CS 473: Algorithms, Spring 2021

More NP-Complete Problems

Lecture 22 April 27, 2021

Most slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 1 Spring 2021 1 / 49

Recap

NP: languages/problems that have polynomial time certifiers/verifiers

A problem X is NP-Complete iff

- X is in NP
- X is NP-Hard.

X is NP-Hard if for every Y in NP, $Y \leq_P X$.

Theorem (Cook-Levin)

SAT is NP-Complete.

Ruta (UIUC) CS473 2 Spring 2021 2 / 49

Recap contd

Theorem (Cook-Levin)

SAT is NP-Complete.

Established NP-Completeness via reductions:

- SAT is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is NP-Complete.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Clique is NP-Complete
- Vertex Cover is NP-Complete
- Set Cover is NP-Complete
- Subset Sum is NP-Complete

Ruta (UIUC) CS473 3 Spring 2021 3 / 49

Today

Prove

- Hamiltonian Cycle is NP-Complete
- 3-Coloring is NP-Complete (self-study)

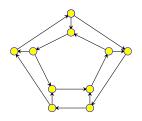
All via reductions from 3-SAT

Ruta (UIUC) CS473 4 Spring 2021 4 / 49

Part I

NP-Completeness of Hamiltonian Cycle

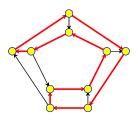
Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?



Ruta (UIUC) CS473 6 Spring 2021 6 / 49

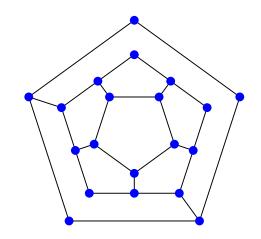
Input Given a directed graph G = (V, E) with n vertices Goal Does G have a Hamiltonian cycle?

 A Hamiltonian cycle is a cycle in the graph that visits every vertex in G exactly once



Ruta (UIUC) CS473 6 Spring 2021 6 / 49

Is the following graph Hamiltonianan?



- (A) Yes.
- **(B)** No.

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show
 - 3-SAT \leq_P Directed Hamiltonian Cycle

Ruta (UIUC) CS473 8 Spring 2021 8 / 49

Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- ullet G_{arphi} has a Hamiltonian cycle if and only if arphi is satisfiable
- $oldsymbol{G}_{arphi}$ should be constructible from arphi by a polynomial time algorithm $oldsymbol{\mathcal{A}}$

Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

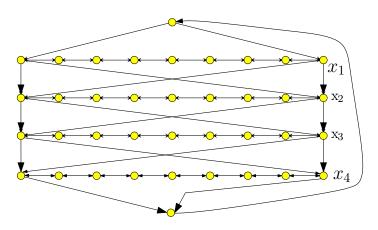
Ruta (UIUC) CS473 9 Spring 2021 9 / 49

Reduction: First Ideas

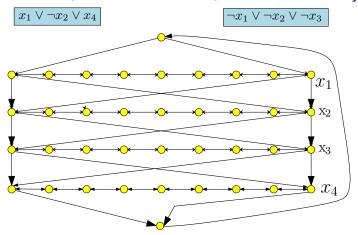
- Viewing SAT: Assign values to n variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

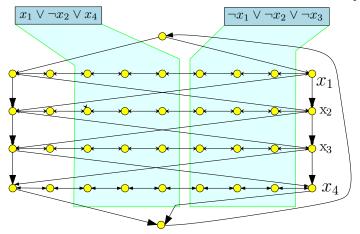
Ruta (UIUC) CS473 10 Spring 2021 10 / 49

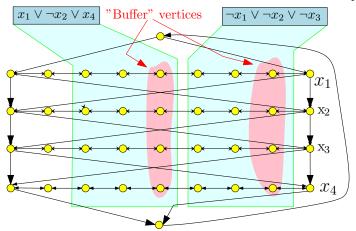
- Traverse path i from left to right iff x_i is set to true
- Each path has 3(m+1) nodes where m is number of clauses in φ ; nodes numbered from left to right (1 to 3m+3)

