
CS 473: Algorithms, Spring 2021

Heuristics, Approximation
Algorithms
Lecture 22
April 27, 2021

Most slides are courtesy Prof. Chekuri
Ruta (UIUC) CS473 1 Spring 2021 1 / 34

Part I

Heuristics

Ruta (UIUC) CS473 2 Spring 2021 2 / 34

Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.

1 Consider special cases of the problem which may be tractable.
2 Run inefficient algorithms (for example exponential time

algorithms for NP-Hard problems) augmented with (very)
clever heuristics

1 stop algorithm when time/resources run out
2 use massive computational power

3 Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which is OK.

4 Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems

Ruta (UIUC) CS473 3 Spring 2021 3 / 34

Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.

1 Consider special cases of the problem which may be tractable.

2 Run inefficient algorithms (for example exponential time
algorithms for NP-Hard problems) augmented with (very)
clever heuristics

1 stop algorithm when time/resources run out
2 use massive computational power

3 Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which is OK.

4 Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems

Ruta (UIUC) CS473 3 Spring 2021 3 / 34

Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.

1 Consider special cases of the problem which may be tractable.
2 Run inefficient algorithms (for example exponential time

algorithms for NP-Hard problems) augmented with (very)
clever heuristics

1 stop algorithm when time/resources run out
2 use massive computational power

3 Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which is OK.

4 Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems

Ruta (UIUC) CS473 3 Spring 2021 3 / 34

Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.

1 Consider special cases of the problem which may be tractable.
2 Run inefficient algorithms (for example exponential time

algorithms for NP-Hard problems) augmented with (very)
clever heuristics

1 stop algorithm when time/resources run out
2 use massive computational power

3 Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which is OK.

4 Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems

Ruta (UIUC) CS473 3 Spring 2021 3 / 34

Coping with Intractability

Question: Many useful/important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.

1 Consider special cases of the problem which may be tractable.
2 Run inefficient algorithms (for example exponential time

algorithms for NP-Hard problems) augmented with (very)
clever heuristics

1 stop algorithm when time/resources run out
2 use massive computational power

3 Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which is OK.

4 Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems

Ruta (UIUC) CS473 3 Spring 2021 3 / 34

EXP time algorithm for NP-complete problems

Brute-force: “try all possibilities”

1 SAT: try all possible truth assignment to variables.

2 Independent set: try all possible subsets of vertices.

3 Vertex cover: try all possible subsets of vertices.

Ruta (UIUC) CS473 4 Spring 2021 4 / 34

Improving brute-force via intelligent backtracking

1 Backtrack search: enumeration with bells and whistles to
“heuristically” cut down search space.

2 Works well in practice, especially for small enough problem sizes.

Ruta (UIUC) CS473 5 Spring 2021 5 / 34

Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1 Pick a variable xi

2 Set xi = 0 and let ϕ′ be the simplified CNF formula
3 Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or

“not sure”
1 If “not sure” recursively solve ϕ′

2 If ϕ′ is satisfiable, return “yes”

4 Set xi = 1 and let ϕ′′ be the simplified CNF formula.
5 Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

1 If “not sure” recursively solve ϕ′′

2 If ϕ′′ is satisfiable, return “yes”

6 Return “no”

Certain part of the search space is pruned.

Ruta (UIUC) CS473 6 Spring 2021 6 / 34

Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1 Pick a variable xi

2 Set xi = 0 and let ϕ′ be the simplified CNF formula

3 Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or
“not sure”

1 If “not sure” recursively solve ϕ′

2 If ϕ′ is satisfiable, return “yes”

4 Set xi = 1 and let ϕ′′ be the simplified CNF formula.
5 Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

1 If “not sure” recursively solve ϕ′′

2 If ϕ′′ is satisfiable, return “yes”

6 Return “no”

Certain part of the search space is pruned.

Ruta (UIUC) CS473 6 Spring 2021 6 / 34

Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1 Pick a variable xi

2 Set xi = 0 and let ϕ′ be the simplified CNF formula
3 Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or

“not sure”

1 If “not sure” recursively solve ϕ′

2 If ϕ′ is satisfiable, return “yes”

4 Set xi = 1 and let ϕ′′ be the simplified CNF formula.
5 Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

1 If “not sure” recursively solve ϕ′′

2 If ϕ′′ is satisfiable, return “yes”

6 Return “no”

Certain part of the search space is pruned.

Ruta (UIUC) CS473 6 Spring 2021 6 / 34

Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1 Pick a variable xi

2 Set xi = 0 and let ϕ′ be the simplified CNF formula
3 Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or

“not sure”
1 If “not sure” recursively solve ϕ′

2 If ϕ′ is satisfiable, return “yes”

4 Set xi = 1 and let ϕ′′ be the simplified CNF formula.
5 Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

1 If “not sure” recursively solve ϕ′′

2 If ϕ′′ is satisfiable, return “yes”

6 Return “no”

Certain part of the search space is pruned.

Ruta (UIUC) CS473 6 Spring 2021 6 / 34

Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1 Pick a variable xi

2 Set xi = 0 and let ϕ′ be the simplified CNF formula
3 Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or

“not sure”
1 If “not sure” recursively solve ϕ′

2 If ϕ′ is satisfiable, return “yes”

4 Set xi = 1 and let ϕ′′ be the simplified CNF formula.
5 Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

1 If “not sure” recursively solve ϕ′′

2 If ϕ′′ is satisfiable, return “yes”

6 Return “no”

Certain part of the search space is pruned.

Ruta (UIUC) CS473 6 Spring 2021 6 / 34

Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1 Pick a variable xi

2 Set xi = 0 and let ϕ′ be the simplified CNF formula
3 Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or

“not sure”
1 If “not sure” recursively solve ϕ′

2 If ϕ′ is satisfiable, return “yes”

4 Set xi = 1 and let ϕ′′ be the simplified CNF formula.
5 Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

1 If “not sure” recursively solve ϕ′′

2 If ϕ′′ is satisfiable, return “yes”

6 Return “no”

Certain part of the search space is pruned.

Ruta (UIUC) CS473 6 Spring 2021 6 / 34

Backtrack Search Algorithm for SAT

Input: CNF Formula ϕ on n variables x1, . . . , xn and m clauses
Output: Is ϕ satisfiable or not.

