
CS 473: Algorithms, Spring 2021

SAT, NP, NP-Completeness
Lecture 21
April 22, 2021

Most slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 1 Spring 2021 1 / 55

Part I

The Satisfiability Problem (SAT)

Ruta (UIUC) CS473 2 Spring 2021 2 / 55

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Ruta (UIUC) CS473 3 Spring 2021 3 / 55

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Ruta (UIUC) CS473 3 Spring 2021 3 / 55

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Ruta (UIUC) CS473 3 Spring 2021 3 / 55

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Ruta (UIUC) CS473 3 Spring 2021 3 / 55

Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Ruta (UIUC) CS473 4 Spring 2021 4 / 55

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

Ruta (UIUC) CS473 5 Spring 2021 5 / 55

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Ruta (UIUC) CS473 6 Spring 2021 6 / 55

3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Ruta (UIUC) CS473 7 Spring 2021 7 / 55

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Ruta (UIUC) CS473 8 Spring 2021 8 / 55

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Ruta (UIUC) CS473 8 Spring 2021 8 / 55

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x
)

In 3SAT every clause must have exactly 3 different literals.

Consider
(
x ∨ y ∨ z ∨ w

)
Replace it with

(
x ∨ y ∨ α

)
∧
(
¬α ∨ w ∨ u

)
1 Pad short clauses so they have 3 literals.
2 Break long clauses into shorter clauses. (Need to add new

variables)
3 Repeat the above till we have a 3CNF.

Ruta (UIUC) CS473 9 Spring 2021 9 / 55

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x
)

In 3SAT every clause must have exactly 3 different literals.

Consider
(
x ∨ y ∨ z ∨ w

)
Replace it with

(
x ∨ y ∨ α

)
∧
(
¬α ∨ w ∨ u

)

1 Pad short clauses so they have 3 literals.
2 Break long clauses into shorter clauses. (Need to add new

variables)
3 Repeat the above till we have a 3CNF.

Ruta (UIUC) CS473 9 Spring 2021 9 / 55

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x
)

In 3SAT every clause must have exactly 3 different literals.

Consider
(
x ∨ y ∨ z ∨ w

)
Replace it with

(
x ∨ y ∨ α

)
∧
(
¬α ∨ w ∨ u

)
1 Pad short clauses so they have 3 literals.
2 Break long clauses into shorter clauses. (Need to add new

variables)
3 Repeat the above till we have a 3CNF.

Ruta (UIUC) CS473 9 Spring 2021 9 / 55

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

Ruta (UIUC) CS473 10 Spring 2021 10 / 55

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

Ruta (UIUC) CS473 10 Spring 2021 10 / 55

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

Ruta (UIUC) CS473 10 Spring 2021 10 / 55

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Ruta (UIUC) CS473 10 Spring 2021 10 / 55

What about 2SAT?

A challenging exercise: Given a 2SAT formula design an efficient
algorithm to compute its satisfying assignment...

Look in books etc.

Ruta (UIUC) CS473 11 Spring 2021 11 / 55

Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?

3SAT ≤P Independent Set

Later (if time permits)

Ruta (UIUC) CS473 12 Spring 2021 12 / 55

Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?

3SAT ≤P Independent Set

Later (if time permits)

Ruta (UIUC) CS473 12 Spring 2021 12 / 55

Part II

Definition of P and NP

Ruta (UIUC) CS473 13 Spring 2021 13 / 55

Problems and Algorithms: Formal Approach

Decision Problems
1 Problem Instance: Binary string s, with size |s|
2 Problem: A set X of strings on which the answer should be

“yes”; we call these YES instances of X . Strings not in X are
NO instances of X .

Definition
1 A is an algorithm for problem X if A(s) = ”yes” iff s ∈ X .

2 A is said to have a polynomial running time if there is a
polynomial p(·) such that for every string s, A(s) terminates in
at most O(p(|s|)) steps.

