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Included topics:

Dynamic Programming.

Shortest paths in graphs including negative lengths and negative
cycle detection (Bellman Ford).

Basics of randomization.

Network flows and applications to mincuts, matching, assignment
problems, disjoint paths.

Basics of LP, modeling, writing a dual of an LP.

Reductions and NP-Completeness. g

Basics of approximation.

Omitted topics:

FFT and applications.

Advanced topics in randomization including hashing, streaming,
finger printing, string matching.
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We will review

@ Basics of LP, modeling, writing a dual of an LP
@ Reductions and NP-Completeness.
@ Basics of approximation.
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Linear Programming
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Linear Programs

Find a vector x € RY that

maximize /minimize
fori=1...p

fori=p+1...q
Zc.lzla,-jxj 2 b,' fori=q+1...n

subject to
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Linear Programs

Problem
Find a vector x € RY that

.. . d
maximize/minimize }_._; CjX;

subject to Zj‘.f:l ajxi < b; fori=1...p

Z;'I=1aijxj=bi fori=p+1...q
Zf':laijszbi fori=q+1...n

Input is matrix A = (a;;) € R" 9, column vector b = (b;) € R",
and row vector ¢ = (¢;) € R?
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Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

_ d
maximize Z{.fl Cj Xj
subject to > . ; a;x; < by fori=1...n
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Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

™
.. d )
maximize =} :_; CjX; %

subject to Zjd 18iix; < b fori=1...n

4

Conversion to Canonical Form

© Replace ) ; a;x; = b; by = 2&

Za;ij S b,' and — Za;ij S —b,'
J J

© Replace ) ; ajx; > b by — > ajjx; < —b;
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Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize C - X
subjectto Ax < b

where A = (a;;) € R™9, column vector b = (b;) € R”, row vector
c = (¢j) € RY, and column vector x = (x;) € R?
© Number of variable is d

@ Number of constraints is n
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Feasible Region and Convexity

Canonical Form
Given A € R™94, b € R"™! and c € R*9, find x € R9x!

max : C - X
s.t. AXSb J';g_

yz +
Ay =%

vy

e

@ Each linear constraint defines a halfspace, a convex set. o

@ Feasible region, which is an intersection of halfspaces, is a
convex polyhedron.=

© Optimal value attained at a vertex of the polyhedron.

@ Simplex method: starting at a vertex, moves to a neighbor
where objective improves. Stops if no such neighbor.
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Dual Linear Program

Given a linear program I1 in canonical form

minimize
subject to
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Dual Linear Program

Given a linear program I1 in canonical form

.. d
maximize Z{.fl Ci X;
subject to > ._j a;x; < by i=1,2,...n

the dual Dual(I) is given by
minimize Y i_; b;y;

subjectto > yia;=¢ j=1,2,...d
vi>0 i=1,2

Proposition
Dual(Dual(IM)) is equivalent to N
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Dual Linear Program

Succinct representation..

Givena A € R"™9 b € R" and ¢ € R?, linear program I

maximize C - X
subjectto Ax < b

the dual Dual(I) is given by Tuke Dued
minimize y-b Givon o

subject to yA = c
y 20~

Proposition
Dual(Dual()) is equivalent to IN
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Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to I and y is a feasible solution to

Dual(I) then c X < ;V#_Ig,_
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Duality Theorem

Theorem (Weak Duality)

If x is a feasible solution to I and y is a feasible solution to
Dual(N) thenc-x <y - b.

4

Theorem (Strong Duality)

If x* is an optimal solution to N and y* is an optimal solution to
Dual(M) then c - x* = y* - b.

Many applications! Maxflow-Mincut theorem can be deduced from
duality.
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Strong Duality and Complementary Slackness

Definition (Complementary Slackness

x feasible in M and y feasible in Dual(), s.t., '2

Vi =1..n, yi> 0 = (Ax); = b;

o’

Theorem

(x*, y*) satisfies complementary Slackness if and only if strong
duality holds, i.e., c - x* = y* - b.
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Strong Duality and Complementary Slackness

Definition (Complementary Slackness)

x feasible in M and y feasible in Dual(), s.t.,
Vi =1..n, yi > 0 = (AX),' = b;

Theorem

(x*, y*) satisfies complementary Slackness if and only if strong
duality holds, i.e., c - x* = y* - b.

| A

A\

Proof using Farka's Lemma: Given a set of vectors Ay,..., A,, and
a vector c either c is inside the c:one(ﬂll._._._, A,) or outside it.

