirected TSP
- log n approximation for directed TSP

Ruta (UIUC) CS473 33 Spring 2021 33 / 45

Load Balancing

Given n jobs J_1, J_2, \ldots, J_n with sizes s_1, s_2, \ldots, s_n and m identical machines M_1, \ldots, M_m assign jobs to machines to minimize maximum load (also called makespan).

Formally, an assignment is a mapping $f: \{1, 2, ..., n\} \rightarrow \{1, ..., m\}$.

- The load $\ell_f(j)$ of machine M_j under f is $\sum_{i:f(i)=j} s_i$
- Goal is to find f to minimize $\max_{j} \ell_f(j)$.

Low Bound
$$A(I) \leq \alpha \cdot OPT$$

 $OPT = A(I) \leq \alpha \cdot CPT$
 $OPT = A(I) \leq \alpha \cdot CPT$

Greedy List Scheduling

List-Scheduling

```
Let J_1, J_2, \ldots, J_n be an ordering of jobs for i=1 to n do Schedule job J_i on the currently least loaded machine
```

OPT is the optimum load

Lower bounds on OPT:

Ruta (UIUC) CS473 35 Spring 2021 35 / 45

Greedy List Scheduling

List-Scheduling

```
Let J_1, J_2, \ldots, J_n be an ordering of jobs for i=1 to n do Schedule job J_i on the currently least loaded machine
```

OPT is the optimum load

Lower bounds on OPT:

- average load: $OPT \ge \sum_{i=1}^{n} s_i/m$. Why?
- maximum job size: $OPT \ge \max_{i=1}^n \underline{s_i}$. Why?

Analysis of Greedy List Scheduling

Theorem

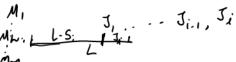
Let **L** be makespan of Greedy List Scheduling on a given instance. Then $L \leq (2-1/m)OPT$ where OPT is the optimum makespan for that instance.

Analysis of Greedy List Scheduling

Theorem

Let **L** be makespan of Greedy List Scheduling on a given instance. Then $\mathbf{L} \leq (2-1/m)OPT$ where OPT is the optimum makespan for that instance.

- Let M_h be the machine which achieves the load L for Greedy List Scheduling.
- Let J_i be the job that was last scheduled on M_h .
- Why was J_i scheduled on M_h ? It means that M_h was the least loaded machine when J_i was considered. Implies all machines had load at least $L s_i$ at that time.



Ruta (UIUC) CS473 36 Spring 2021 36 / 45

Analysis continued

$$L-s_i \leq (\sum_{\ell=1}^{i-1} s_\ell)/m$$

Lemma
$$L - s_i \leq (\sum_{\ell=1}^{i-1} s_{\ell})/m.$$
when one consists J_i

$$\sum_{\ell=1}^{m} i = \int_{0}^{\infty} \int$$

Analysis continued

Lemma

$$L-s_i \leq (\sum_{\ell=1}^{i-1} s_\ell)/m.$$

But then

$$L \leq (\sum_{\ell=1}^{i-1} s_{\ell})/m + s_{i} - \sum_{m=1}^{i-1} s_{i} + \sum_{m=1}^{i-1} s_{i}$$

$$\leq (\sum_{\ell=1}^{n} s_{\ell})/m + (1 - \frac{1}{m})s_{i}$$

$$\leq OPT + (1 - \frac{1}{m})OPT$$

$$= (2 - \frac{1}{m})OPT.$$

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$s_1 \geq s_2 \geq \cdots \geq s_n$$

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$s_1 \geq s_2 \geq \cdots \geq s_n$$

Does it lead to an improved performance in the worst case? How much?

Ruta (UIUC) CS473 38 Spring 2021 38 / 45

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$s_1 \geq s_2 \geq \cdots \geq s_n$$

Does it lead to an improved performance in the worst case? How much?

Theorem

Greedy List Scheduling with jobs sorted from largest to smallest gives a 3/2-approximation and this is essentially tight.

Obvious heuristic: Order jobs in decreasing size order and then use Greedy.

$$s_1 \geq s_2 \geq \cdots \geq s_n$$

Does it lead to an improved performance in the worst case? How much?

Theorem

Greedy List Scheduling with jobs sorted from largest to smallest gives a 3/2-approximation and this is essentially tight.

New lower bound: $s_m + s_{m+1} < OPT$.

Ruta (UIUC) CS473 38 Spring 2021 38 / 45

Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A (un)directed complete graph G = (V, E) with edge costs $c : E \to \mathbb{R}_+$.

Goal: Find a Hamiltonian Cycle of minimum total edge cost

Ruta (UIUC) CS473 39 Spring 2021 39 / 45

Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A (un)directed complete graph G = (V, E) with edge costs $c : E \to \mathbb{R}_+$.

Goal: Find a Hamiltonian Cycle of minimum total edge cost

Observation: Inapproximable to any polynomial factor.

Traveling Salesman/Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A (un)directed complete graph G = (V, E) with edge costs $c : E \to \mathbb{R}_+$.

Goal: Find a Hamiltonian Cycle of minimum total edge cost

Observation: Inapproximable to any polynomial factor.

Metric-TSP: G = (V, E) is a complete graph and c defines a metric space. c(u, v) = c(v, u) for all u, v and $c(u, w) \le c(u, v) + c(v, w)$ for all u, v, w.

Theorem

Metric-TSP is NP-Hard.