Ruta (UIUC) CS473 14 Spring 2021 14 / 55

Polynomial Time

Definition
Polynomial time (denoted by P) is the class of all (decision)
problems that have an algorithm that solves it in polynomial time.

Ruta (UIUC) CS473 15 Spring 2021 15 / 55

Polynomial Time

Definition
Polynomial time (denoted by P) is the class of all (decision)
problems that have an algorithm that solves it in polynomial time.

Example
Problems in P include

1 Is there a shortest path from s to t of length ≤ k in G?

2 Is there a flow of value ≥ k in network G?

3 Is there an assignment to variables to satisfy given linear
constraints?

Ruta (UIUC) CS473 15 Spring 2021 15 / 55

Deterministic Turing Machine

P (polynomial-time): problems that deterministic TM solves in
polynomial time.

Ruta (UIUC) CS473 16 Spring 2021 16 / 55

Nondeterministic Turing Machine

NP (nondeterministic polynomial time): problems that
nondeterministc TM solves in polynomial time.

Ruta (UIUC) CS473 17 Spring 2021 17 / 55

Problems with no known polynomial time

algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?

Ruta (UIUC) CS473 18 Spring 2021 18 / 55

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.

Ruta (UIUC) CS473 19 Spring 2021 19 / 55

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k :

a subset S of vertices.

Ruta (UIUC) CS473 19 Spring 2021 19 / 55

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.

Ruta (UIUC) CS473 19 Spring 2021 19 / 55

Certifiers

Definition (Efficient Certifier.)

An algorithm C is an efficient certifier for problem X , if there is a
polynomial p(·) such that,
? Ix ∈ X if and only if

1 there is a string t (certificate/proof) with |t| ≤ p(|Ix |),
2 C(Ix , t) = ”yes”,
3 and C runs in polynomial time in |Ix |.

“Guess” the certificate and verify⇒ nondeterministic TM.

Ruta (UIUC) CS473 20 Spring 2021 20 / 55

Certifiers

Definition (Efficient Certifier.)

An algorithm C is an efficient certifier for problem X , if there is a
polynomial p(·) such that,
? Ix ∈ X if and only if

1 there is a string t (certificate/proof) with |t| ≤ p(|Ix |),
2 C(Ix , t) = ”yes”,
3 and C runs in polynomial time in |Ix |.

“Guess” the certificate and verify⇒ nondeterministic TM.

Ruta (UIUC) CS473 20 Spring 2021 20 / 55

Examples

1 Independent set: Does G = (V ,E) have an independent set of
size ≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

2 Vertex cover: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .

3 SAT: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Ruta (UIUC) CS473 21 Spring 2021 21 / 55

Examples

1 Independent set: Does G = (V ,E) have an independent set of
size ≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

2 Vertex cover: Does G have a vertex cover of size ≤ k?

1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .

3 SAT: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Ruta (UIUC) CS473 21 Spring 2021 21 / 55

Examples

1 Independent set: Does G = (V ,E) have an independent set of
size ≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

2 Vertex cover: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .

3 SAT: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Ruta (UIUC) CS473 21 Spring 2021 21 / 55

Examples

1 Independent set: Does G = (V ,E) have an independent set of
size ≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

2 Vertex cover: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .

3 SAT: Does formula ϕ have a satisfying truth assignment?

1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Ruta (UIUC) CS473 21 Spring 2021 21 / 55

Examples

1 Independent set: Does G = (V ,E) have an independent set of
size ≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

2 Vertex cover: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .

3 SAT: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Ruta (UIUC) CS473 21 Spring 2021 21 / 55

Nondeterministic Polynomial Time
Alternate definition

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

“Guess” the certificate and verify⇒ nondeterministic TM.
nondeterministic TM⇒ Path to an “accept” state is the certificate.

Ruta (UIUC) CS473 22 Spring 2021 22 / 55

Nondeterministic Polynomial Time
Alternate definition

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

“Guess” the certificate and verify⇒ nondeterministic TM.

nondeterministic TM⇒ Path to an “accept” state is the certificate.

