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Randomozed Algorithms
@ Univesal Hashing, Fingerprinting

Max-Flow, Min-Cut

@ Flow: edge and path based definitions, flow decomposition,
acyclicity, integral flow

@ Max-Flow = Min-Cut

o Residual graphs, Ford-Fulkerson Algorithm and it's
polynomial-time variants.

@ Variants of max-flow and their applications
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Max-flow, Min-cut
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The Maximum-Flow Problem

Problem

Input A directed network G = (V/, E) with integer capacity
c(e) for each e € E, and source s and sink t.

Goal Find flow of maximum value.
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The Maximum-Flow Problem

Problem

Input A directed network G = (V/, E) with integer capacity
c(e) for each e € E, and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?
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Definition of Flow

Two ways to define flows:
© edge based, or
@ path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.
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Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.

Figure: Flow with value.
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Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.
© Capacity Constraint: For each edge

e, f(e) < c(e).

Figure: Flow with value.

Ruta (UIUC) Csa73 7 Spring 2021 7 / 29



Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.
© Capacity Constraint: For each edge

e, f(e) < c(e).
@ Conservation Constraint: For each
vertex v # s, t.

Y, flea= >, f(e)

e into v e out of v

Figure: Flow with value.

Ruta (UIUC) Csa73 7 Spring 2021 7 / 29



Edge Based Definition of Flow

Definition
Flow in network G = (V, E), is function f : E — R2% s t.
© Capacity Constraint: For each edge

e, f(e) < c(e).
@ Conservation Constraint: For each
vertex v # s, t.

Y, flea= >, f(e)

e into v e out of v

@ Value of flow= (total flow out of
source) — (total flow in to source).

o’

Figure: Flow with value.
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p

@ Conservation Constraint: )
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p

@ Conservation Constraint: No need! Automatic. )
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P: set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)
A flow in network G = (V, E), is function f : P — R20 s t.

@ Capacity Constraint: For each edge e, total flow on e is < c(e).

Y. f(p) < cle)

pEP:e€p

@ Conservation Constraint: No need! Automatic.

Value of flow: > » f(p).
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Flow Decomposition

Edge based flow to Path based Flow

Given an edge based flow f' : E — R2Y, there is a path based flow
f:P — R0 of same value.
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Flow Decomposition

Edge based flow to Path based Flow

Given an edge based flow f’ : E — RZ9, there is a path based flow
f : P — R0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E| = m and |V| = n.
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Flow Decomposition

Edge based flow to Path based Flow

Given an edge based flow f’ : E — RZ9, there is a path based flow
f : P — R0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E| = m and |V| = n.

Given f’, the path based flow can be computed in O(mn) time.
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Flow Decomposition

Example

How to decomgose the following flow:
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.
@ Assign f(p) to be minec, f'(e).
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.

Proof Idea.

@ In each iteration at least one edge has flow reduced to zero.
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.

Proof Idea.

@ In each iteration at least one edge has flow reduced to zero.

@ Hence, at most m iterations. Can be implemented in
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm

© Remove all edges with f’(e) = 0.
© Find a path p from s to t.

@ Assign f(p) to be minec, f'(e).

Q@ Reduce f'(e) for all e € p by f(p).
© Repeat until no path from s to t.

Proof Idea.

@ In each iteration at least one edge has flow reduced to zero.

@ Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care. O
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Part 1l

Ford-Fulkerson Algorithm
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Residual Graph (The “leftover” graph)

Fg dow
Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’, E’) of G with respect to f is where V/ = V and

Fbc,.fdMWt- 99"”#‘
sLe) e Crk);cttb ’S{L)
m —_—
C"{g)*— 5(‘)
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Residual Graph (The “leftover” graph)

Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’/, E’) of G with respect to f is where V/ = V and

© Forward Edges: For each edge e € E with f(e) < c(e), we add
e € E’ with capacity c(e) — f(e).
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Residual Graph (The “leftover” graph)

Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’/, E’) of G with respect to f is where V/ = V and

© Forward Edges: For each edge e € E with f(e) < c(e), we add
e € E’ with capacity c(e) — f(e).