1 Pick a variable xi

2 Set xi = 0 and let ϕ′ be the simplified CNF formula
3 Run a simple (heuristic) check on ϕ′: returns “yes”, “no” or

“not sure”
1 If “not sure” recursively solve ϕ′

2 If ϕ′ is satisfiable, return “yes”

4 Set xi = 1 and let ϕ′′ be the simplified CNF formula.
5 Run simple check on ϕ′′: returns “yes”, “no” or “not sure”

1 If “not sure” recursively solve ϕ′′

2 If ϕ′′ is satisfiable, return “yes”

6 Return “no”

Certain part of the search space is pruned.
Ruta (UIUC) CS473 6 Spring 2021 6 / 34

Example
286 Algorithms

Figure 9.1 Backtracking reveals that φ is not satisfiable.

(), (y ∨ z)(y ∨ z), (y), (y ∨ z)

(z), (z)

(x ∨ y), (y ∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z)

(x ∨ y ∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0

happens to be a singleton, then at least one of the resulting branches will be terminated. (If
there is a tie in choosing subproblems, one reasonable policy is to pick the one lowest in the
tree, in the hope that it is close to a satisfying assignment.) See Figure 9.1 for the conclusion
of our earlier example.
More abstractly, a backtracking algorithm requires a test that looks at a subproblem and

quickly declares one of three outcomes:

1. Failure: the subproblem has no solution.

2. Success: a solution to the subproblem is found.

3. Uncertainty.

In the case of SAT, this test declares failure if there is an empty clause, success if there are
no clauses, and uncertainty otherwise. The backtracking procedure then has the following
format.

Start with some problem P0

Let S = {P0}, the set of active subproblems

Repeat while S is nonempty:

choose a subproblem P ∈ S and remove it from S
expand it into smaller subproblems P1, P2, . . . , Pk

For each Pi:

If test(Pi) succeeds: halt and announce this solution

If test(Pi) fails: discard Pi

Figure: Backtrack search. Formula is not satisfiable.

Figure taken from Dasgupta etal book.

Ruta (UIUC) CS473 7 Spring 2021 7 / 34

Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:

1 pick variable that occurs in most clauses first

2 pick variable that appears in most size 2 clauses first

3 . . .

What are quick tests for Satisfiability?
pause Depends on known special cases and heuristics. Examples.

1 Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

2 if all clauses are of size 2 then run 2-SAT polynomial time
algorithm

3 . . .

Ruta (UIUC) CS473 8 Spring 2021 8 / 34

Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:

1 pick variable that occurs in most clauses first

2 pick variable that appears in most size 2 clauses first

3 . . .

What are quick tests for Satisfiability?
pause Depends on known special cases and heuristics. Examples.

1 Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

2 if all clauses are of size 2 then run 2-SAT polynomial time
algorithm

3 . . .

Ruta (UIUC) CS473 8 Spring 2021 8 / 34

Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:

1 pick variable that occurs in most clauses first

2 pick variable that appears in most size 2 clauses first

3 . . .

What are quick tests for Satisfiability?
pause Depends on known special cases and heuristics. Examples.

1 Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

2 if all clauses are of size 2 then run 2-SAT polynomial time
algorithm

3 . . .

Ruta (UIUC) CS473 8 Spring 2021 8 / 34

Branch-and-Bound
Backtracking for optimization problems

Consider a minimization problem.
Notation: for instance I , opt(I) is optimum value on I .

P0 initial instance of given problem.

1 We will keep track of the best solution value B found so far.
Initialize B to be crude upper bound on opt(I).

2 Let P be a subproblem at some stage of exploration.

3 If P is a complete solution, update B.
4 Else quickly/efficiently find a lower bound b on opt(P).

1 If b ≥ B then prune (discard) P
2 Else explore P further by breaking it into subproblems and

recurse on them.

5 Output best solution found.

Ruta (UIUC) CS473 9 Spring 2021 9 / 34

Branch-and-Bound
Backtracking for optimization problems

Consider a minimization problem.
Notation: for instance I , opt(I) is optimum value on I .

P0 initial instance of given problem.

1 We will keep track of the best solution value B found so far.

Initialize B to be crude upper bound on opt(I).

2 Let P be a subproblem at some stage of exploration.

3 If P is a complete solution, update B.
4 Else quickly/efficiently find a lower bound b on opt(P).

1 If b ≥ B then prune (discard) P
2 Else explore P further by breaking it into subproblems and

recurse on them.

5 Output best solution found.

Ruta (UIUC) CS473 9 Spring 2021 9 / 34

Branch-and-Bound
Backtracking for optimization problems

Consider a minimization problem.
Notation: for instance I , opt(I) is optimum value on I .

P0 initial instance of given problem.

1 We will keep track of the best solution value B found so far.
Initialize B to be crude upper bound on opt(I).

2 Let P be a subproblem at some stage of exploration.

3 If P is a complete solution, update B.
4 Else quickly/efficiently find a lower bound b on opt(P).

1 If b ≥ B then prune (discard) P
2 Else explore P further by breaking it into subproblems and

recurse on them.

5 Output best solution found.

Ruta (UIUC) CS473 9 Spring 2021 9 / 34

Branch-and-Bound
Backtracking for optimization problems

Consider a minimization problem.
Notation: for instance I , opt(I) is optimum value on I .

P0 initial instance of given problem.

1 We will keep track of the best solution value B found so far.
Initialize B to be crude upper bound on opt(I).

2 Let P be a subproblem at some stage of exploration.

3 If P is a complete solution, update B.

4 Else quickly/efficiently find a lower bound b on opt(P).
1 If b ≥ B then prune (discard) P
2 Else explore P further by breaking it into subproblems and

recurse on them.

5 Output best solution found.

Ruta (UIUC) CS473 9 Spring 2021 9 / 34

Branch-and-Bound
Backtracking for optimization problems

Consider a minimization problem.
Notation: for instance I , opt(I) is optimum value on I .

P0 initial instance of given problem.