Ruta (UIUC) CS473 22 Spring 2021 22 / 55

Nondeterministic Polynomial Time
Alternate definition

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

“Guess” the certificate and verify⇒ nondeterministic TM.
nondeterministic TM⇒ Path to an “accept” state is the certificate.

Ruta (UIUC) CS473 22 Spring 2021 22 / 55

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Example
SAT formula ϕ. No easy way to prove that ϕ is NOT satisfiable!

More on this and co-NP later on.

Ruta (UIUC) CS473 23 Spring 2021 23 / 55

P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A.

1 Certifier C on input Ix , t, runs A(Ix) and returns the answer.

C runs in polynomial time.
If Ix ∈ X , then for every t, C(Ix , t) = ”yes”.
If Ix 6∈ X , then for every t, C(Ix , t) = ”no”.

Ruta (UIUC) CS473 24 Spring 2021 24 / 55

P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A.

1 Certifier C on input Ix , t, runs A(Ix) and returns the answer.

C runs in polynomial time.
If Ix ∈ X , then for every t, C(Ix , t) = ”yes”.
If Ix 6∈ X , then for every t, C(Ix , t) = ”no”.

Ruta (UIUC) CS473 24 Spring 2021 24 / 55

Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input Ix runs in exponential time,
i.e., O(2poly(|Ix |)).

Example: O(2n), O(2n log n), O(2n3
), ...

Problems:

1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.

Ruta (UIUC) CS473 25 Spring 2021 25 / 55

Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input Ix runs in exponential time,
i.e., O(2poly(|Ix |)).

Example: O(2n), O(2n log n), O(2n3
), ...

Problems:

1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.

Ruta (UIUC) CS473 25 Spring 2021 25 / 55

NP versus EXP

Proposition
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C . Need to design an exponential time
algorithm for X .

1 For every t, with |t| ≤ p(|Ix |) run C(Ix , t); answer “yes” if
any one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).

3 Algorithm runs in O(q(|Ix |+ p(|Ix |))2p(|Ix |)), where q is the
running time of C .

Ruta (UIUC) CS473 26 Spring 2021 26 / 55

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time.

(B) P = EXP.

(C) EXP ⊆ P.

(D) All of the above.

Ruta (UIUC) CS473 27 Spring 2021 27 / 55

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time.

(B) P = EXP.

(C) EXP ⊆ P.

(D) All of the above.

Ruta (UIUC) CS473 27 Spring 2021 27 / 55

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there a problem in NP that does not belong to P? Or is P = NP?

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!

Ruta (UIUC) CS473 28 Spring 2021 28 / 55

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there a problem in NP that does not belong to P? Or is P = NP?

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!

Ruta (UIUC) CS473 28 Spring 2021 28 / 55

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Ruta (UIUC) CS473 29 Spring 2021 29 / 55

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Ruta (UIUC) CS473 29 Spring 2021 29 / 55

Part III

NP-Completeness and Cook-Levin
Theorem

Ruta (UIUC) CS473 30 Spring 2021 30 / 55

“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1 Hardest problem must be in NP.

2 Hardest problem must be at least as “difficult” as every other
problem in NP.

Ruta (UIUC) CS473 31 Spring 2021 31 / 55

NP-Complete Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) ∀Y ∈ NP, we have that Y ≤P X.

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 X is NP-Hard

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Ruta (UIUC) CS473 32 Spring 2021 32 / 55

NP-Complete Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) ∀Y ∈ NP, we have that Y ≤P X.

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 X is NP-Hard

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Ruta (UIUC) CS473 32 Spring 2021 32 / 55

NP-Complete Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) ∀Y ∈ NP, we have that Y ≤P X.

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 X is NP-Hard

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Ruta (UIUC) CS473 32 Spring 2021 32 / 55

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 Then Y can be solved in polynomial time. Y ∈ P.