Either 3y > 0 such that_}iiipg_g_or Jx such that Ax < 0 and
c-x>0. L imie ome
"__,_._._—__-—-:=$"""
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Consider the load balancing problem: The input consists of n jobs
Ji,...,J, and an integer m denoting the number of machines. The
size of J; is a non-negative number s;. The goal is to assign the jobs
to machines to minimize the makespan (the largest load of any
machine).

@ Describe an integer programming formulation for the problem.

TR Job T is suduled m
W

mia: 0y -1
sk 2115 -
W £T )2 | n }}
12iem ’ $; - %;5¢30-
W gz
iz
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Example Contd.

Describe the dual of the LP relaxation of the integer program.

I Ruta (UIUC) Spring 2021 16 / 45



17\ -
J
M@ Mgz= '+ ——
. m .,
q.whqb 4
Dhen upsi 0 MMy
Latkion % ib U ” [

it _g‘_L:-:‘ Afm"j)i )/Irm:
VG N £S5 L fedions






Part 1l

NP-Completeness
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Types of Problems

Decision, Search, and Optimization

© Decision problem. Example: given n, is n prime?.

@ Search problem. Example: given n, find a factor of n if it
exists.

© Optimization problem. Example: find the smallest prime
factor of n.

We focus on Decision Problems.
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Polynomial Time Reduction

Karp reduction

X<pY: a/gorithm:ireduces problem X to problem Y in
polynomial-time:
@ given an instance Ix of X, A produces an instance Iy of Y
@ A runsin time poly(|i)=d) = |ly| = poly(|Ix|)
© Answer to Ix YES iff answer to Iy is YES.
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Polynomial Time Reduction

Karp reduction

X <p Y: algorithm A reduces problem X to problem Y in
polynomial-time:
@ given an instance Ix of X, A produces an instance Iy of Y
@ A runs in time poly(|Ix|) = |lv| = poly(|Ix|)
© Answer to Ix YES iff answer to Iy is YES.

Consequences:
@ poly-time algorithm for Y => poly-time algorithm for X.
e X is "hard" = Y is “hard”.
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Polynomial Time Reduction

Karp reduction

X <p Y: algorithm A reduces problem X to problem Y in
polynomial-time:
@ given an instance Ix of X, A produces an instance Iy of Y
@ A runs in time poly(|Ix|) = |lv| = poly(|Ix|)
© Answer to Ix YES iff answer to Iy is YES.

Consequences:
@ poly-time algorithm for Y => poly-time algorithm for X.
e X is "hard" = Y is “hard”.

Note. X <p Y = Y <pX
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Problems with no known polynomial time

algorithms

© Independent Set
© Vertex Cover

© Set Cover

Q@ SAT

© 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution

that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution
that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.

Examples:

© SAT formula : proof is a satisfying assignment.
@ Independent Set in graph G and k:
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance Ix of X there is a proof/certificate/solution
that is of length poly(|Ix|) such that given a proof one can efficiently
check that Ix is indeed a YES instance.

Examples:
© SAT formula : proof is a satisfying assignment.
@ Independent Set in graph G and k: a subset S of vertices.

Ruta (UIUC) Cs473 21 Spring 2021 21/ 45



Definition
An algorithm C(-,-) is a certifier for problem X if for every I, € X
there is some string t such that C(/,, t) = "yes’, and conversely, if

for some I, and t, C(I,, t) ="yes" then I, € X.
The string t is called a certificate or proof for s.
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Definition

An algorithm C(-, -) is a certifier for problem X if for every I, € X
there is some string t such that C(/y, t) = "yes", and conversely, if
for some I, and t, C(I, t) ="yes" then I, € X.

The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(-) such that for every string s, we have that
*x I, € X if and only if
* There is a string t:
Q [t < p(|/x]).
Q C(l,t) ="yes",
© and C runs in polynomial time in |/].

o’
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Example: Independent Set

© Problem: Does G = (V, E) have an independent set of size
> k?
O Certificate: Set $ C V.
@ Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.
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Class NP

NP: languages/problems that have polynomial time certifiers/verifiers

A problem X is NP-Complete iff
o Xisin NP_
o X is NP-Hard.
4

X is NP-Hard if for every Y in NP, Y <p X

—

Theorem (Cook-Levin)
SAT is NP-Complete.
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Class NP contd

Theorem (Cook-Levin)
SAT is NP-Complete.

Establish NP-Completeness via reductions:

SAT is NP-Complete.

SAT <p 3-SAT and hence 3-SAT is NP-Complete.

3-SAT <p Independent Set (which is in NP) and hence
Independent Set is NP-Complete.