1 We will keep track of the best solution value B found so far.
Initialize B to be crude upper bound on opt(I).

2 Let P be a subproblem at some stage of exploration.

3 If P is a complete solution, update B.
4 Else quickly/efficiently find a lower bound b on opt(P).

1 If b ≥ B then prune (discard) P
2 Else explore P further by breaking it into subproblems and

recurse on them.

5 Output best solution found.

Ruta (UIUC) CS473 9 Spring 2021 9 / 34

Branch-and-Bound
Backtracking for optimization problems

Consider a minimization problem.
Notation: for instance I , opt(I) is optimum value on I .

P0 initial instance of given problem.

1 We will keep track of the best solution value B found so far.
Initialize B to be crude upper bound on opt(I).

2 Let P be a subproblem at some stage of exploration.

3 If P is a complete solution, update B.
4 Else quickly/efficiently find a lower bound b on opt(P).

1 If b ≥ B then prune (discard) P
2 Else explore P further by breaking it into subproblems and

recurse on them.

5 Output best solution found.

Ruta (UIUC) CS473 9 Spring 2021 9 / 34

Example: Vertex Cover

Given G = (V ,E), find a minimum sized vertex cover in G .

1 Initialize B = n − 1.

2 Pick a vertex u. Branch on u: either choose u or discard it.

3 Choose u: let b1 be a lower bound on G1 = G − u.

4 If 1 + b1 < B, recursively explore G1 (and update B)

5 Dicard u: let b2 be a lower bound on G2 = G − u − N(u)
where N(u) is the set of neighbors of u.

6 If |N(u)|+ b2 < B, recursively explore G2 (and update B)

7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Ruta (UIUC) CS473 10 Spring 2021 10 / 34

Example: Vertex Cover

Given G = (V ,E), find a minimum sized vertex cover in G .

1 Initialize B = n − 1.

2 Pick a vertex u. Branch on u: either choose u or discard it.

3 Choose u: let b1 be a lower bound on G1 = G − u.

4 If 1 + b1 < B, recursively explore G1 (and update B)

5 Dicard u: let b2 be a lower bound on G2 = G − u − N(u)
where N(u) is the set of neighbors of u.

6 If |N(u)|+ b2 < B, recursively explore G2 (and update B)

7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Ruta (UIUC) CS473 10 Spring 2021 10 / 34

Example: Vertex Cover

Given G = (V ,E), find a minimum sized vertex cover in G .

1 Initialize B = n − 1.

2 Pick a vertex u. Branch on u: either choose u or discard it.

3 Choose u: let b1 be a lower bound on G1 = G − u.

4 If 1 + b1 < B, recursively explore G1 (and update B)

5 Dicard u: let b2 be a lower bound on G2 = G − u − N(u)
where N(u) is the set of neighbors of u.

6 If |N(u)|+ b2 < B, recursively explore G2 (and update B)

7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Ruta (UIUC) CS473 10 Spring 2021 10 / 34

Example: Vertex Cover

Given G = (V ,E), find a minimum sized vertex cover in G .

1 Initialize B = n − 1.

2 Pick a vertex u. Branch on u: either choose u or discard it.

3 Choose u: let b1 be a lower bound on G1 = G − u.

4 If 1 + b1 < B, recursively explore G1 (and update B)

5 Dicard u: let b2 be a lower bound on G2 = G − u − N(u)
where N(u) is the set of neighbors of u.

6 If |N(u)|+ b2 < B, recursively explore G2 (and update B)

7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Ruta (UIUC) CS473 10 Spring 2021 10 / 34

Example: Vertex Cover

Given G = (V ,E), find a minimum sized vertex cover in G .

1 Initialize B = n − 1.

2 Pick a vertex u. Branch on u: either choose u or discard it.

3 Choose u: let b1 be a lower bound on G1 = G − u.

4 If 1 + b1 < B, recursively explore G1 (and update B)

5 Dicard u: let b2 be a lower bound on G2 = G − u − N(u)
where N(u) is the set of neighbors of u.

6 If |N(u)|+ b2 < B, recursively explore G2 (and update B)

7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Ruta (UIUC) CS473 10 Spring 2021 10 / 34

Example: Vertex Cover

Given G = (V ,E), find a minimum sized vertex cover in G .

1 Initialize B = n − 1.

2 Pick a vertex u. Branch on u: either choose u or discard it.

3 Choose u: let b1 be a lower bound on G1 = G − u.

4 If 1 + b1 < B, recursively explore G1 (and update B)

5 Dicard u: let b2 be a lower bound on G2 = G − u − N(u)
where N(u) is the set of neighbors of u.

6 If |N(u)|+ b2 < B, recursively explore G2 (and update B)

7 Output B.

How do we compute a lower bound?
One possibility: solve an LP relaxation.

Ruta (UIUC) CS473 10 Spring 2021 10 / 34

Local Search

Local Search: a simple and broadly applicable heuristic method

1 Start with some arbitrary solution s

2 Let N(s) be solutions in the “neighborhood” of s obtained from
s via “local” moves/changes

3 If there is a solution s ′ ∈ N(s) that is better than s, move to
s ′ and continue search with s ′

4 Else, stop search and output s.

Ruta (UIUC) CS473 11 Spring 2021 11 / 34

Local Search

Local Search: a simple and broadly applicable heuristic method

1 Start with some arbitrary solution s
2 Let N(s) be solutions in the “neighborhood” of s obtained from

s via “local” moves/changes

3 If there is a solution s ′ ∈ N(s) that is better than s, move to
s ′ and continue search with s ′

4 Else, stop search and output s.

Ruta (UIUC) CS473 11 Spring 2021 11 / 34

Local Search

Local Search: a simple and broadly applicable heuristic method

1 Start with some arbitrary solution s
2 Let N(s) be solutions in the “neighborhood” of s obtained from

s via “local” moves/changes

3 If there is a solution s ′ ∈ N(s) that is better than s, move to
s ′ and continue search with s ′

4 Else, stop search and output s.

Ruta (UIUC) CS473 11 Spring 2021 11 / 34

Local Search

Main ingredients in local search:

1 Initial solution.

2 Definition of neighborhood of a solution.

3 Efficient algorithm to find a good solution in the neighborhood.

Ruta (UIUC) CS473 12 Spring 2021 12 / 34

Example: TSP

TSP: Given a complete graph G = (V ,E) with cij denoting cost of
edge (i , j), compute a Hamiltonian cycle/tour of minimum edge cost.

