CS 473: Algorithms, Spring 2021

SAT, NP, NP-Completeness

Lecture 21 April 22, 2021

Most slides are courtesy Prof. Chekuri

Part I

The Satisfiability Problem (SAT)

Ruta (UIUC) CS473 Spring 2021 2 / 55

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

1 A **literal** is either a boolean variable x_i or its negation $\neg x_i$.

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- **4** A formula φ is a 3CNF:
 - A CNF formula such that every clause has **exactly** 3 literals.
 - ① $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Satisfiability

Problem: SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of

 φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of

arphi such that arphi evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- ② $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$ is not satisfiable.

Importance of **SAT** and **3SAT**

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-Completeness.

- **3** 3SAT \leq_P SAT.
- Because...
 A 3SAT instance is also an instance of SAT.

Claim

 $SAT \leq_P 3SAT$.

Claim

 $SAT <_P 3SAT$.

Given φ a SAT formula we create a 3SAT formula φ' such that

- $oldsymbol{\Phi}$ is satisfiable iff $oldsymbol{\varphi}'$ is satisfiable.

How **SAT** is different from **3SAT**?

In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$\Big(x \lor y \lor z \lor w\Big) \land \Big(\neg x \lor \neg y \lor \neg z \lor w \lor u\Big) \land \Big(\neg x\Big)$$

In **3SAT** every clause must have **exactly 3** different literals.

How **SAT** is different from **3SAT**?

In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly 3** different literals.

Consider $(x \lor y \lor z \lor w)$

Replace it with
$$(x \lor y \lor \alpha) \land (\neg \alpha \lor w \lor u)$$

How **SAT** is different from **3SAT**?

In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly 3** different literals.

Consider $(x \lor y \lor z \lor w)$

Replace it with
$$(x \lor y \lor \alpha) \land (\neg \alpha \lor w \lor u)$$

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses. (Need to add new variables)
- Repeat the above till we have a 3CNF.

2SAT can be solved in polynomial time! (specifically, linear time!)

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

Consider a clause $(x \lor y \lor z)$. We need to reduce it to a collection of **2**CNF clauses. Introduce a face variable α , and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars) or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars).

(In animal farm language: **2SAT** good, **3SAT** bad.)

A challenging exercise: Given a **2SAT** formula design an efficient algorithm to compute its satisfying assignment...

Look in books etc.

Independent Set

Problem: Independent Set

Instance: A graph G, integer **k**.

Question: Is there an independent set in G of size k?

Independent Set

Problem: Independent Set

Instance: A graph G, integer **k**.

Question: Is there an independent set in G of size k?

 $3SAT \leq_P Independent Set$

Later (if time permits)

Part II

Definition of P and NP

Problems and Algorithms: Formal Approach

Decision Problems

- Problem Instance: Binary string s, with size |s|
- 2 Problem: A set X of strings on which the answer should be "yes"; we call these YES instances of X. Strings not in X are NO instances of X

Definition

- **1** A is an algorithm for problem X if A(s) = "yes" iff $s \in X$.
- A is said to have a polynomial running time if there is a polynomial $p(\cdot)$ such that for every string s, A(s) terminates in at most O(p(|s|)) steps.

CS473 14 Spring 2021 14 / 55

Polynomial Time

Definition

Polynomial time (denoted by **P**) is the class of all (decision) problems that have an algorithm that solves it in polynomial time.

Polynomial Time

Definition

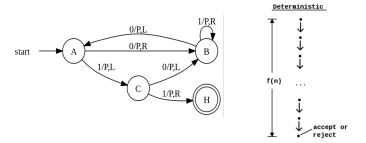
Polynomial time (denoted by **P**) is the class of all (decision) problems that have an algorithm that solves it in polynomial time.

Example

Problems in P include

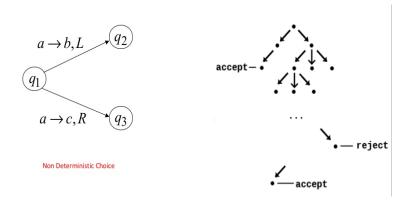
- Is there a shortest path from s to t of length $\leq k$ in G?
- ② Is there a flow of value $\geq k$ in network G?
- Is there an assignment to variables to satisfy given linear constraints?

Deterministic Turing Machine



P (polynomial-time): problems that deterministic TM *solves* in polynomial time.

Nondeterministic Turing Machine



NP (nondeterministic polynomial time): problems that nondeterministic TM *solves* in polynomial time.

Problems with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k:

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- 2 Independent Set in graph G and k: a subset S of vertices.

Certifiers

Definition (Efficient Certifier.)

An algorithm C is an **efficient certifier** for problem X, if there is a polynomial $p(\cdot)$ such that,

- $\star I_x \in X$ if and only if
 - ① there is a string t (certificate/proof) with $|t| \leq p(|I_x|)$,
 - **2** $C(I_x, t) = "yes",$
 - 3 and C runs in polynomial time in $|I_x|$.

Certifiers

Definition (Efficient Certifier.)

An algorithm C is an **efficient certifier** for problem X, if there is a polynomial $p(\cdot)$ such that,

- $\star I_x \in X$ if and only if
 - ① there is a string t (certificate/proof) with $|t| \leq p(|I_x|)$,
 - **2** $C(I_x, t) = "yes",$
 - 3 and C runs in polynomial time in $|I_x|$.

"Guess" the certificate and verify \Rightarrow nondeterministic TM.

Examples

- **1** Independent set: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subset V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Examples

- **1** Independent set: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subset V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.
- 2 Vertex cover: Does G have a vertex cover of size < k?