© Backward Edges: For each edge e = (u, v) € E with f(e) > 0,
we add (v, u) € E’ with capacity f(e).
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Residual Graph (The “leftover” graph)

Definition. For a network G = (V/, E) and flow f, the residual graph
Gr = (V’, E’) of G with respect to f is where V/ = V and

© Forward Edges: For each edge e € E with f(e) < c(e), we add
e € E’ with capacity c(e) — f(e).

© Backward Edges: For each edge e = (u, v) € E with f(e) > 0,
we add (v, u) € E’ with capacity f(e).

Residula Graph
e
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).

Lemma

Let f and f’ be two flows in G with v(f') > v(f). Then there is a
flow f" of value v(f') — v(f) in Gs.
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).

Lemma

Let f and f’ be two flows in G with v(f') > v(f). Then there is a
flow f" of value v(f') — v(f) in Gs.

No s to t flow in Gf then f is a maximum flow.
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Let f be a flow in G and Gy be the residual graph. If f’ is a flow in
Gr then f + f’ is a flow in G of value v(f) + v(f’).

Lemma

Let f and f’ be two flows in G with v(f') > v(f). Then there is a
flow f" of value v(f') — v(f) in Gs.

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.
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Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) =0
Gr is residual graph of G with respect to f ek
while Gf has a simple s-t path do oo H

lorept
O@% let P be simple s-t path in Gf O(m@vﬂ@

f = augment(f, P)

Construct new residual graph Gf.
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Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f(e) =0
Gf@s residual graph of G with respect to f
while Gf has a simple s-t path do
let P be simple s-t path in Gf
f = augment(f, P)

Construct new residual graph Gf.

o—
w

augment (f, P), i=42922L b>o = b21 10
let MOttleneck capacity,
i.e., min capacity of edges in P (in Gf)
for each edge (u,v) in P do
if e = (u,v) is a forward edge then
Fle) = f(e) + b < nresm
else (* (u,v) is a backward edge *)
let e = (v,u) (x (v,u) is in G *)
f(e)=f(e) — b s—atge~
return f

Ruta (UIUC) Cs473 16 Spring 2021 16 / 29




Properties of Augmentation

At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in
Gy are integers.

Proposition

Let f be a flow and f’ be flow after one augmentation. Then

v(f) < v(f').
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Properties of Augmentation

At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in
Gy are integers.

Proposition
Let f be a flow and f’ be flow after one augmentation. Then

v(f) < v(f').

Since edges in Gr have integer capacities, v(f’) > v(f) + 1.
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Properties of Augmentation

At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f(e), for all edges e) and the residual capacities in
Gy are integers.

Proposition
Let f be a flow and f’ be flow after one augmentation. Then

v(f) < v(f').

Since edges in Gr have integer capacities, v(f’) > v(f) + 1.
Runtime: If max-flow value is C, then terminates in O(mC) time.
This is tight.
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| Definition
Given a flow network an s-t cut is a set of edges E’ C E such that

removing E’ disconnects s from t: in other words there is no
directed s — t path in E — E’. Capacity of cut E_is ) . .g c(e).

Let A C V such that T %
@scAtgAad P°

@ B=V\#Aand hence t € B. 2(@)
Define (A, B) = {(u,v) € E | u € A,v € B} c (AB* et (B

(A, B) is an s-t cut. \

Recall: Every minimal s-t cut E’ is a cut of the form (A, B).
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Definition

Given a flow network an s-t cut is a set of edges E’ C E such that
removing E’ disconnects s from t: in other words there is no
directed s — t path in E — E’. Capacity of cut E" is ) .z c(e).

Let A C V such that

QO seAtgA, and

@ B=V\ —Aandhence t € B.

Define (A, B) = {(u,v) € E | u € A,v € B}

(A, B) is an s-t cut. \

Recall: Every minimal s-t cut E’ is a cut of the form (A, B).
Max-flow < Min-cut
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Ford-Fulkerson Correctness

Max-flow = Min-cut Theorem

Vs £ 20 Blow 2 zin -

If there is no s-t path in G then there is some cut (A, B) such that
v(f) = c(A, B)
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Ford-Fulkerson Correctness

Max-flow = Min-cut Theorem

If there is no s-t path in Gy then there is some cut (A, B) such that
v(f) = c(A, B)

Proof.
Let A be all vertices reachable from s in Gf; B = V \ A.

