CS 473: Algorithms

Ruta Mehta

University of lllinois, Urbana-Champaign

Spring 2021

Ruta (UIUC) CS473 1 Spring 2021 1/29

CS 473: Algorithms, Spring 2021

Midterm 2 Review Session

Lecture 99
April 10, 2021

Ruta (UIUC)

Randomozed Algorithms
@ Univesal Hashing, Fingerprinting

Max-Flow, Min-Cut

@ Flow: edge and path based definitions, flow decomposition,
acyclicity, integral flow

@ Max-Flow = Min-Cut

o Residual graphs, Ford-Fulkerson Algorithm and it's
polynomial-time variants.

@ Variants of max-flow and their applications

Ruta (UIUC) CS473 3 Spring 2021 3/29

Part |

Max-flow, Min-cut

Ruta (UIUC)

The Maximum-Flow Problem

Problem

Input A directed network G = (V/, E) with integer capacity
c(e) for each e € E, and source s and sink t.

Goal Find flow of maximum value.

Ruta (UIUC) CS473 5 Spring 2021 5/29

The Maximum-Flow Problem

Problem

Input A directed network G = (V/, E) with integer capacity
c(e) for each e € E, and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?

Ruta (UIUC) CS473 5 Spring 2021 5/29

Definition of Flow

Two ways to define flows:
© edge based, or
@ path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

Ruta (UIUC) CS473 6

Spring 2021 6 /29

Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.

Figure: Flow with value.

Ruta (UIUC) Csa73 7 Spring 2021 7 / 29

Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.
© Capacity Constraint: For each edge

e, f(e) < c(e).

Figure: Flow with value.

Ruta (UIUC) Csa73 7 Spring 2021 7 / 29

Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.
© Capacity Constraint: For each edge

e, f(e) < c(e).
@ Conservation Constraint: For each
vertex v # s, t.

Y, flea= >, f(e)

e into v e out of v

Figure: Flow with value.

Ruta (UIUC) Csa73 7 Spring 2021 7 / 29

Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.
© Capacity Constraint: For each edge

e, f(e) < c(e).
@ Conservation Constraint: For each
vertex v # s, t.

Y, flea= >, f(e)

e into v e out of v

@ Value of flow= (total flow out of
source) — (total flow in to source).

o’

Figure: Flow with value.

Ruta (UIUC) Csa73 7 Spring 2021 7 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Ruta (UIUC) Spring 2021 8 /29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

Ruta (UIUC) Csa73 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Ruta (UIUC) Csa73 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p

Ruta (UIUC) Csa73 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p

@ Conservation Constraint:)

Ruta (UIUC) Csa73 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p

@ Conservation Constraint: No need! Automatic.)

Ruta (UIUC) Csa73 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p

@ Conservation Constraint: No need! Automatic.

Value of flow: > » f(p).

Ruta (UIUC) Csa73 8 Spring 2021 8 / 29

g/aof’ P PoJ"L E Yoo -
ﬁ ¢-a-t 0: >

\n
w
S

A
o—.

\

cr

5

Ruta (UIUC)

Flow Decomposition

Edge based flow to Path based Flow

Given an edge based flow f' : E — R2Y, there is a path based flow
f:P — R0 of same value.

Ruta (UIUC) Cs473 10 Spring 2021 10 / 29

Flow Decomposition

Edge based flow to Path based Flow

Given an edge based flow f’ : E — RZ9, there is a path based flow
f : P — R0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E| = m and |V| = n.

Ruta (UIUC) Cs473 10 Spring 2021 10 / 29

Flow Decomposition

Edge based flow to Path based Flow

Given an edge based flow f’ : E — RZ9, there is a path based flow
f : P — R0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E| = m and |V| = n.

Given f’, the path based flow can be computed in O(mn) time.

Ruta (UIUC) Cs473 10 Spring 2021 10 / 29

Flow Decomposition

Example

How to decomgose the following flow:

Ruta (UIUC) Cs473 11 Spring 2021 11 /29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

Ruta (UIUC) Cs473 12 Spring 2021 12 /29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.
@ Assign f(p) to be minec, f'(e).

Ruta (UIUC) Cs473 12 Spring 2021 12 /29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).

Ruta (UIUC) Cs473 12 Spring 2021 12 /29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.

Ruta (UIUC) Cs473 12 Spring 2021 12 /29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.

Proof Idea.