2-change local search:

1 Start with an arbitrary tour s0

2 For a solution s define s ′ to be a neighbor if s ′ can be obtained
from s by replacing two edges in s with two other edges.

3 For a solution s at most O(n2) neighbors and one can try all of
them to find an improvement.

Ruta (UIUC) CS473 13 Spring 2021 13 / 34

Example: TSP

TSP: Given a complete graph G = (V ,E) with cij denoting cost of
edge (i , j), compute a Hamiltonian cycle/tour of minimum edge cost.

2-change local search:

1 Start with an arbitrary tour s0

2 For a solution s define s ′ to be a neighbor if s ′ can be obtained
from s by replacing two edges in s with two other edges.

3 For a solution s at most O(n2) neighbors and one can try all of
them to find an improvement.

Ruta (UIUC) CS473 13 Spring 2021 13 / 34

Example: TSP

TSP: Given a complete graph G = (V ,E) with cij denoting cost of
edge (i , j), compute a Hamiltonian cycle/tour of minimum edge cost.

2-change local search:

1 Start with an arbitrary tour s0

2 For a solution s define s ′ to be a neighbor if s ′ can be obtained
from s by replacing two edges in s with two other edges.

3 For a solution s at most O(n2) neighbors and one can try all of
them to find an improvement.

Ruta (UIUC) CS473 13 Spring 2021 13 / 34

TSP: 2-change example

=⇒

Figure below shows a bad local optimum for 2-change heuristic...

Ruta (UIUC) CS473 14 Spring 2021 14 / 34

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

Ruta (UIUC) CS473 14 Spring 2021 14 / 34

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

Ruta (UIUC) CS473 14 Spring 2021 14 / 34

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

=⇒

Ruta (UIUC) CS473 14 Spring 2021 14 / 34

TSP: 2-change example

=⇒ =⇒

Figure below shows a bad local optimum for 2-change heuristic...

=⇒

Ruta (UIUC) CS473 14 Spring 2021 14 / 34

TSP: 3-change example

3-change local search: swap 3 edges out.

=⇒

Neighborhood of s has now increased to a size of Ω(n3)

Ruta (UIUC) CS473 15 Spring 2021 15 / 34

TSP: 3-change example

3-change local search: swap 3 edges out.

=⇒

Neighborhood of s has now increased to a size of Ω(n3)

Ruta (UIUC) CS473 15 Spring 2021 15 / 34

TSP: 3-change example

3-change local search: swap 3 edges out.

=⇒

Neighborhood of s has now increased to a size of Ω(n3)

Can define k-change heuristic where k edges are swapped out.
Increases neighborhood size and makes each local improvement step
less efficient.

Ruta (UIUC) CS473 15 Spring 2021 15 / 34

Local Search Variants

Local search terminates with a local optimum which may be far from
a global optimum. Many variants to improve plain local search.

1 Randomization and restarts: Initial solution may strongly
influence the quality of the final solution. Try many random
initial solutions.

2 Simulated annealing: Allows the algorithm to move to worse
solutions with some probability. At the beginning this is done
more aggressively and then slowly the algorithm converges to
plain local search. Controlled by a parameter called
“temperature”.

3 Tabu search. Store already visited solutions and do not visit
them again (they are “taboo”).

Ruta (UIUC) CS473 16 Spring 2021 16 / 34

Local Search Variants

Local search terminates with a local optimum which may be far from
a global optimum. Many variants to improve plain local search.

1 Randomization and restarts: Initial solution may strongly
influence the quality of the final solution. Try many random
initial solutions.

2 Simulated annealing: Allows the algorithm to move to worse
solutions with some probability. At the beginning this is done
more aggressively and then slowly the algorithm converges to
plain local search. Controlled by a parameter called
“temperature”.

3 Tabu search. Store already visited solutions and do not visit
them again (they are “taboo”).

Ruta (UIUC) CS473 16 Spring 2021 16 / 34

Local Search Variants

Local search terminates with a local optimum which may be far from
a global optimum. Many variants to improve plain local search.

1 Randomization and restarts: Initial solution may strongly
influence the quality of the final solution. Try many random
initial solutions.

2 Simulated annealing: Allows the algorithm to move to worse
solutions with some probability. At the beginning this is done
more aggressively and then slowly the algorithm converges to
plain local search. Controlled by a parameter called
“temperature”.

3 Tabu search. Store already visited solutions and do not visit
them again (they are “taboo”).

Ruta (UIUC) CS473 16 Spring 2021 16 / 34

Heuristics

Several other heuristics used in practice.

1 Heuristics for solving integer linear programs such as cutting
planes, branch-and-cut etc are quite effective. They exploit the
geometry of the problem.

2 Heuristics to solve SAT (SAT-solvers) have gained prominence in
recent years

3 Genetic algorithms

4 . . .

Heuristics design is somewhat ad hoc and depends heavily on the
problem and the instances that are of interest.

Ruta (UIUC) CS473 17 Spring 2021 17 / 34

Heuristics

Several other heuristics used in practice.

1 Heuristics for solving integer linear programs such as cutting
planes, branch-and-cut etc are quite effective. They exploit the
geometry of the problem.

2 Heuristics to solve SAT (SAT-solvers) have gained prominence in
recent years

3 Genetic algorithms

4 . . .

Heuristics design is somewhat ad hoc and depends heavily on the
problem and the instances that are of interest.

Ruta (UIUC) CS473 17 Spring 2021 17 / 34

Part II

Approximation Algorithms

Ruta (UIUC) CS473 18 Spring 2021 18 / 34

Approximation algorithms

Consider the following optimization problems:

1 Max Knapsack: Given knapsack of capacity W , n items each
with a value and weight, pack the knapsack with the most
profitable subset of items whose weight does not exceed the
knapsack capacity.

2 Min Vertex Cover: given a graph G = (V ,E) find the
minimum cardinality vertex cover.

3 Min Set Cover: given Set Cover instance, find the smallest
number of sets that cover all elements in the universe.

4 Max Independent Set: given graph G = (V ,E) find
maximum independent set.

5 Min Traveling Salesman Tour: given a directed graph G with
edge costs, find minimum length/cost Hamiltonian cycle in G .