Clique is NP-Complete

Vertex Cover is NP-Complete

Set Cover is NP-Complete &~

Hamilton Cycle and Hamiltonian Path are NP-Complete
3-Color is NP-Complete
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Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Consequence of proving NP-Completeness
If X is NP-Complete

@ Since we believe P # NP,
@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.
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Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Consequence of proving NP-Completeness
If X is NP-Complete

@ Since we believe P # NP,
@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.
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Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Consequence of proving NP-Completeness
If X is NP-Complete

@ Since we believe P # NP,
@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)
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Vertex Cover <p Set Cover

Vertex Cover <p Set Cover

Input: Graph G = (V, E) and an integer k.

Goal: Construct a universal set U and subsets S;,...,S4 of U, and
. =

an integer k’.

b U= E
JOEE
i 54’2(“')/ e 3
k'zK

VES - S S
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Problem: Show that k-Color is NP-complete

Input: Given a graph G = (V, E),—ard-animnieger k—

Goal: Check if vertices of G can be colored with at most k colors
such that if (u, v) € E then color-of-u # color-of-v

. (olo
Glon  §1.9, ... K} | 5:€ ;iw) Y

3- (o £p I<'(”{0’1- ra {mm _
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Example — Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian

cycle or not and a graph G, find a Hamiltonian cycle in G. b
¥gs » BHC 7
H .
Ts-HC }LWL '5 ”

60‘

G #@@ | 't )ihL 'Sao.e.
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Example — Decision to Computation

Given a black-box to check if a directed graph has a Hamiltonian
cycle or not and a graph G, find a Hamiltonian cycle in G.
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Part |11

Approximation Algorithms
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What is an approximation algorithm?

An algorithm A for an optimization problem X is an
a-approximation algorithm if the following conditions hold:

@ for each instance I of X the algorithm A correctly outputs a
valid solution to /
@ A is a polynomial-time algorithm ¢~
o Letting OPT (/) and A(/) denote the values of an optimum
solution and the solution output by .4 on instances /,
ﬂ(t)aﬁf’ﬂ%) If X is a minimization problem: A(/)/OPT(l) < o = AR
A 49PS o If X is a maximization problem: OPT(I)/A(l) < az pDzAKT

Definition ensures that a > 1

To be formal we need to say a(n) where n = |l| since in some cases
the approximation ratio depends on the size of the instance.
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We saw

@ 2 approximation for vertex cover — LP rounding

@ (2 — 1/m) and 3/2 approximation for the Load Balancing
problem, where m is number of machines.

@ log n approximation for setcover
@ 3/2 approximation for undirected TSP
@ log n approximation for directed TSP
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Load Balancing

Given n jobs Ji, Jo, ..., J, with sizes s1,Sp,...,S, and m identical
machines My, ..., M, assign jobs to machines to minimize
maximum load (also called makespan).

Formally, an assignment is a mapping

Fi{l,2,...,n} = {1,....m}.

@ The load £¢(j) of machine M; under f is >

@ Goal is to find f to minimize max; £¢(j).

if (i)=j Si

——

A £ ’“‘;
¢ A
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Greedy List Scheduling

List-Scheduling
Let J1,J2,...,J, be an ordering of jobs
for i=1 to n do
Schedule job J; on the currently least loaded machine

OPT is the optimum load

Lower bounds on OPT:
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Greedy List Scheduling

List-Scheduling
Let J1,J2,...,J, be an ordering of jobs
for i=1 to n do
Schedule job J; on the currently least loaded machine

OPT is the optimum load

Lower bounds on OPT:
e average load: OPT > "7 | s;/m. Why?
@ maximum job size: OPT > max!_, s;. Why?
E—
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Analysis of Greedy List Scheduling

Let L be makespan of Greedy List Scheduling on a given instance.
Then L < (2 —1/m)OPT where OPT s the optimum makespan
for that instance.
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Analysis of Greedy List Scheduling

Let L be makespan of Greedy List Scheduling on a given instance.
Then L < (2 —1/m)OPT where OPT s the optimum makespan
for that instance.

@ Let M} be the machine which achieves the load L for Greedy
List Scheduling.
@ Let J; be the job that was last scheduled on Mj,.

@ Why was J; scheduled on M},? It means that M}, was the least
loaded machine when J; was considered. Implies all machines
had load at least L — s; at that time.

/,'q' -‘sl e Jl‘"a‘rj

M'j.;»,l L-S. LF It
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Analysis continued

L—s < (Xisise)/m.
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Analysis continued

L—s < (Xisise)/m.

But then

el S € 7
s G pEras oS3

o
< (Z se)/m+ (1 — E)Si
< OPT+(1-— %)OPT

1
= (2— =)OPT.
m
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Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy
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Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy

Does it lead to an improved performance in the worst case? How
much?
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Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy

Does it lead to an improved performance in the worst case? How
much?