@ In each iteration at least one edge has flow reduced to zero.

Ruta (UIUC) Cs473 12 Spring 2021 12 /29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.

Proof Idea.

@ In each iteration at least one edge has flow reduced to zero.

@ Hence, at most m iterations. Can be implemented in

Ruta (UIUC) Cs473 12 Spring 2021 12 /29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.

Proof Idea.

@ In each iteration at least one edge has flow reduced to zero.

@ Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care. O

Ruta (UIUC) Cs473 12 Spring 2021 12 /29

Part 1l

Ford-Fulkerson Algorithm

Ruta (UIUC) Spring 2021

Residual Graph (The “leftover” graph)

Fg dow
Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’, E’) of G with respect to f is where V/ = V and

Fbc,.fdMWt- 99"”#‘
sLe) e Crk);cttb ’S{L)
m —_—
C"{g)*— 5(‘)

Ruta (UIUC) CS473 14 Spring 2021 14 /29

Residual Graph (The “leftover” graph)

Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’/, E’) of G with respect to f is where V/ = V and

© Forward Edges: For each edge e € E with f(e) < c(e), we add
e € E’ with capacity c(e) — f(e).

Ruta (UIUC) CS473 14 Spring 2021 14 /29

Residual Graph (The “leftover” graph)

Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’/, E’) of G with respect to f is where V/ = V and

© Forward Edges: For each edge e € E with f(e) < c(e), we add
e € E’ with capacity c(e) — f(e).

© Backward Edges: For each edge e = (u, v) € E with f(e) > 0,
we add (v, u) € E’ with capacity f(e).

Ruta (UIUC) CS473 14 Spring 2021 14 /29

Residual Graph (The “leftover” graph)

Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’, E’) of G with respect to f is where V/ = V and

© Forward Edges: For each edge e € E with f(e) < c(e), we add
e € E’ with capacity c(e) — f(e).

© Backward Edges: For each edge e = (u, v) € E with f(e) > 0,
we add (v, u) € E’ with capacity f(e).

Residula Graph
e

Ruta (UIUC) CS473 14 Spring 2021 14 /29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Ruta (UIUC) Cs473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).

Ruta (UIUC) Cs473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).

Lemma

Let f and f’ be two flows in G with v(f') > v(f). Then there is a
flow f" of value v(f') — v(f) in Gs.

Ruta (UIUC) Cs473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).

Lemma

Let f and f’ be two flows in G with v(f') > v(f). Then there is a
flow f" of value v(f') — v(f) in Gs.

No s to t flow in Gf then f is a maximum flow.

Ruta (UIUC) Cs473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).

Lemma

Let f and f’ be two flows in G with v(f') > v(f). Then there is a
flow f" of value v(f') — v(f) in Gs.

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) Cs473 15 Spring 2021 15 / 29

Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) =0
Gr is residual graph of G with respect to f ek
while Gf has a simple s-t path do oo H

lorept
O@% let P be simple s-t path in Gf O(m@vﬂ@

f = augment(f, P)

Construct new residual graph Gf.

Ruta (UIUC) Cs473 16 Spring 2021 16 / 29

Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) =0
Gf@s residual graph of G with respect to f
while Gf has a simple s-t path do
let P be simple s-t path in Gf
f = augment(f, P)

Construct new residual graph Gf.

o—
w

augment (f, P), i=42922L b>o = b21 10
let MOttleneck capacity,
i.e., min capacity of edges in P (in Gf)
for each edge (u,v) in P do
if e = (u,v) is a forward edge then
Fle) = f(e) + b < nresm
else (* (u,v) is a backward edge *)
let e = (v,u) (x (v,u) is in G *)
f(e)=f(e) — b s—atge~
return f

Ruta (UIUC) Cs473 16 Spring 2021 16 / 29

Properties of Augmentation

At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in
Gy are integers.

Proposition

Let f be a flow and f’ be flow after one augmentation. Then

v(f) < v(f').

Ruta (UIUC) Cs473 17 Spring 2021 17 / 29

Properties of Augmentation

At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in
Gy are integers.

Proposition
Let f be a flow and f’ be flow after one augmentation. Then

v(f) < v(f').

Since edges in Gr have integer capacities, v(f’) > v(f) + 1.

Ruta (UIUC) Cs473 17 Spring 2021 17 / 29

Properties of Augmentation

At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in
Gy are integers.

Proposition
Let f be a flow and f’ be flow after one augmentation. Then

v(f) < v(f').