Solving one in polynomial time implies solving all the others.

Ruta (UIUC) CS473 19 Spring 2021 19 / 34

Approximation algorithms

Consider the following optimization problems:

1 Max Knapsack: Given knapsack of capacity W , n items each
with a value and weight, pack the knapsack with the most
profitable subset of items whose weight does not exceed the
knapsack capacity.

2 Min Vertex Cover: given a graph G = (V ,E) find the
minimum cardinality vertex cover.

3 Min Set Cover: given Set Cover instance, find the smallest
number of sets that cover all elements in the universe.

4 Max Independent Set: given graph G = (V ,E) find
maximum independent set.

5 Min Traveling Salesman Tour: given a directed graph G with
edge costs, find minimum length/cost Hamiltonian cycle in G .

Solving one in polynomial time implies solving all the others.
Ruta (UIUC) CS473 19 Spring 2021 19 / 34

Approximation algorithms

However, the problems behave very differently if one wants to solve
them approximately.

Informal definition: An approximation algorithm for an
optimization problem is an efficient (polynomial-time) algorithm that
guarantees for every instance a solution of some given quality when
compared to an optimal solution.

Ruta (UIUC) CS473 20 Spring 2021 20 / 34

Approximation algorithms

However, the problems behave very differently if one wants to solve
them approximately.

Informal definition: An approximation algorithm for an
optimization problem is an efficient (polynomial-time) algorithm that
guarantees for every instance a solution of some given quality when
compared to an optimal solution.

Ruta (UIUC) CS473 20 Spring 2021 20 / 34

Some known approximation results

1 Knapsack: For every fixed ε > 0 there is a polynomial time
algorithm that guarantees a solution of quality (1− ε) times
the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

2 Min Vertex Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most 2 times the cost of an
optimum solution.

3 Min Set Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most (ln n + 1) times the cost
of an optimal solution.

4 Max Independent Set: Unless P = NP, for any fixed ε > 0,
no polynomial time algorithm can give a n1−ε relative
approximation. Here n is number of vertices in the graph.

5 Min TSP: No polynomial factor relative approximation possible.

Ruta (UIUC) CS473 21 Spring 2021 21 / 34

Some known approximation results

1 Knapsack: For every fixed ε > 0 there is a polynomial time
algorithm that guarantees a solution of quality (1− ε) times
the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

2 Min Vertex Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most 2 times the cost of an
optimum solution.

3 Min Set Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most (ln n + 1) times the cost
of an optimal solution.

4 Max Independent Set: Unless P = NP, for any fixed ε > 0,
no polynomial time algorithm can give a n1−ε relative
approximation. Here n is number of vertices in the graph.

5 Min TSP: No polynomial factor relative approximation possible.

Ruta (UIUC) CS473 21 Spring 2021 21 / 34

Some known approximation results

1 Knapsack: For every fixed ε > 0 there is a polynomial time
algorithm that guarantees a solution of quality (1− ε) times
the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

2 Min Vertex Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most 2 times the cost of an
optimum solution.

3 Min Set Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most (ln n + 1) times the cost
of an optimal solution.

4 Max Independent Set: Unless P = NP, for any fixed ε > 0,
no polynomial time algorithm can give a n1−ε relative
approximation. Here n is number of vertices in the graph.

5 Min TSP: No polynomial factor relative approximation possible.

Ruta (UIUC) CS473 21 Spring 2021 21 / 34

Some known approximation results

1 Knapsack: For every fixed ε > 0 there is a polynomial time
algorithm that guarantees a solution of quality (1− ε) times
the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

2 Min Vertex Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most 2 times the cost of an
optimum solution.

3 Min Set Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most (ln n + 1) times the cost
of an optimal solution.

4 Max Independent Set: Unless P = NP, for any fixed ε > 0,
no polynomial time algorithm can give a n1−ε relative
approximation. Here n is number of vertices in the graph.

5 Min TSP: No polynomial factor relative approximation possible.

Ruta (UIUC) CS473 21 Spring 2021 21 / 34

Some known approximation results

1 Knapsack: For every fixed ε > 0 there is a polynomial time
algorithm that guarantees a solution of quality (1− ε) times
the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

2 Min Vertex Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most 2 times the cost of an
optimum solution.

3 Min Set Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most (ln n + 1) times the cost
of an optimal solution.

4 Max Independent Set: Unless P = NP, for any fixed ε > 0,
no polynomial time algorithm can give a n1−ε relative
approximation. Here n is number of vertices in the graph.

5 Min TSP: No polynomial factor relative approximation possible.

Ruta (UIUC) CS473 21 Spring 2021 21 / 34

Approximation algorithms

1 Although NP-Complete problems are all equivalent with
respect to polynomial-time solvability they behave quite
differently under approximation (in both theory and practice).

2 Approximation is a useful lens to examine NP-Complete
problems more closely.

3 Approximation also useful for problems that we can solve
efficiently:

1 We may have other constraints such a space (streaming
problems) or time (need linear time or less for very large
problems)

2 Data may be uncertain (online and stochastic problems).

Ruta (UIUC) CS473 22 Spring 2021 22 / 34

Approximation algorithms

1 Although NP-Complete problems are all equivalent with
respect to polynomial-time solvability they behave quite
differently under approximation (in both theory and practice).

2 Approximation is a useful lens to examine NP-Complete
problems more closely.

3 Approximation also useful for problems that we can solve
efficiently:

1 We may have other constraints such a space (streaming
problems) or time (need linear time or less for very large
problems)

2 Data may be uncertain (online and stochastic problems).

Ruta (UIUC) CS473 22 Spring 2021 22 / 34

Approximation algorithms

1 Although NP-Complete problems are all equivalent with
respect to polynomial-time solvability they behave quite
differently under approximation (in both theory and practice).