3 Thus, Y ∈ NP⇒ Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Ruta (UIUC) CS473 33 Spring 2021 33 / 55

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 Then Y can be solved in polynomial time. Y ∈ P.
3 Thus, Y ∈ NP⇒ Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Ruta (UIUC) CS473 33 Spring 2021 33 / 55

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 Then Y can be solved in polynomial time. Y ∈ P.
3 Thus, Y ∈ NP⇒ Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Ruta (UIUC) CS473 33 Spring 2021 33 / 55

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

Ruta (UIUC) CS473 34 Spring 2021 34 / 55

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

Ruta (UIUC) CS473 34 Spring 2021 34 / 55

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

Ruta (UIUC) CS473 34 Spring 2021 34 / 55

Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)

Ruta (UIUC) CS473 34 Spring 2021 34 / 55

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem:

Theorem
SAT is NP-Complete.

Using reductions one can prove that many other problems are
NP-Complete

Ruta (UIUC) CS473 35 Spring 2021 35 / 55

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem:

Theorem
SAT is NP-Complete.

Using reductions one can prove that many other problems are
NP-Complete

Ruta (UIUC) CS473 35 Spring 2021 35 / 55

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem:

Theorem
SAT is NP-Complete.

Using reductions one can prove that many other problems are
NP-Complete

Ruta (UIUC) CS473 35 Spring 2021 35 / 55

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as 3SAT
or SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Ruta (UIUC) CS473 36 Spring 2021 36 / 55

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as 3SAT
or SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?

Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Ruta (UIUC) CS473 36 Spring 2021 36 / 55

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as 3SAT
or SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Ruta (UIUC) CS473 36 Spring 2021 36 / 55

Recap . . .

Problems
1 Independent Set

2 Clique

3 Vertex Cover

4 Set Cover

5 SAT

6 3SAT

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

Recap . . .

Problems
1 Independent Set

2 Clique

3 Vertex Cover

4 Set Cover

5 SAT

6 3SAT

Relationship

3SAT ≤P Independent Set

≤P

≥P Clique
≤P

≥P Vertex Cover
≤P Set Cover

3SAT ≤P SAT ≤P 3SAT

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

Recap . . .

Problems
1 Independent Set

2 Clique

3 Vertex Cover

4 Set Cover

5 SAT

6 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Clique
≤P

≥P Vertex Cover

≤P Set Cover
3SAT ≤P SAT ≤P 3SAT

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

Recap . . .

Problems
1 Independent Set

2 Clique

3 Vertex Cover

4 Set Cover

5 SAT

6 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Clique
≤P

≥P Vertex Cover
≤P Set Cover

3SAT ≤P SAT ≤P 3SAT

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

Recap . . .

Problems
1 Independent Set

2 Clique

3 Vertex Cover

4 Set Cover

5 SAT

6 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Clique
≤P

≥P Vertex Cover
≤P Set Cover

3SAT ≤P SAT ≤P 3SAT

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

NP-Completeness via Reductions

1 SAT is NP-Complete.

2 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.

3 3-SAT ≤P Independent Set (which is in NP) and hence
Independent Set is NP-Complete.

4 Clique is NP-Complete
5 Vertex Cover is NP-Complete
6 Set Cover is NP-Complete
7 Hamilton Cycle is NP-Complete
8 3-Color is NP-Complete

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Ruta (UIUC) CS473 38 Spring 2021 38 / 55

NP-Completeness via Reductions

1 SAT is NP-Complete.

2 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.

3 3-SAT ≤P Independent Set (which is in NP) and hence
Independent Set is NP-Complete.

4 Clique is NP-Complete
5 Vertex Cover is NP-Complete
6 Set Cover is NP-Complete
7 Hamilton Cycle is NP-Complete
8 3-Color is NP-Complete

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
Ruta (UIUC) CS473 38 Spring 2021 38 / 55

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.

Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Ruta (UIUC) CS473 39 Spring 2021 39 / 55

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Ruta (UIUC) CS473 39 Spring 2021 39 / 55

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.
Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Ruta (UIUC) CS473 39 Spring 2021 39 / 55

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 40 Spring 2021 40 / 55

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 40 Spring 2021 40 / 55

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 40 Spring 2021 40 / 55

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Ruta (UIUC) CS473 40 Spring 2021 40 / 55

The Reduction

1 Gϕ will have one vertex for each literal in a clause

2 Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

The Reduction

1 Gϕ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size

Ruta (UIUC) CS473 42 Spring 2021 42 / 55

Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size

Ruta (UIUC) CS473 42 Spring 2021 42 / 55

Correctness (contd)

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting clauses
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause

Ruta (UIUC) CS473 43 Spring 2021 43 / 55

Part IV

co-NP

Ruta (UIUC) CS473 44 Spring 2021 44 / 55

NP vs co-NP

NP: Problems with polynomial time verifier for a “yes” instance.

SAT: Given a CNF formula φ, does there exists a satisfying assignment?
- Poly-time verification (proof) for “yes” instances.

Definition
Given a decision problem X , its complement X̄ is the same problem with
“yes” and “no” answeres reversed.

complement-SAT: Is φ always false?
- Poly-time verification (proof) for “no” instances.

co-NP: Complements of decision problems in NP.

No-Independent-Set, Is-Prime, No-Clique..

Poly-time verification for “no” instances

“no” instances can be solved in non-deterministic polynomial time.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

NP vs co-NP

NP: Problems with polynomial time verifier for a “yes” instance.

SAT: Given a CNF formula φ, does there exists a satisfying assignment?
- Poly-time verification (proof) for “yes” instances.

Definition
Given a decision problem X , its complement X̄ is the same problem with
“yes” and “no” answeres reversed.

complement-SAT: Is φ always false?
- Poly-time verification (proof) for “no” instances.

co-NP: Complements of decision problems in NP.

No-Independent-Set, Is-Prime, No-Clique..

Poly-time verification for “no” instances

“no” instances can be solved in non-deterministic polynomial time.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

NP vs co-NP

NP: Problems with polynomial time verifier for a “yes” instance.

SAT: Given a CNF formula φ, does there exists a satisfying assignment?
- Poly-time verification (proof) for “yes” instances.

Definition
Given a decision problem X , its complement X̄ is the same problem with
“yes” and “no” answeres reversed.

complement-SAT: Is φ always false?

- Poly-time verification (proof) for “no” instances.

co-NP: Complements of decision problems in NP.

No-Independent-Set, Is-Prime, No-Clique..

Poly-time verification for “no” instances

“no” instances can be solved in non-deterministic polynomial time.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

NP vs co-NP

NP: Problems with polynomial time verifier for a “yes” instance.

SAT: Given a CNF formula φ, does there exists a satisfying assignment?
- Poly-time verification (proof) for “yes” instances.

Definition
Given a decision problem X , its complement X̄ is the same problem with
“yes” and “no” answeres reversed.

complement-SAT: Is φ always false?
- Poly-time verification (proof) for “no” instances.

co-NP: Complements of decision problems in NP.

No-Independent-Set, Is-Prime, No-Clique..

Poly-time verification for “no” instances

“no” instances can be solved in non-deterministic polynomial time.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

NP vs co-NP

NP: Problems with polynomial time verifier for a “yes” instance.

SAT: Given a CNF formula φ, does there exists a satisfying assignment?
- Poly-time verification (proof) for “yes” instances.

Definition
Given a decision problem X , its complement X̄ is the same problem with
“yes” and “no” answeres reversed.

complement-SAT: Is φ always false?
- Poly-time verification (proof) for “no” instances.

co-NP: Complements of decision problems in NP.

No-Independent-Set, Is-Prime, No-Clique..