(5=%
7 %
He wim-td

(p,B) s
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Ford-Fulkerson Correctness

Max-flow = Min-cut Theorem

If there is no s-t path in Gy then there is some cut (A, B) such that
v(f) = c(A, B)

Proof.
Let A be all vertiﬁgs reachable from s in Gs; B = V \ A.

O,
® (e showed that c(A, B) = v(f)

().
O,
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Polynomial-time variants

e
Choose the augmenting path with largest bottleneck capacity. (> 25’\
e Finding such a path takes O(m log m) time. iL:("(O?%

@ Algorithm terminates in O(mlog mC) iterations. %‘C‘

@ Overall run-time: (m"ﬁﬁ m 0,3 «md,)
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Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.
e Finding such a path takes O(mlog m) time.
@ Algorithm terminates in O(mlog mC) iterations.

@ Overall run-time:

Edmond-Karp: Augment along shortest path i
. . . . . il
@ Terminates in O(mn) iterations, hence overall run-time: 0 )
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Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.
e Finding such a path takes O(mlog m) time.
@ Algorithm terminates in O(mlog mC) iterations.

@ Overall run-time:

Edmond-Karp: Augment along shortest path

e Terminates in O(mn) iterations, hence overall run-time:

Orlin gave an O(mn) time algorithm.
Y
fod sam- w1 O(am) Fes
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Acyclicity of Flows

Proposition

In any flow network, if f is a flow then there is another flow f’ such
that the support of f’ is an acyclic graph and v(f’) = v(f). Further
if £ is an integral flow then so is f’.

Proof: Repeatedly cancel flow along a cycle to get an acyclic flow.

ghger «7 2O blow
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Circulation problem

Problem
Input A network G with capacity ¢ and lower bound £

Goal Find a feasible circulation

Simply a feasibility problem.

Observation: Equivalent to s-t maxflow!
74w B Ueko 20

ST TR
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Important properties of circulations

@ Reduction shows that one can find in O(mn) time a feasible
circulation in a network with capacities and lower bounds

o If edge capacities and lower bounds are integer valued then there
is always a feasible integer-valued circulation

@ Hoffman's circulation theorem is the equivalent of
maxflow-mincut theorem.

@ Circulation can be decomposed into at most m cycles in
O(mn) time.
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Minimum Cost Flows

@ Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F.

@ Goal; Find a minimum cost flow of value@from stot

Given flow/f/; E — R™, cost of flow = >, w(e)f(e).
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Minimum Cost Flows

1

u
@ Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F.

@ Goal; Find a minimum cost flow of value Iﬂ: fromstot
g

Given flow f : E — R, cost of flow = 3~ . w(e)f(e).

Much more general than the shortest path problem.
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Minimum Cost Flow: Facts

© problem can be solved efficiently in polynomial time
® O(nmlog C log(nW)) time algorithm where C is maximum
edge capacity and W is maximum edge cost
® O(mlog n(m + nlog n)) time strongly polynomial time
algorithm
© for integer capacities there is always an optimum solution in
which flow is integral
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Max-Flows/Min-Cut: Example Problem
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Max-Flows/Min-Cut: Example Problem

How to tell if G has a unique max-flow? Fs’ A
Me
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Applications: Example Problem

Menger's Theorem: Max # edge disjoint s-t paths = Min # edges
needed to disconnect s from t.
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Applications: Example Problem

Menger's Theorem: Max # edge disjoint s-t paths = Min # edges
needed to disconnect s from t. Spring 2017, Problem 4.

c "Ul MI . Recruiarets
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Finger Printing: Example

Describe and analyze an algorithm to determine, given two strings
A[l...m] and B[1...n] with m < n, whether A is a substring of
some left cyclic shift of B.

Ruta (UIUC) Spring 2021 28 / 29



Universal Hashing: Example
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