
CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

Ruta (UIUC) CS473 1 Spring 2021 1 / 29

CS 473: Algorithms, Spring 2021

Midterm 2 Review Session
Lecture 99
April 10, 2021

Some of the slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 2 Spring 2021 2 / 29

Topics

Randomozed Algorithms

Univesal Hashing, Fingerprinting

Max-Flow, Min-Cut

Flow: edge and path based definitions, flow decomposition,
acyclicity, integral flow

Max-Flow = Min-Cut

Residual graphs, Ford-Fulkerson Algorithm and it’s
polynomial-time variants.

Variants of max-flow and their applications

Ruta (UIUC) CS473 3 Spring 2021 3 / 29

Part I

Max-flow, Min-cut

Ruta (UIUC) CS473 4 Spring 2021 4 / 29

The Maximum-Flow Problem

Problem
Input A directed network G = (V ,E) with integer capacity

c(e) for each e ∈ E , and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?

Ruta (UIUC) CS473 5 Spring 2021 5 / 29

The Maximum-Flow Problem

Problem
Input A directed network G = (V ,E) with integer capacity

c(e) for each e ∈ E , and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?

Ruta (UIUC) CS473 5 Spring 2021 5 / 29

Definition of Flow

Two ways to define flows:

1 edge based, or

2 path based.

Essentially equivalent but have different uses.

Edge based definition is more compact.

Ruta (UIUC) CS473 6 Spring 2021 6 / 29

Edge Based Definition of Flow

Definition

Flow in network G = (V, E), is function f : E → R≥0 s.t.

14/15

4/5

10
/1
0

14/30

8/8

0/4

9/9

0/4

1/15

4/6
10
/1
0

9/10

0/15

0/15

9/10

s

1

2

3

4

5

6

t

Figure: Flow with value.

1 Capacity Constraint: For each edge
e, f (e) ≤ c(e).

2 Conservation Constraint: For each
vertex v 6= s, t.

∑

e into v
f (e) =

∑

e out of v
f (e)

3 Value of flow= (total flow out of
source) − (total flow in to source).

Ruta (UIUC) CS473 7 Spring 2021 7 / 29

Edge Based Definition of Flow

Definition

Flow in network G = (V, E), is function f : E → R≥0 s.t.

14/15

4/5

10
/1
0

14/30

8/8

0/4

9/9

0/4

1/15

4/6
10
/1
0

9/10

0/15

0/15

9/10

s

1

2

3

4

5

6

t

Figure: Flow with value.

1 Capacity Constraint: For each edge
e, f (e) ≤ c(e).

2 Conservation Constraint: For each
vertex v 6= s, t.

∑

e into v
f (e) =

∑

e out of v
f (e)

3 Value of flow= (total flow out of
source) − (total flow in to source).

Ruta (UIUC) CS473 7 Spring 2021 7 / 29

Edge Based Definition of Flow

Definition

Flow in network G = (V, E), is function f : E → R≥0 s.t.

14/15

4/5

10
/1
0

14/30

8/8

0/4

9/9

0/4

1/15

4/6
10
/1
0

9/10

0/15

0/15

9/10

s

1

2

3

4

5

6

t

Figure: Flow with value.

1 Capacity Constraint: For each edge
e, f (e) ≤ c(e).

2 Conservation Constraint: For each
vertex v 6= s, t.

∑

e into v
f (e) =

∑

e out of v
f (e)

3 Value of flow= (total flow out of
source) − (total flow in to source).

Ruta (UIUC) CS473 7 Spring 2021 7 / 29

Edge Based Definition of Flow

Definition

Flow in network G = (V, E), is function f : E → R≥0 s.t.

14/15

4/5

10
/1
0

14/30

8/8

0/4

9/9

0/4

1/15

4/6
10
/1
0

9/10

0/15

0/15

9/10

s

1

2

3

4

5

6

t

Figure: Flow with value.

1 Capacity Constraint: For each edge
e, f (e) ≤ c(e).

2 Conservation Constraint: For each
vertex v 6= s, t.

∑

e into v
f (e) =

∑

e out of v
f (e)

3 Value of flow= (total flow out of
source) − (total flow in to source).

Ruta (UIUC) CS473 7 Spring 2021 7 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).

Ruta (UIUC) CS473 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).

Ruta (UIUC) CS473 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).

Ruta (UIUC) CS473 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).

Ruta (UIUC) CS473 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint:

No need! Automatic.

Value of flow:
∑

p∈P f (p).

Ruta (UIUC) CS473 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).

Ruta (UIUC) CS473 8 Spring 2021 8 / 29

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all simple paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).

∑

p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).

Ruta (UIUC) CS473 8 Spring 2021 8 / 29

Examples

Ruta (UIUC) CS473 9 Spring 2021 9 / 29

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow f ′ : E → R≥0, there is a path based flow
f : P → R≥0 of same value.

Moreover, f assigns non-negative flow
to at most m paths where |E | = m and |V | = n.

Given f ′, the path based flow can be computed in O(mn) time.

Ruta (UIUC) CS473 10 Spring 2021 10 / 29

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow f ′ : E → R≥0, there is a path based flow
f : P → R≥0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E | = m and |V | = n.