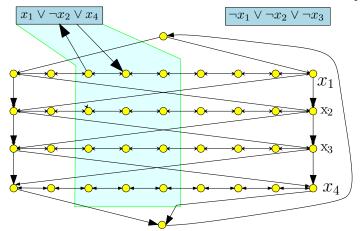


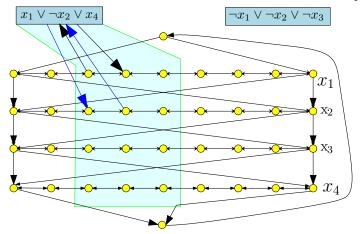
Ruta (UIUC) CS473 11 Spring 2021 11 / 49

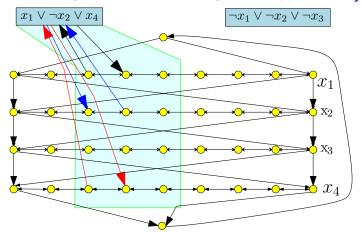


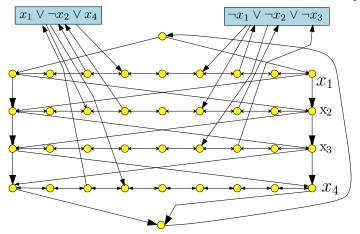












Correctness Proof

Proposition

 φ has a satisfying assignment iff G_{φ} has a Hamiltonian cycle.

Proof.

- \Rightarrow Let **a** be the satisfying assignment for φ . Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path *i* from right to left
 - For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

Ruta (UIUC) CS473 13 Spring 2021 13 / 49

Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

• If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i

Hamiltonian Cycle ⇒ Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j+1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path i is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle

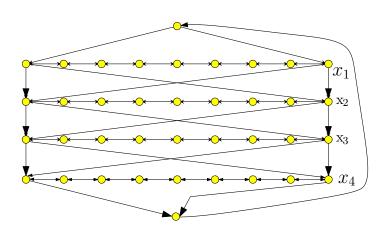
Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{ω}

- If Π enters c_i (vertex for clause C_i) from vertex 3i on path ithen it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3i + 1 on path i is 3i + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_i from vertex 3i + 1 on path i then it must leave the clause vertex c_i on edge to 3i on path i

CS473 Spring 2021

Example



Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after C_i are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $G-c_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

Ruta (UIUC) CS473 16 Spring 2021 16 / 49

Exercises: Show NP-completeness for the following problems.

Input Given undirected graph G = (V, E)

Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

Exercises: Show NP-completeness for the following problems.

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

Reduce from directed to the un-directed case.

Exercises: Show NP-completeness for the following problems.

Input Given undirected graph G = (V, E)

Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

Reduce from directed to the un-directed case.

Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian path?

 A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Exercises: Show NP-completeness for the following problems.

Input Given undirected graph G = (V, E)

Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

Reduce from directed to the un-directed case.

Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian path?

 A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Modify the reduction we saw from 3-SAT.

Exercises: Show NP-completeness for the following problems.

Input Given undirected graph G = (V, E)

Goal Does **G** have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

Reduce from directed to the un-directed case.

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian path?

 A Hamiltonian path is a path in the graph that visits every vertex in G exactly once

Modify the reduction we saw from **3-SAT**.

Also prove that **Hamilton path** in undirected graphs is **NP-Complete**.

Ruta (UIUC) CS473 17 Spring 2021 17 / 49

Part II

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

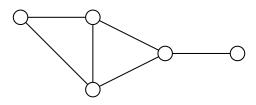
Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do

not get the same color?



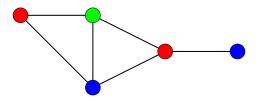
Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do

not get the same color?



Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph **2**-Coloring can be decided in polynomial time.

Ruta (UIUC) CS473 21 Spring 2021 21 / 49

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph **2**-Coloring can be decided in polynomial time.

G is **2**-colorable iff **G** is bipartite!

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if **G** is bipartite using **BFS**.