2 Approximation is a useful lens to examine NP-Complete
problems more closely.

3 Approximation also useful for problems that we can solve
efficiently:

1 We may have other constraints such a space (streaming
problems) or time (need linear time or less for very large
problems)

2 Data may be uncertain (online and stochastic problems).

Ruta (UIUC) CS473 22 Spring 2021 22 / 34

Formal definition of approximation algorithm

An algorithm A for an optimization problem X is an
α-approximation algorithm if the following conditions hold:

for instance I of X the algorithm A outputs a valid solution to I

A is a polynomial-time algorithm

Let OPT (I) and A(I) denote the values of an optimum
solution and the solution output by A on instances I . Then

If X is a minimization problem: A(I)/OPT (I) ≤ α
If X is a maximization problem: OPT (I)/A(I) ≤ α

Definition ensures that α ≥ 1

To be formal we need to say α(n) where n = |I | since in some cases
the approximation ratio depends on the size of the instance.

Ruta (UIUC) CS473 23 Spring 2021 23 / 34

Formal definition of approximation algorithm

An algorithm A for an optimization problem X is an
α-approximation algorithm if the following conditions hold:

for instance I of X the algorithm A outputs a valid solution to I
A is a polynomial-time algorithm

Let OPT (I) and A(I) denote the values of an optimum
solution and the solution output by A on instances I . Then

If X is a minimization problem: A(I)/OPT (I) ≤ α
If X is a maximization problem: OPT (I)/A(I) ≤ α

Definition ensures that α ≥ 1

To be formal we need to say α(n) where n = |I | since in some cases
the approximation ratio depends on the size of the instance.

Ruta (UIUC) CS473 23 Spring 2021 23 / 34

Formal definition of approximation algorithm

An algorithm A for an optimization problem X is an
α-approximation algorithm if the following conditions hold:

for instance I of X the algorithm A outputs a valid solution to I
A is a polynomial-time algorithm

Let OPT (I) and A(I) denote the values of an optimum
solution and the solution output by A on instances I .

Then

If X is a minimization problem: A(I)/OPT (I) ≤ α
If X is a maximization problem: OPT (I)/A(I) ≤ α

Definition ensures that α ≥ 1

To be formal we need to say α(n) where n = |I | since in some cases
the approximation ratio depends on the size of the instance.

Ruta (UIUC) CS473 23 Spring 2021 23 / 34

Formal definition of approximation algorithm

An algorithm A for an optimization problem X is an
α-approximation algorithm if the following conditions hold:

for instance I of X the algorithm A outputs a valid solution to I
A is a polynomial-time algorithm

Let OPT (I) and A(I) denote the values of an optimum
solution and the solution output by A on instances I . Then

If X is a minimization problem: A(I)/OPT (I) ≤ α
If X is a maximization problem: OPT (I)/A(I) ≤ α

Definition ensures that α ≥ 1

To be formal we need to say α(n) where n = |I | since in some cases
the approximation ratio depends on the size of the instance.

Ruta (UIUC) CS473 23 Spring 2021 23 / 34

Formal definition of approximation algorithm

An algorithm A for an optimization problem X is an
α-approximation algorithm if the following conditions hold:

for instance I of X the algorithm A outputs a valid solution to I
A is a polynomial-time algorithm

Let OPT (I) and A(I) denote the values of an optimum
solution and the solution output by A on instances I . Then

If X is a minimization problem: A(I)/OPT (I) ≤ α
If X is a maximization problem: OPT (I)/A(I) ≤ α

Definition ensures that α ≥ 1

To be formal we need to say α(n) where n = |I | since in some cases
the approximation ratio depends on the size of the instance.

Ruta (UIUC) CS473 23 Spring 2021 23 / 34

Formal definition of approximation algorithm

An algorithm A for an optimization problem X is an
α-approximation algorithm if the following conditions hold:

for instance I of X the algorithm A outputs a valid solution to I
A is a polynomial-time algorithm

Let OPT (I) and A(I) denote the values of an optimum
solution and the solution output by A on instances I . Then

If X is a minimization problem: A(I)/OPT (I) ≤ α
If X is a maximization problem: OPT (I)/A(I) ≤ α

Definition ensures that α ≥ 1

To be formal we need to say α(n) where n = |I | since in some cases
the approximation ratio depends on the size of the instance.

Ruta (UIUC) CS473 23 Spring 2021 23 / 34

Formal definition of approximation algorithm

Unfortunately notation is not consistently used. Some times people
use the following convention:

If X is a minimization problem then A(I)/OPT (I) ≤ α and
here α ≥ 1.

If X is a maximization problem then A(I)/OPT (I) ≥ α and
here α ≤ 1.

Usually clear from the context.

Ruta (UIUC) CS473 24 Spring 2021 24 / 34

Relative vs Additive

We defined approximation ratio in a relative sense. Some times it
makes sense to ask for an additive approximation. For instance in
continuous optimization such as linear/convex optimization we talk
about ε-error where we want a solution I such that
|A(I)− OPT (I)| ≤ ε.

For most NP-Hard optimization problems it is not hard to show that
one cannot obtain a good additive approximation in polynomial time
unless P = NP and hence relative approximation is a more robust
and useful notion.

Ruta (UIUC) CS473 25 Spring 2021 25 / 34

Relative vs Additive

We defined approximation ratio in a relative sense. Some times it
makes sense to ask for an additive approximation. For instance in
continuous optimization such as linear/convex optimization we talk
about ε-error where we want a solution I such that
|A(I)− OPT (I)| ≤ ε.

For most NP-Hard optimization problems it is not hard to show that
one cannot obtain a good additive approximation in polynomial time
unless P = NP

and hence relative approximation is a more robust
and useful notion.

Ruta (UIUC) CS473 25 Spring 2021 25 / 34

Relative vs Additive

We defined approximation ratio in a relative sense. Some times it
makes sense to ask for an additive approximation. For instance in
continuous optimization such as linear/convex optimization we talk
about ε-error where we want a solution I such that
|A(I)− OPT (I)| ≤ ε.

For most NP-Hard optimization problems it is not hard to show that
one cannot obtain a good additive approximation in polynomial time
unless P = NP and hence relative approximation is a more robust
and useful notion.