Given f ′, the path based flow can be computed in O(mn) time.

Ruta (UIUC) CS473 10 Spring 2021 10 / 29

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow f ′ : E → R≥0, there is a path based flow
f : P → R≥0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E | = m and |V | = n.

Given f ′, the path based flow can be computed in O(mn) time.

Ruta (UIUC) CS473 10 Spring 2021 10 / 29

Flow Decomposition
Example

How to decompose the following flow:

s t

14 10

4

10

6

v

u

/20

/30

/20

/11

/27

Ruta (UIUC) CS473 11 Spring 2021 11 / 29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.

Ruta (UIUC) CS473 12 Spring 2021 12 / 29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.

Ruta (UIUC) CS473 12 Spring 2021 12 / 29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.

Ruta (UIUC) CS473 12 Spring 2021 12 / 29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.

Ruta (UIUC) CS473 12 Spring 2021 12 / 29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.

Ruta (UIUC) CS473 12 Spring 2021 12 / 29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in

O(m(m + n)) time. O(mn) time requires care.

Ruta (UIUC) CS473 12 Spring 2021 12 / 29

Flow Decomposition
Edge based flow to Path based Flow

Algorithm
1 Remove all edges with f ′(e) = 0.

2 Find a path p from s to t.

3 Assign f (p) to be mine∈p f ′(e).

4 Reduce f ′(e) for all e ∈ p by f (p).

5 Repeat until no path from s to t.

Proof Idea.
In each iteration at least one edge has flow reduced to zero.

Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.

Ruta (UIUC) CS473 12 Spring 2021 12 / 29

Part II

Ford-Fulkerson Algorithm

Ruta (UIUC) CS473 13 Spring 2021 13 / 29

Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 14 Spring 2021 14 / 29

Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 14 Spring 2021 14 / 29

Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 14 Spring 2021 14 / 29

Residual Graph (The “leftover” graph)

Definition. For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is where V ′ = V and

1 Forward Edges: For each edge e ∈ E with f (e) < c(e), we add
e ∈ E ′ with capacity c(e)− f (e).

2 Backward Edges: For each edge e = (u, v) ∈ E with f (e) > 0,
we add (v , u) ∈ E ′ with capacity f (e).

s

v

u

t

/
3
0

/2
0/10

/2
0 /10

/
3
0

/2
0/10

/2
0 /1020

20

2
0 Residula Graph−−−−−−−→ s

v

u

t

/2
0

/
2
0

/
1
0

/10

/10

/2
0

Ruta (UIUC) CS473 14 Spring 2021 14 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a
flow f ′′ of value v(f ′)− v(f) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a
flow f ′′ of value v(f ′)− v(f) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a
flow f ′′ of value v(f ′)− v(f) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a
flow f ′′ of value v(f ′)− v(f) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 15 Spring 2021 15 / 29

Residual Graph Property

Observation: Residual graph captures the “residual” problem
exactly.

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f) + v(f ′).

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f). Then there is a
flow f ′′ of value v(f ′)− v(f) in Gf .

No s to t flow in Gf then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are
easy in some sense but a bit messy to formally prove.

Ruta (UIUC) CS473 15 Spring 2021 15 / 29

Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf)

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f

Ruta (UIUC) CS473 16 Spring 2021 16 / 29

Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf)

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f

Ruta (UIUC) CS473 16 Spring 2021 16 / 29

Properties of Augmentation

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f) < v(f ′).

Since edges in Gf have integer capacities, v(f ′) ≥ v(f) + 1.
Runtime: If max-flow value is C , then terminates in O(mC) time.
This is tight.

Ruta (UIUC) CS473 17 Spring 2021 17 / 29

Properties of Augmentation

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f) < v(f ′).

Since edges in Gf have integer capacities, v(f ′) ≥ v(f) + 1.

Runtime: If max-flow value is C , then terminates in O(mC) time.
This is tight.

Ruta (UIUC) CS473 17 Spring 2021 17 / 29

Properties of Augmentation

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f) < v(f ′).

Since edges in Gf have integer capacities, v(f ′) ≥ v(f) + 1.
Runtime: If max-flow value is C , then terminates in O(mC) time.
This is tight.

Ruta (UIUC) CS473 17 Spring 2021 17 / 29

Cuts

Definition
Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′. Capacity of cut E ′ is

∑
e∈E ′ c(e).

Let A ⊂ V such that
1 s ∈ A, t 6∈ A, and
2 B = V \ −A and hence t ∈ B.

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim
(A,B) is an s-t cut.

Recall: Every minimal s-t cut E ′ is a cut of the form (A,B).

Max-flow ≤ Min-cut

Ruta (UIUC) CS473 18 Spring 2021 18 / 29

Cuts

Definition
Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′. Capacity of cut E ′ is

∑
e∈E ′ c(e).

Let A ⊂ V such that
1 s ∈ A, t 6∈ A, and
2 B = V \ −A and hence t ∈ B.

Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim
(A,B) is an s-t cut.

Recall: Every minimal s-t cut E ′ is a cut of the form (A,B).