Since edges in Gr have integer capacities, v(f’) > v(f) + 1.
Runtime: If max-flow value is C, then terminates in O(mC) time.
This is tight.

Ruta (UIUC) Spring 2021 17 /29

| Definition
Given a flow network an s-t cut is a set of edges E’ C E such that

removing E’ disconnects s from t: in other words there is no
directed s — t path in E — E’. Capacity of cut E_is) . .g c(e).

Let A C V such that T %
@scAtgAad P°

@ B=V\#Aand hence t € B. 2(@)
Define (A, B) = {(u,v) € E | u € A,v € B} c (AB* et (B

(A, B) is an s-t cut. \

Recall: Every minimal s-t cut E’ is a cut of the form (A, B).

Ruta (UIUC) Cs473 18 Spring 2021 18 / 29

Definition

Given a flow network an s-t cut is a set of edges E’ C E such that
removing E’ disconnects s from t: in other words there is no
directed s — t path in E — E’. Capacity of cut E" is) .z c(e).

Let A C V such that

QO seAtgA, and

@ B=V\ —Aandhence t € B.

Define (A, B) = {(u,v) € E | u € A,v € B}

(A, B) is an s-t cut. \

Recall: Every minimal s-t cut E’ is a cut of the form (A, B).
Max-flow < Min-cut

Ruta (UIUC) Cs473 18 Spring 2021 18 / 29

Ford-Fulkerson Correctness

Max-flow = Min-cut Theorem

Vs £ 20 Blow 2 zin -

If there is no s-t path in G then there is some cut (A, B) such that
v(f) = c(A, B)

Ruta (UIUC) Cs473 19 Spring 2021 19 / 29
/

Ford-Fulkerson Correctness

Max-flow = Min-cut Theorem

If there is no s-t path in Gy then there is some cut (A, B) such that
v(f) = c(A, B)

Proof.
Let A be all vertices reachable from s in Gf; B = V \ A.

(5=%
7 %
He wim-td

(p,B) s

Ruta (UIUC) Cs473 19 Spring 2021 19 / 29

Ford-Fulkerson Correctness

Max-flow = Min-cut Theorem

If there is no s-t path in Gy then there is some cut (A, B) such that
v(f) = c(A, B)

Proof.
Let A be all vertiﬁgs reachable from s in Gs; B = V \ A.

O,
® (e showed that c(A, B) = v(f)

().
O,

Ruta (UIUC) Cs473 19 Spring 2021 19 / 29

Polynomial-time variants

e
Choose the augmenting path with largest bottleneck capacity. (> 25’\
e Finding such a path takes O(m log m) time. iL:("(O?%

@ Algorithm terminates in O(mlog mC) iterations. %‘C‘

@ Overall run-time: (m"ﬁﬁ m 0,3 «md,)

Ruta (UIUC) Cs473 20 Spring 2021 20 / 29

Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.
e Finding such a path takes O(mlog m) time.
@ Algorithm terminates in O(mlog mC) iterations.

@ Overall run-time:

Edmond-Karp: Augment along shortest path i
. il
@ Terminates in O(mn) iterations, hence overall run-time: 0)

Ruta (UIUC) Cs473 20 Spring 2021 20 / 29

Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.
e Finding such a path takes O(mlog m) time.
@ Algorithm terminates in O(mlog mC) iterations.

@ Overall run-time:

Edmond-Karp: Augment along shortest path

e Terminates in O(mn) iterations, hence overall run-time:

Orlin gave an O(mn) time algorithm.
Y
fod sam- w1 O(am) Fes

Ruta (UIUC) Cs473 20 Spring 2021 20 / 29

Acyclicity of Flows

Proposition

In any flow network, if f is a flow then there is another flow f’ such
that the support of f’ is an acyclic graph and v(f’) = v(f). Further
if £ is an integral flow then so is f’.

Proof: Repeatedly cancel flow along a cycle to get an acyclic flow.

ghger «7 2O blow

Ruta (UIUC) Cs473 21 Spring 2021 21 / 29

Circulation problem

Problem
Input A network G with capacity ¢ and lower bound £

Goal Find a feasible circulation

Simply a feasibility problem.