Ruta (UIUC) CS473 25 Spring 2021 25 / 34

Part III

Approximation for Vertex Cover

Ruta (UIUC) CS473 26 Spring 2021 26 / 34

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Problem (Vertex Cover)

Input: A graph G
Goal: Find a vertex cover of minimum size in G

Ruta (UIUC) CS473 27 Spring 2021 27 / 34

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:
1 A vertex cover if every e ∈ E has at least one endpoint in S .

Problem (Vertex Cover)

Input: A graph G
Goal: Find a vertex cover of minimum size in G

Ruta (UIUC) CS473 27 Spring 2021 27 / 34

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:
1 A vertex cover if every e ∈ E has at least one endpoint in S .

Problem (Vertex Cover)

Input: A graph G
Goal: Find a vertex cover of minimum size in G

Ruta (UIUC) CS473 27 Spring 2021 27 / 34

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:
1 A vertex cover if every e ∈ E has at least one endpoint in S .

Problem (Vertex Cover)

Input: A graph G
Goal: Find a vertex cover of minimum size in G

Ruta (UIUC) CS473 27 Spring 2021 27 / 34

Greedy Algorithm

Greedy(G):

Initialize S to be ∅
While there are edges in G do

Select vertex v with

maximum degree

S ← S ∪ {v}
G ← G − v

endWhile

Output S

Theorem
|S| ≤ (ln n + 1)OPT where OPT is the value of an optimum set.
Here n is number of nodes in G .

Theorem
There is an infinite family of graphs where the solution S output by
Greedy is Ω(ln n)OPT .

Ruta (UIUC) CS473 28 Spring 2021 28 / 34

Greedy Algorithm

Greedy(G):

Initialize S to be ∅
While there are edges in G do

Select vertex v with maximum degree

S ← S ∪ {v}
G ← G − v

endWhile

Output S

Theorem
|S| ≤ (ln n + 1)OPT where OPT is the value of an optimum set.
Here n is number of nodes in G .

Theorem
There is an infinite family of graphs where the solution S output by
Greedy is Ω(ln n)OPT .

Ruta (UIUC) CS473 28 Spring 2021 28 / 34

Greedy Algorithm

Greedy(G):

Initialize S to be ∅
While there are edges in G do

Select vertex v with maximum degree

S ← S ∪ {v}
G ← G − v

endWhile

Output S

Theorem
|S| ≤ (ln n + 1)OPT where OPT is the value of an optimum set.
Here n is number of nodes in G .

Theorem
There is an infinite family of graphs where the solution S output by
Greedy is Ω(ln n)OPT .

Ruta (UIUC) CS473 28 Spring 2021 28 / 34

Greedy Algorithm

Greedy(G):

Initialize S to be ∅
While there are edges in G do

Select vertex v with maximum degree

S ← S ∪ {v}
G ← G − v

endWhile

Output S

Theorem
|S| ≤ (ln n + 1)OPT where OPT is the value of an optimum set.
Here n is number of nodes in G .

Theorem
There is an infinite family of graphs where the solution S output by
Greedy is Ω(ln n)OPT .

Ruta (UIUC) CS473 28 Spring 2021 28 / 34

Matching Heuristic

Relation between matching and vertex cover

Lemma
Let M ⊂ E be a matching in graph G = (V ,E), then
OPT ≥ |M| where OPT is the size of minimum vertex cover.

MatchingHeuristic(G):

Find a maximal matching M in G
S is the set of both end points of edges in M
Output S

Lemma
S is a feasible vertex cover.

Analysis: |S| = 2|M| ≤ 2OPT . Algorithm is a 2-approximation.

Ruta (UIUC) CS473 29 Spring 2021 29 / 34

Matching Heuristic

Relation between matching and vertex cover

Lemma
Let M ⊂ E be a matching in graph G = (V ,E), then
OPT ≥ |M| where OPT is the size of minimum vertex cover.

MatchingHeuristic(G):

Find a maximal matching M in G
S is the set of both end points of edges in M
Output S

Lemma
S is a feasible vertex cover.

Analysis: |S| = 2|M| ≤ 2OPT . Algorithm is a 2-approximation.

Ruta (UIUC) CS473 29 Spring 2021 29 / 34

Matching Heuristic

Relation between matching and vertex cover

Lemma
Let M ⊂ E be a matching in graph G = (V ,E), then
OPT ≥ |M| where OPT is the size of minimum vertex cover.

MatchingHeuristic(G):

Find a maximal matching M in G
S is the set of both end points of edges in M
Output S

Lemma
S is a feasible vertex cover.

Analysis: |S| = 2|M| ≤ 2OPT . Algorithm is a 2-approximation.

Ruta (UIUC) CS473 29 Spring 2021 29 / 34

Matching Heuristic

Relation between matching and vertex cover

Lemma
Let M ⊂ E be a matching in graph G = (V ,E), then
OPT ≥ |M| where OPT is the size of minimum vertex cover.

MatchingHeuristic(G):

Find a maximal matching M in G
S is the set of both end points of edges in M
Output S

Lemma
S is a feasible vertex cover.

Analysis: |S| = 2|M| ≤ 2OPT . Algorithm is a 2-approximation.

Ruta (UIUC) CS473 29 Spring 2021 29 / 34

Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.

Lemma
OPT ≥

∑
v wvx∗v .

Ruta (UIUC) CS473 30 Spring 2021 30 / 34

Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.

Lemma
OPT ≥

∑
v wvx∗v .

Ruta (UIUC) CS473 30 Spring 2021 30 / 34

Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.

Lemma
OPT ≥

∑
v wvx∗v .

Ruta (UIUC) CS473 30 Spring 2021 30 / 34

Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ∈ {0, 1} for each v ∈ V

Relax integer program to a linear program

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Can solve linear program in polynomial time.
Let x∗ be an optimum solution to the linear program.

Lemma
OPT ≥

∑
v wvx∗v .

Ruta (UIUC) CS473 30 Spring 2021 30 / 34

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S .

Lemma
S is a feasible vertex cover for the given graph.

Lemma
w(S) ≤ 2

∑
v wvx∗v ≤ 2OPT .

Ruta (UIUC) CS473 31 Spring 2021 31 / 34

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S .

Lemma
S is a feasible vertex cover for the given graph.

Lemma
w(S) ≤ 2

∑
v wvx∗v ≤ 2OPT .