Max-flow ≤ Min-cut
Ruta (UIUC) CS473 18 Spring 2021 18 / 29

Ford-Fulkerson Correctness
Max-flow = Min-cut Theorem

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t We showed that c(A,B) = v(f)

Ruta (UIUC) CS473 19 Spring 2021 19 / 29

Ford-Fulkerson Correctness
Max-flow = Min-cut Theorem

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t We showed that c(A,B) = v(f)

Ruta (UIUC) CS473 19 Spring 2021 19 / 29

Ford-Fulkerson Correctness
Max-flow = Min-cut Theorem

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v′

u′

v

t We showed that c(A,B) = v(f)

Ruta (UIUC) CS473 19 Spring 2021 19 / 29

Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.

Finding such a path takes O(m log m) time.

Algorithm terminates in O(m log mC) iterations.

Overall run-time:

Edmond-Karp: Augment along shortest path

Terminates in O(mn) iterations, hence overall run-time:

Orlin gave an O(mn) time algorithm.

Ruta (UIUC) CS473 20 Spring 2021 20 / 29

Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.

Finding such a path takes O(m log m) time.

Algorithm terminates in O(m log mC) iterations.

Overall run-time:

Edmond-Karp: Augment along shortest path

Terminates in O(mn) iterations, hence overall run-time:

Orlin gave an O(mn) time algorithm.

Ruta (UIUC) CS473 20 Spring 2021 20 / 29

Polynomial-time variants

Choose the augmenting path with largest bottleneck capacity.

Finding such a path takes O(m log m) time.

Algorithm terminates in O(m log mC) iterations.

Overall run-time:

Edmond-Karp: Augment along shortest path

Terminates in O(mn) iterations, hence overall run-time:

Orlin gave an O(mn) time algorithm.

Ruta (UIUC) CS473 20 Spring 2021 20 / 29

Acyclicity of Flows

Proposition
In any flow network, if f is a flow then there is another flow f ′ such
that the support of f ′ is an acyclic graph and v(f ′) = v(f). Further
if f is an integral flow then so is f ′.

Proof: Repeatedly cancel flow along a cycle to get an acyclic flow.

Ruta (UIUC) CS473 21 Spring 2021 21 / 29

Circulation problem

Problem
Input A network G with capacity c and lower bound `

Goal Find a feasible circulation

Simply a feasibility problem.

Observation: Equivalent to s-t maxflow!

Ruta (UIUC) CS473 22 Spring 2021 22 / 29

Important properties of circulations

Reduction shows that one can find in O(mn) time a feasible
circulation in a network with capacities and lower bounds

If edge capacities and lower bounds are integer valued then there
is always a feasible integer-valued circulation

Hoffman’s circulation theorem is the equivalent of
maxflow-mincut theorem.

Circulation can be decomposed into at most m cycles in
O(mn) time.

Ruta (UIUC) CS473 23 Spring 2021 23 / 29

Minimum Cost Flows

1 Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F .

2 Goal; Find a minimum cost flow of value F from s to t

Given flow f : E → R+, cost of flow =
∑

e∈E w(e)f (e).

Much more general than the shortest path problem.

Ruta (UIUC) CS473 24 Spring 2021 24 / 29

Minimum Cost Flows

1 Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F .

2 Goal; Find a minimum cost flow of value F from s to t

Given flow f : E → R+, cost of flow =
∑

e∈E w(e)f (e).

Much more general than the shortest path problem.

Ruta (UIUC) CS473 24 Spring 2021 24 / 29

Minimum Cost Flow: Facts

1 problem can be solved efficiently in polynomial time
1 O(nm log C log(nW)) time algorithm where C is maximum

edge capacity and W is maximum edge cost
2 O(m log n(m + n log n)) time strongly polynomial time

algorithm

2 for integer capacities there is always an optimum solution in
which flow is integral

Ruta (UIUC) CS473 25 Spring 2021 25 / 29

Max-Flows/Min-Cut: Example Problem

How to tell if G has a unique max-flow?

Ruta (UIUC) CS473 26 Spring 2021 26 / 29

Max-Flows/Min-Cut: Example Problem

How to tell if G has a unique max-flow?

Ruta (UIUC) CS473 26 Spring 2021 26 / 29

Applications: Example Problem

Menger’s Theorem: Max # edge disjoint s-t paths = Min # edges
needed to disconnect s from t.

Spring 2017, Problem 4.

Ruta (UIUC) CS473 27 Spring 2021 27 / 29

Applications: Example Problem

Menger’s Theorem: Max # edge disjoint s-t paths = Min # edges
needed to disconnect s from t. Spring 2017, Problem 4.

Ruta (UIUC) CS473 27 Spring 2021 27 / 29

Finger Printing: Example

Describe and analyze an algorithm to determine, given two strings
A[1 . . .m] and B[1 . . . n] with m ≤ n, whether A is a substring of
some left cyclic shift of B.

Ruta (UIUC) CS473 28 Spring 2021 28 / 29

Universal Hashing: Example

Ruta (UIUC) CS473 29 Spring 2021 29 / 29

	Max-flow, Min-cut
	Ford-Fulkerson Algorithm