Observation: Equivalent to s-t maxflow!
74w B Ueko 20

ST TR

Ruta (UIUC) Cs473 22 Spring 2021 22 / 29

Important properties of circulations

@ Reduction shows that one can find in O(mn) time a feasible
circulation in a network with capacities and lower bounds

o If edge capacities and lower bounds are integer valued then there
is always a feasible integer-valued circulation

@ Hoffman's circulation theorem is the equivalent of
maxflow-mincut theorem.

@ Circulation can be decomposed into at most m cycles in
O(mn) time.

Ruta (UIUC) Cs473 23 Spring 2021 23 / 29

Minimum Cost Flows

@ Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F.

@ Goal; Find a minimum cost flow of value@from stot

Given flow/f/; E — R™, cost of flow = >, w(e)f(e).

Ruta (UIUC) CS473 24 Spring 2021 24 /29

Minimum Cost Flows

1

u
@ Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F.

@ Goal; Find a minimum cost flow of value Iﬂ: fromstot
g

Given flow f : E — R, cost of flow = 3~ . w(e)f(e).

Much more general than the shortest path problem.

Ruta (UIUC) CS473 24 Spring 2021 24 /29

Minimum Cost Flow: Facts

© problem can be solved efficiently in polynomial time
® O(nmlog C log(nW)) time algorithm where C is maximum
edge capacity and W is maximum edge cost
® O(mlog n(m + nlog n)) time strongly polynomial time
algorithm
© for integer capacities there is always an optimum solution in
which flow is integral

Ruta (UIUC) Cs473 25 Spring 2021 25 / 29

Max-Flows/Min-Cut: Example Problem

Ruta (UIUC) Spring 2021 26 / 29

Max-Flows/Min-Cut: Example Problem

How to tell if G has a unique max-flow? Fs’ A
Me

Ruta (UIUC) Spring 2021 26 / 29

@ 414/‘ M. st sak flaw D é-f,# o a cycle.

(¢ o gues a cyde MO

o o, 5> el c.C4‘> p’(q
>
¢ (e

- 2 4
L pEF B > TR

ott) (\/

% deoy»5l) — Sf(&)/"‘?

L ;‘ 15 A CULC‘-'\-"(‘J"M B s {r”\éf /78
ﬁlf‘;'f_flsiui v ') e \;al(F") roh dle0 ok

¢low.
?/'oas»MS atwﬁduvvulbfm”w

Applications: Example Problem

Menger's Theorem: Max # edge disjoint s-t paths = Min # edges
needed to disconnect s from t.

Ruta (UIUC) Cs473 27 Spring 2021 27 / 29

Applications: Example Problem

Menger's Theorem: Max # edge disjoint s-t paths = Min # edges
needed to disconnect s from t. Spring 2017, Problem 4.

c "Ul MI . Recruiarets

Ruta (UIUC) Cs473 27 Spring 2021 27 / 29

Loy 201%s udblom 3 (i vakex-cab)

Joucted pofe

‘ g !’ ,J ’l)

Gwé;tu,fs) — 6= W, E ¢
weV Ujm, Mok €

~ ., % Mot

NV | ’
5 o v o

u:'rn 1 Vawt
v v, K
)
. g{r'ﬂ i' V‘!_’wl
e "'FJ ot.l'—-7 0'_’_‘_)
A ~ Ve, i m
\l\‘\ \fl""!' 1)

I "l(.

Obst: 3 a b im ¢ o cop M. whak

|
-"1’ﬂ {gtib't-u e sk 57)’3(

o m’LJ g é ak i & ‘13]08 (Mim, ”f@u+))

” W@"“’? eor i Nt -l
> o~ ead :zﬂl‘;c e ™M M orin— (W
Ivé 4 (“L‘m ’ U"’ﬁl—)
§= 5 UMS.
Pt %K*ZMZ;MM axAlow im¢. ho it's tow
’ F:h:jo«?dbl hn ot pats ﬁ’.-., P . M%%ﬂfaﬁ
ad Poois P hves ::,—a MF&ﬂ

> st ot R
He i

Pi's ae aﬂaeﬁ-_-umf 2 wanesporlicy patle i

b e k- disgeinl)

Finger Printing: Example

Describe and analyze an algorithm to determine, given two strings
A[l...m] and B[1...n] with m < n, whether A is a substring of
some left cyclic shift of B.

Ruta (UIUC) Spring 2021 28 / 29

Universal Hashing: Example

Ruta (UIUC) Cs473 29 Spring 2021 29 / 29

	Max-flow, Min-cut
	Ford-Fulkerson Algorithm