Greedy List Scheduling with jobs sorted from largest to smallest gives
a 3/2-approximation and this is essentially tight.
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Ordering jobs from largest to smallest

Obvious heuristic: Order jobs in decreasing size order and then use
Greedy.

S1 >822Sy

Does it lead to an improved performance in the worst case? How
much?

Greedy List Scheduling with jobs sorted from largest to smallest gives
a 3/2-approximation and this is essentially tight.

New lower bound: s, + spmye1 < OPT.
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Traveling Salesman /Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem
Input: A (un)directed complete graph G = (V/, E) with edge costs

C . E — R+.
Goal: Find a Hamiltonian Cycle of minimum total edge cost
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Traveling Salesman /Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem
Input: A (un)directed complete graph G = (V/, E) with edge costs
C . E — R+.

Goal: Find a Hamiltonian Cycle of minimum total edge cost

Observation: Inapproximable to any polynomial factor.
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Traveling Salesman /Salesperson Problem (TSP)

Perhaps the most famous discrete optimization problem

Input: A (un)directed complete graph G = (V/, E) with edge costs
C . E — R+.
Goal: Find a Hamiltonian Cycle of minimum total edge cost

Observation: Inapproximable to any polynomial factor.

Metric-TSP: G = (V, E) is a complete graph and ¢ define& a
metric space. c(u,v) = c(v, u) for all u, v and

c(u,w) < c(u,v) + c(v, w) for all u, v, w. W W

| Theorem
Metric-TSP is NP-Hard.
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Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V/, E) with

edges costs ¢, find a tour of minimum cost that visits all vertices but
can visit a vertex more than once — A closed walk.
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Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V/, E) with
edges costs ¢, find a tour of minimum cost that visits all vertices but
can visit a vertex more than once — A closed walk.

Because, any such tour can be converted in to a simple cycle of
smaller cost by adding “short-cuts”.
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Metric-TSP: closed walk

Another interpretation of Metric-TSP: Given G = (V/, E) with
edges costs ¢, find a tour of minimum cost that visits all vertices but
can visit a vertex more than once — A closed walk.

Because, any such tour can be converted in to a simple Cyde,jf"»lk
smaller cost by adding “short-cuts”. (v

Shortcut

(gwned"-"a
B N (V) 1S Evem VeV

Essentially need to find an Eulerian subgraph.
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Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)

Compute a minimum spanning tree (MST) T in G
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Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)

Ruta (UIUC) CS473 41 Spring 2021 41 / 45



Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost, matching M on S in G
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Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G &
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
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Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour
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Christofides Heuristic: 3/2 approximation

Christofides-Heuristic(G = (V, E), c)
Compute a minimum spanning tree (MST) T in G
Let S be vertices of odd degree in T (Note: |S| is even)
Find a minimum cost matching M on S in G
Add M to T to obtain Eulerian graph H
An Eulerian tour of H gives a tour of G
Obtain Hamiltonian cycle by shortcutting the tour

msT

t
3 s
L7
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Analysis of Christofides Heuristic

Main lemma:

c(M) < OPT /2. \
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Analysis of Christofides Heuristic

Main lemma:

c(M) < OPT /2. l

Assuming lemma:

Christofides heuristic returns a tour of cost at most 30PT /2. \

c(H) = ¢(T) + ¢(M) < OPT + OPT /2 < 30PT /2. Cost of
tour is at most cost of H. ]
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Example — Metric-TSP Path

In the Metric-TSP problem the goal is to find a minimum cost tour in
graph G = (V, E) with costs ¢ : E — R, that visits all the
vertices. We saw Christofides's heuristic that gives a
3/2-approximation. Now consider the s-t TSP-Path problem. Here
the goal is to find an s-t walk of minimum cost that visits all the
vertices. This differs from the tour version in that one does not need

_-._—-——. .
to come back to s after reaching t.

@ Give an example to show that the TSP tour can be twice the
cost of a TSP Path. Also show that TSP tour is always at most
twice the cost of a TSP path.

q' - _:-_“""‘"—06
Lee 1sp b L2

S v < £ € _
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Obtain a simple 2-approximation for the TSP-Path problem via the
MST heuristic.

gbs 1 -
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Hard: Obtain a 5/3-approximation for the TSP-Path problem by
modifying the Christofides heuristic appropriately.
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Hard: Obtain a 5/3-approximation for the TSP-Path problem by
modifying the Christofides heuristic appropriately.

Claim: 3 s-t Eularian path iff s, t have odd degree all other nodes
have even degree.
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For details lookup [Hoogeven'91] https://www.sciencedirect.com/science/article/pii/0167637791900161
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