Ruta (UIUC) CS473 31 Spring 2021 31 / 34

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S .

Lemma
S is a feasible vertex cover for the given graph.

Lemma
w(S) ≤

2
∑

v wvx∗v ≤ 2OPT .

Ruta (UIUC) CS473 31 Spring 2021 31 / 34

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S .

Lemma
S is a feasible vertex cover for the given graph.

Lemma
w(S) ≤ 2

∑
v wvx∗v ≤

2OPT .

Ruta (UIUC) CS473 31 Spring 2021 31 / 34

Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for each uv ∈ E
xv ≥ 0 for each v ∈ V

Let x∗ be an optimum solution to the linear program.
Rounding: S = {v | x∗v ≥ 1/2}. Output S .

Lemma
S is a feasible vertex cover for the given graph.

Lemma
w(S) ≤ 2

∑
v wvx∗v ≤ 2OPT .

Ruta (UIUC) CS473 31 Spring 2021 31 / 34

Set Cover and Vertex Cover

Theorem
Greedy gives (ln n + 1)-approximation for Set Cover where n is
number of elements.

Theorem
Unless P = NP no (ln n + ε)-approximation for Set Cover for
ε < 1.

2-approximation is best known for Vertex Cover.

Theorem
Unless P = NP no 1.36-approximation for Vertex Cover.

Conjecture: Unless P = NP no (2− ε)-approximation for Vertex
Cover for any fixed ε > 0.

Ruta (UIUC) CS473 32 Spring 2021 32 / 34

Set Cover and Vertex Cover

Theorem
Greedy gives (ln n + 1)-approximation for Set Cover where n is
number of elements.

Theorem
Unless P = NP no (ln n + ε)-approximation for Set Cover for
ε < 1.

2-approximation is best known for Vertex Cover.

Theorem
Unless P = NP no 1.36-approximation for Vertex Cover.

Conjecture: Unless P = NP no (2− ε)-approximation for Vertex
Cover for any fixed ε > 0.

Ruta (UIUC) CS473 32 Spring 2021 32 / 34

Set Cover and Vertex Cover

Theorem
Greedy gives (ln n + 1)-approximation for Set Cover where n is
number of elements.

Theorem
Unless P = NP no (ln n + ε)-approximation for Set Cover for
ε < 1.

2-approximation is best known for Vertex Cover.

Theorem
Unless P = NP no 1.36-approximation for Vertex Cover.

Conjecture: Unless P = NP no (2− ε)-approximation for Vertex
Cover for any fixed ε > 0.

Ruta (UIUC) CS473 32 Spring 2021 32 / 34

Set Cover and Vertex Cover

Theorem
Greedy gives (ln n + 1)-approximation for Set Cover where n is
number of elements.

Theorem
Unless P = NP no (ln n + ε)-approximation for Set Cover for
ε < 1.

2-approximation is best known for Vertex Cover.

Theorem
Unless P = NP no 1.36-approximation for Vertex Cover.

Conjecture: Unless P = NP no (2− ε)-approximation for Vertex
Cover for any fixed ε > 0.

Ruta (UIUC) CS473 32 Spring 2021 32 / 34

Independent Set and Vertex Cover

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

IndependentSetHeuristic(G = (V ,E)):
Find (an approximate) vertex cover S in G
Output V − S

Question: Is this a good (approximation) algorithm?

If S∗ is a minimum sized vertex cover then V − S∗ is a max
independent set.

Ruta (UIUC) CS473 33 Spring 2021 33 / 34

Independent Set and Vertex Cover

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

IndependentSetHeuristic(G = (V ,E)):
Find (an approximate) vertex cover S in G
Output V − S

Question: Is this a good (approximation) algorithm?

If S∗ is a minimum sized vertex cover then V − S∗ is a max
independent set.

Ruta (UIUC) CS473 33 Spring 2021 33 / 34

Independent Set and Vertex Cover

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

IndependentSetHeuristic(G = (V ,E)):
Find (an approximate) vertex cover S in G
Output V − S

Question: Is this a good (approximation) algorithm?

If S∗ is a minimum sized vertex cover then V − S∗ is a max
independent set.

Ruta (UIUC) CS473 33 Spring 2021 33 / 34

Independent Set and Vertex Cover

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

IndependentSetHeuristic(G = (V ,E)):
Find (an approximate) vertex cover S in G
Output V − S

Question: Is this a good (approximation) algorithm?

If S∗ is a minimum sized vertex cover then V − S∗ is a max
independent set.

Ruta (UIUC) CS473 33 Spring 2021 33 / 34

Independent Set and Vertex Cover

IndependentSetHeuristic(G = (V ,E)):
Find (an approximate) vertex cover S in G
Output V − S

Let k be minimum vertex cover size.

Suppose k = n/2 where n = |V |
Then V is a 2-approximation

But then algorithm will output an empty independent set even
though there is an independent set of size n/2.

Example?

Theorem
Unless P = NP no n1−δ-approximation for Independent Set for any
fixed δ > 0.

Ruta (UIUC) CS473 34 Spring 2021 34 / 34

Independent Set and Vertex Cover

IndependentSetHeuristic(G = (V ,E)):
Find (an approximate) vertex cover S in G
Output V − S

Let k be minimum vertex cover size.

Suppose k = n/2 where n = |V |
Then V is a 2-approximation

But then algorithm will output an empty independent set even
though there is an independent set of size n/2.

Example?

Theorem
Unless P = NP no n1−δ-approximation for Independent Set for any
fixed δ > 0.

Ruta (UIUC) CS473 34 Spring 2021 34 / 34

Independent Set and Vertex Cover

IndependentSetHeuristic(G = (V ,E)):
Find (an approximate) vertex cover S in G
Output V − S

Let k be minimum vertex cover size.

Suppose k = n/2 where n = |V |
Then V is a 2-approximation

But then algorithm will output an empty independent set even
though there is an independent set of size n/2.

Example?

Theorem
Unless P = NP no n1−δ-approximation for Independent Set for any
fixed δ > 0.

Ruta (UIUC) CS473 34 Spring 2021 34 / 34

	Heuristics
	Approximation Algorithms
	Approximation for Vertex Cover