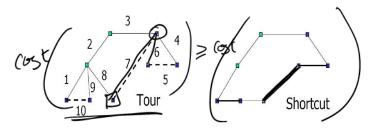
Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V, E) with edges costs c, find a tour of minimum cost that visits all vertices but can visit a vertex more than once – A closed walk.

Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V, E) with edges costs c, find a tour of minimum cost that visits all vertices but can visit a vertex more than once – A closed walk.

Because, any such tour can be converted in to a simple cycle of smaller cost by adding "short-cuts".



Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V, E) with edges costs c, find a tour of minimum cost that visits all vertices but can visit a vertex more than once – A closed walk.

Because, any such tour can be converted in to a simple cycle of smaller cost by adding "short-cuts". Shortcut Essentially need to find an Eulerian subgraph.

Christofides-Heuristic(G = (V, E), c)

Compute a minimum spanning tree (MST) T in G

```
Christofides-Heuristic(G = (V, E), c)

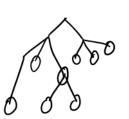
Compute a minimum spanning tree (MST) T in G

Let S be vertices of odd degree in T (Note: |S| is even)
```

```
Christofides-Heuristic (G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost, matching M on S in G
```

Christofides-Heuristic(G = (V, E), c)

Compute a minimum spanning tree (MST) T in GLet S be vertices of odd degree in T (Note: |S| is even) Find a minimum cost matching M on S in GAdd M to T to obtain Eulerian graph H



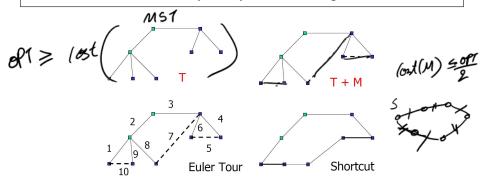
Connected thought des over

Christofides-Heuristic (G = (V, E), c)

Compute a minimum spanning tree (MST) T in GLet S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in GAdd M to T to obtain Eulerian graph HAn Eulerian tour of H gives a tour of GObtain Hamiltonian cycle by shortcutting the tour

Christofides-Heuristic(G = (V, E), c)

Compute a minimum spanning tree (MST) T in GLet S be vertices of odd degree in T (Note: |S| is even) Find a minimum cost matching M on S in GAdd M to T to obtain Eulerian graph HAn Eulerian tour of H gives a tour of GObtain Hamiltonian cycle by shortcutting the tour



Analysis of Christofides Heuristic

Main lemma:

Lemma

 $c(M) \leq OPT/2$.

Analysis of Christofides Heuristic

Main lemma:

Lemma

$$c(M) \leq OPT/2$$
.

Assuming lemma:

Theorem

Christofides heuristic returns a tour of cost at most 3OPT/2.

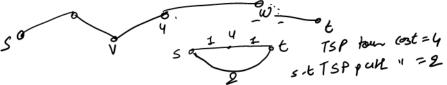
Proof.

$$c(H) = c(T) + c(M) \le OPT + OPT/2 \le 3OPT/2$$
. Cost of tour is at most cost of H .

Example – Metric-TSP Path

In the Metric-TSP problem the goal is to find a minimum cost tour in graph G = (V, E) with costs $c : E \to R_+$ that visits all the vertices. We saw Christofides's heuristic that gives a 3/2-approximation. Now consider the s-t TSP-Path problem. Here the goal is to find an s-t walk of minimum cost that visits all the vertices. This differs from the tour version in that one does not need to come back to s after reaching t.

 Give an example to show that the TSP tour can be twice the cost of a TSP Path. Also show that TSP tour is always at most twice the cost of a TSP path.



$$(ost (TSP-bour)) \leq 2 (TSP-path)$$

$$(ost (TSPbour))$$

$$(ost (TSPbour))$$

$$c (set)$$

$$c (set)$$

$$c (set)$$

$$c (set)$$

$$c (set)$$

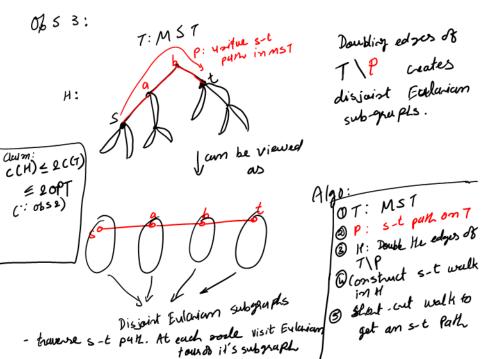
$$c (set) \leq oPT_{rsp}$$

$$d (set)$$

$$d$$

Contd.

Obtain a simple **2**-approximation for the TSP-Path problem via the MST heuristic.



Contd.

Hard: Obtain a 5/3-approximation for the TSP-Path problem by modifying the Christofides heuristic appropriately.

Contd

Hard: Obtain a 5/3-approximation for the TSP-Path problem by modifying the Christofides heuristic appropriately.

Claim: \exists s-t Eularian path iff s, t have odd degree all other nodes have even degree.

```
② S: odd deg nodes in 7 (note: S say or say sot)

③ Fix deg B rates in S to

get that \forall \( \) \{S.t.\} Lave

even leg, \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \
```

For details lookup [Hoogeven'91] https://www.sciencedirect.com/science/article/pii/016763779190016I

Ruta (UIUC) CS473 45 Spring 2021 45 / 45