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Topics

Randomozed Algorithms

Univesal Hashing, Fingerprinting

Max-Flow, Min-Cut

Flow: edge and path based definitions, flow decomposition,
acyclicity, integral flow

Max-Flow = Min-Cut

Residual graphs, Ford-Fulkerson Algorithm and it’s
polynomial-time variants.

Variants of max-flow and their applications
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Part I

Max-flow, Min-cut
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The Maximum-Flow Problem

Problem
Input A directed network G = (V ,E) with integer capacity

c(e) for each e ∈ E , and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?

Ruta (UIUC) CS473 5 Spring 2021 5 / 29



The Maximum-Flow Problem

Problem
Input A directed network G = (V ,E) with integer capacity

c(e) for each e ∈ E , and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?

Ruta (UIUC) CS473 5 Spring 2021 5 / 29



Definition of Flow

Two ways to define flows:

1 edge based, or

2 path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.
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Edge Based Definition of Flow

Definition

Flow in network G = (V, E), is function f : E → R≥0 s.t.
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Figure: Flow with value.

1 Capacity Constraint: For each edge
e, f (e) ≤ c(e).

2 Conservation Constraint: For each
vertex v 6= s, t.

∑

e into v
f (e) =

∑

e out of v
f (e)

3 Value of flow= (total flow out of
source) − (total flow in to source).
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).
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Examples
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Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow f ′ : E → R≥0, there is a path based flow
f : P → R≥0 of same value.

Moreover, f assigns non-negative flow
to at most m paths where |E | = m and |V | = n.

Given f ′, the path based flow can be computed in O(mn) time.
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Flow Decomposition
Example

How to decompose the following flow:
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Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.
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Part II

Ford-Fulkerson Algorithm
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Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).
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Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.
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Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf )

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f

Ruta (UIUC) CS473 16 Spring 2021 16 / 29



Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf )

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f

Ruta (UIUC) CS473 16 Spring 2021 16 / 29



Properties of Augmentation

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f ) < v(f ′).

Since edges in Gf have integer capacities, v(f ′) ≥ v(f ) + 1.
Runtime: If max-flow value is C , then terminates in O(mC) time.
This is tight.
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Cuts

Definition
Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′. Capacity of cut E ′ is

∑
e∈E ′ c(e).

Let A ⊂ V such that
1 s ∈ A, t 6∈ A, and
2 B = V \ −A and hence t ∈ B.

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim
(A,B) is an s-t cut.

Recall: Every minimal s-t cut E ′ is a cut of the form (A,B).

Max-flow ≤ Min-cut
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Ford-Fulkerson Correctness
Max-flow = Min-cut Theorem

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f ) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t We showed that c(A,B) = v(f )
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Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.

Finding such a path takes O(m log m) time.

Algorithm terminates in O(m log mC) iterations.

Overall run-time:

Edmond-Karp: Augment along shortest path

Terminates in O(mn) iterations, hence overall run-time:

Orlin gave an O(mn) time algorithm.
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Acyclicity of Flows

Proposition
In any flow network, if f is a flow then there is another flow f ′ such
that the support of f ′ is an acyclic graph and v(f ′) = v(f ). Further
if f is an integral flow then so is f ′.

Proof: Repeatedly cancel flow along a cycle to get an acyclic flow.
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Circulation problem

Problem
Input A network G with capacity c and lower bound `

Goal Find a feasible circulation

Simply a feasibility problem.

Observation: Equivalent to s-t maxflow!
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Important properties of circulations

Reduction shows that one can find in O(mn) time a feasible
circulation in a network with capacities and lower bounds

If edge capacities and lower bounds are integer valued then there
is always a feasible integer-valued circulation

Hoffman’s circulation theorem is the equivalent of
maxflow-mincut theorem.

Circulation can be decomposed into at most m cycles in
O(mn) time.
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Minimum Cost Flows

1 Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F .

2 Goal; Find a minimum cost flow of value F from s to t

Given flow f : E → R+, cost of flow =
∑

e∈E w(e)f (e).

Much more general than the shortest path problem.
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Minimum Cost Flow: Facts

1 problem can be solved efficiently in polynomial time
1 O(nm log C log(nW )) time algorithm where C is maximum

edge capacity and W is maximum edge cost
2 O(m log n(m + n log n)) time strongly polynomial time

algorithm

2 for integer capacities there is always an optimum solution in
which flow is integral
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Max-Flows/Min-Cut: Example Problem

How to tell if G has a unique max-flow?
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Applications: Example Problem

Menger’s Theorem: Max # edge disjoint s-t paths = Min # edges
needed to disconnect s from t.

Spring 2017, Problem 4.
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Finger Printing: Example

Describe and analyze an algorithm to determine, given two strings
A[1 . . .m] and B[1 . . . n] with m ≤ n, whether A is a substring of
some left cyclic shift of B.
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Universal Hashing: Example
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