Poly-time verification for “no” instances

“no” instances can be solved in non-deterministic polynomial time.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

NP vs co-NP

NP: Problems with polynomial time verifier for a “yes” instance.

SAT: Given a CNF formula φ, does there exists a satisfying assignment?
- Poly-time verification (proof) for “yes” instances.

Definition
Given a decision problem X , its complement X̄ is the same problem with
“yes” and “no” answeres reversed.

complement-SAT: Is φ always false?
- Poly-time verification (proof) for “no” instances.

co-NP: Complements of decision problems in NP.

No-Independent-Set, Is-Prime, No-Clique..

Poly-time verification for “no” instances

“no” instances can be solved in non-deterministic polynomial time.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

Integer Factorization

Given integers q and n, is there a prime factor of q larger than n?

Input size: log(q) + log(n)

Verifier for a “yes” instance?

Verifier for a “no” instance?

Int-Factorization ∈ NP ∩ co-NP. But not known to be in P.

Ruta (UIUC) CS473 46 Spring 2021 46 / 55

Integer Factorization

Given integers q and n, is there a prime factor of q larger than n?

Input size: log(q) + log(n)

Verifier for a “yes” instance?

Verifier for a “no” instance?

Int-Factorization ∈ NP ∩ co-NP. But not known to be in P.

Ruta (UIUC) CS473 46 Spring 2021 46 / 55

Integer Factorization

Given integers q and n, is there a prime factor of q larger than n?

Input size: log(q) + log(n)

Verifier for a “yes” instance?

Verifier for a “no” instance?

Int-Factorization ∈ NP ∩ co-NP. But not known to be in P.

Ruta (UIUC) CS473 46 Spring 2021 46 / 55

Integer Factorization

Given integers q and n, is there a prime factor of q larger than n?

Input size: log(q) + log(n)

Verifier for a “yes” instance?

Verifier for a “no” instance?

Int-Factorization ∈ NP ∩ co-NP.

But not known to be in P.

Ruta (UIUC) CS473 46 Spring 2021 46 / 55

Integer Factorization

Given integers q and n, is there a prime factor of q larger than n?

Input size: log(q) + log(n)

Verifier for a “yes” instance?

Verifier for a “no” instance?

Int-Factorization ∈ NP ∩ co-NP. But not known to be in P.

Ruta (UIUC) CS473 46 Spring 2021 46 / 55

Landscape of Containment

P

NP co‐NP

EXP

Ruta (UIUC) CS473 47 Spring 2021 47 / 55

Part V

Hardness of Subset Sum

Ruta (UIUC) CS473 48 Spring 2021 48 / 55

Subset Sum

Problem: Subset Sum

Instance: S , set of positive integers; t, an integer num-
ber (Target)
Question: Is there a subset X ⊆ S such that∑

x∈X x = t?

Claim
Subset Sum is NP-Complete.

Ruta (UIUC) CS473 49 Spring 2021 49 / 55

Vec Subset Sum

We will prove following problem is NP-Complete...

Problem: Vec Subset Sum

Instance: S , set of n vectors of dimension k , each
vector has non-negative numbers for its coordinates, and
a target vector

−→t .
Question: Is there a subset X ⊆ S such that∑
−→x ∈X
−→x =

−→t ?

Reduction from 3SAT.

Ruta (UIUC) CS473 50 Spring 2021 50 / 55

Vec Subset Sum
Handling a single clause

Think about vectors as being lines in a table.

How to “select” exactly one of x = 0 and x = 1.

First gadget
Selecting between two lines.

Target ?? ?? 01 ???

a1 ?? ?? 01 ??
a2 ?? ?? 01 ??

Two rows for every variable x : selecting either x = 0 or x = 1.

Ruta (UIUC) CS473 51 Spring 2021 51 / 55

Vec Subset Sum
Handling a single clause

Think about vectors as being lines in a table.

How to “select” exactly one of x = 0 and x = 1.

First gadget
Selecting between two lines.