CS473 Spring 2021 21 / 49

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) k registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with *k* colors
- Moreover, 3-COLOR \leq_P k-Register Allocation, for any k > 3

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph **G**

- a node v; for each class i
- an edge between v_i and v_j if classes i and j conflict

CS473 Spring 2021 23 / 49

Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

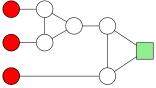
- Breakup a frequency range [a, b] into disjoint bands of frequencies $[a_0, b_0], [a_1, b_1], \ldots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

3 color this gadget.

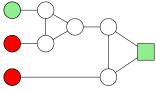
You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the four nodes are already colored as indicated).



- (A) Yes.
- **(B)** No.

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the four nodes are already colored as indicated).



- (A) Yes.
- **(B)** No.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
 - Certificate: for each node a color from $\{1, 2, 3\}$.
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

• need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base

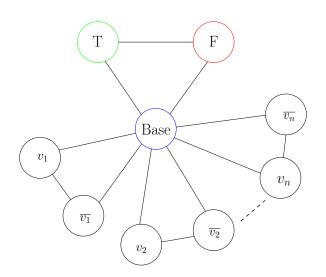
Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i

Start with **3SAT** formula (i.e., **3**CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or \bar{v}_i gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

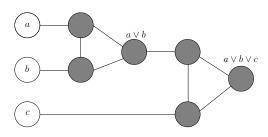


Clause Satisfiability Gadget

For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

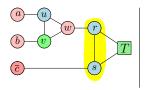
OR-gadget-graph:

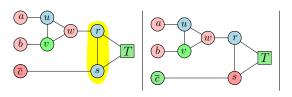


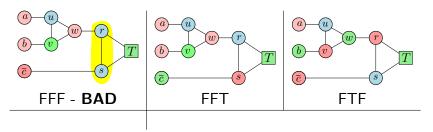
OR-Gadget Graph

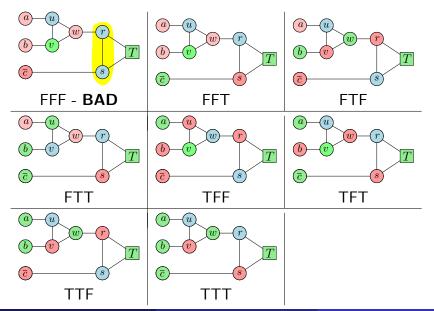
Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.



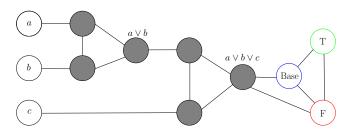




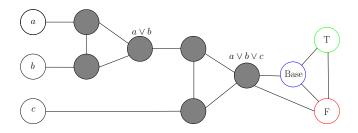


Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base



Reduction



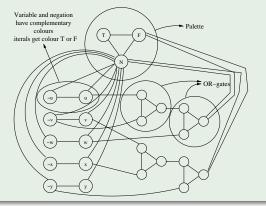
Claim

No legal **3**-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal **3**-coloring of above graph.

Reduction Outline

Example

$$\varphi = (u \vee \neg v \vee w) \wedge (v \vee x \vee \neg y)$$



arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable

• if x_i is assigned True, color v_i True and \bar{v}_i False

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

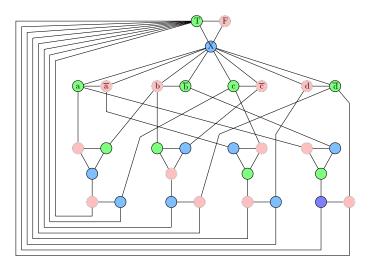
 G_{φ} is 3-colorable implies φ is satisfiable

• if v_i is colored True then set x_i to be True, this is a legal truth assignment

- arphi is satisfiable implies $extbf{\emph{G}}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.
- G_{φ} is 3-colorable implies φ is satisfiable
 - if v_i is colored True then set x_i to be True, this is a legal truth assignment
 - consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR



Need to Know NP-Complete Problems

- SAT and 3-SAT
- Independent Set
- Vertex Cover
- Clique
- Set Cover
- Hamiltonian Cycle in Directed/Undirected Graphs
- 3-Coloring
- 3-D Matching
- Subset Sum and Knapsack