Target ?? ?? 01 ???

a1 ?? ?? 01 ??
a2 ?? ?? 01 ??

Two rows for every variable x : selecting either x = 0 or x = 1.

Ruta (UIUC) CS473 51 Spring 2021 51 / 55

Handling a clause...

We will have a column for every clause...
numbers ... C ≡ a ∨ b ∨ c ...

a ... 01 ...
a ... 00 ...
b ... 01 ...

b ... 00 ...
c ... 00 ...
c ... 01 ...

C fix-up 1 000 07 000
C fix-up 2 000 08 000
C fix-up 3 000 09 000

TARGET 10

Ruta (UIUC) CS473 52 Spring 2021 52 / 55

3SAT to Vec Subset Sum

numbers a ∨ a b ∨ b c ∨ c d ∨ d D ≡ b ∨ c ∨ d C ≡ a ∨ b ∨ c

a 1 0 0 0 00 01
a 1 0 0 0 00 00
b 0 1 0 0 00 01

b 0 1 0 0 01 00
c 0 0 1 0 01 00
c 0 0 1 0 00 01
d 0 0 0 1 00 00

d 0 0 0 1 01 01
C fix-up 1 0 0 0 0 00 07
C fix-up 2 0 0 0 0 00 08
C fix-up 3 0 0 0 0 00 09
D fix-up 1 0 0 0 0 07 00
D fix-up 2 0 0 0 0 08 00
D fix-up 3 0 0 0 0 09 00

TARGET 1 1 1 1 10 10

Ruta (UIUC) CS473 53 Spring 2021 53 / 55

Vec Subset Sum to Subset Sum
numbers

010000000001

010000000000

000100000001

000100000100

000001000100

000001000001

000000010000

000000010101

000000000007

000000000008

000000000009

000000000700

000000000800

000000000900

010101011010

Ruta (UIUC) CS473 54 Spring 2021 54 / 55

Subset Sum: Weak vs Strong NP-completeness

Subset Sum can be solved in O(nB) time using dynamic
programming (exercise).

Implies that problem is hard only when numbers a1, a2, . . . , an are
exponentially large compared to n. That is, each ai requires
polynomial in n bits.
Number problems of the above type are said to be weakly
NP-Complete.

Number problems which are NP-Complete even when the numbers
are written in unary are strongly NP-Complete.

Ruta (UIUC) CS473 55 Spring 2021 55 / 55

Subset Sum: Weak vs Strong NP-completeness

Subset Sum can be solved in O(nB) time using dynamic
programming (exercise).

Implies that problem is hard only when numbers a1, a2, . . . , an are
exponentially large compared to n. That is, each ai requires
polynomial in n bits.
Number problems of the above type are said to be weakly
NP-Complete.

Number problems which are NP-Complete even when the numbers
are written in unary are strongly NP-Complete.

Ruta (UIUC) CS473 55 Spring 2021 55 / 55

A Strongly NP-Complete Number Problem

3-Partition: Given 3n numbers a1, a2, . . . , a3n and target B can
the numbers be partitioned into n groups of 3 each such that the
sum of numbers in each group is exactly B?

Can further assume that each number ai is between B/3 and 2B/3.

Can reduce 3-D-Matching to 3-Partition in polynomial time such
that each number ai can be written in unary.

Ruta (UIUC) CS473 56 Spring 2021 56 / 55

Other NP-Complete Problems

Hamiltonian cycle

Graph coloring

3-Dimensional Matching

3-Partition

...

Read book.

Ruta (UIUC) CS473 57 Spring 2021 57 / 55

	The Satisfiability Problem (SAT)
	3SAT and Independent Set

	Definition of P and NP
	Preliminaries
	Problems and Algorithms
	Certifiers/Verifiers

	NP
	Definition
	Intractability

	NP-Completeness and Cook-Levin Theorem
	Completeness
	Preliminaries

	co-NP
	Hardness of Subset Sum