Examples

- **1** Independent set: Does G = (V, E) have an independent set of size > k?
 - **1** Certificate: Set $S \subseteq V$.
 - 2 Certifier: Check |S| > k and no pair of vertices in S is connected by an edge.
- 2 Vertex cover: Does G have a vertex cover of size < k?
 - Certificate: $S \subseteq V$.
 - **Q** Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in **S**.

CS473 21 Spring 2021 21 / 55

Examples

- **1** Independent set: Does G = (V, E) have an independent set of size > k?
 - Certificate: Set $S \subset V$.
 - **Q** Certifier: Check |S| > k and no pair of vertices in S is connected by an edge.
- 2 Vertex cover: Does G have a vertex cover of size < k?
 - Certificate: $S \subset V$.
 - **Q** Certifier: Check |S| < k and that for every edge at least one endpoint is in **S**.
- **SAT**: Does formula φ have a satisfying truth assignment?

Ruta (UIUC) CS473 21 Spring 2021 21 / 55

Examples

- Independent set: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subset V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.
- **2** Vertex cover: Does **G** have a vertex cover of size $\leq k$?
 - Certificate: $S \subseteq V$.
 - **2** Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.
- **SAT**: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - Q Certifier: Check each clause under a and say "yes" if all clauses are true.

Ruta (UIUC) CS473 21 Spring 2021 21 / 55

Nondeterministic Polynomial Time

Alternate definition

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Ruta (UIUC) CS473 22 Spring 2021 22 / 55

Nondeterministic Polynomial Time

Alternate definition

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

"Guess" the certificate and verify \Rightarrow nondeterministic TM.

Ruta (UIUC) CS473 22 Spring 2021 22 / 55

Nondeterministic Polynomial Time

Alternate definition

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

"Guess" the certificate and verify \Rightarrow nondeterministic TM. nondeterministic TM \Rightarrow Path to an "accept" state is the certificate.

Ruta (UIUC) CS473 22 Spring 2021 22 / 55

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

P versus NP

Proposition

 $P \subseteq NP$.

P versus NP

Proposition

 $P \subseteq NP$.

For a problem in P no need for a certificate!

Proof.

Consider problem $X \in P$ with algorithm A.

- Certifier C on input I_x , t, runs $A(I_x)$ and returns the answer.
 - C runs in polynomial time.
 - If $I_x \in X$, then for every t, $C(I_x, t) = "yes"$.
 - If $I_x \not\in X$, then for every t, $C(I_x, t) = "no"$.

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input I_x runs in exponential time, i.e., $O(2^{\text{poly}(|I_x|)})$.

Ruta (UIUC) CS473 25 Spring 2021 25 / 55

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input I_x runs in exponential time, i.e., $O(2^{\text{poly}(|I_x|)})$

```
Example: O(2^n), O(2^{n \log n}), O(2^{n^3}), ...
Problems:
```

- SAT: try all possible truth assignment to variables.
- **Independent Set**: try all possible subsets of vertices.
- Vertex Cover: try all possible subsets of vertices.

Spring 2021 25 / 55

NP versus EXP

Proposition

 $NP \subset EXP$.

Proof.

Let $X \in \mathbb{NP}$ with certifier C. Need to design an exponential time algorithm for X.

- For every t, with $|t| \leq p(|I_x|)$ run $C(I_x, t)$; answer "yes" if any one of these calls returns "yes".
- The above algorithm correctly solves X (exercise).
- 3 Algorithm runs in $O(q(|I_x| + p(|I_x|))2^{p(|I_x|)})$, where q is the running time of C.

Ruta (UIUC) CS473 26 Spring 2021 26 / 55

We know $P \subseteq NP \subseteq EXP$.

We know $P \subseteq NP \subseteq EXP$.

If P = NP this implies that...

- (A) Vertex Cover can be solved in polynomial time.
- (B) P = EXP.
- (C) EXP \subseteq P.
- (D) All of the above.

We know $P \subseteq NP \subseteq EXP$.

Big Question

Is there a problem in NP that does not belong to P? Or is P = NP?

Ruta (UIUC) CS473 28 Spring 2021 28 / 55

We know $P \subseteq NP \subseteq EXP$.

Big Question

Is there a problem in NP that does not belong to P? Or is P = NP?

Status

Relationship between **P** and **NP** remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving **P** versus **NP** is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Ruta (UIUC) CS473 28 Spring 2021 28 / 55

If $P = NP \dots$

Or: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .

If $P = NP \dots$

Or: If pigs could fly then life would be sweet.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

Ruta (UIUC) CS473 29 Spring 2021 29 / 55

Part III

NP-Completeness and Cook-Levin Theorem

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- We Hardest problem must be at least as "difficult" as every other problem in NP.

Ruta (UIUC) CS473 31 Spring 2021 31 / 55

Definition

A problem **X** is said to be **NP-Hard** if

1 (Hardness) $\forall Y \in NP$, we have that $Y \leq_P X$.

Definition

A problem **X** is said to be **NP-Hard** if

1 (Hardness) $\forall Y \in NP$, we have that $Y \leq_P X$.

Definition

A problem **X** is said to be **NP-Complete** if

- \bullet $X \in NP$, and
- X is NP-Hard

Definition

A problem **X** is said to be **NP-Hard** if

1 (Hardness) $\forall Y \in NP$, we have that $Y \leq_P X$.

Definition

A problem **X** is said to be **NP-Complete** if

- X is NP-Hard

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose **X** can be solved in polynomial time
 - **1** Let $Y \in NP$. We know $Y \leq_P X$.
 - 2 Then Y can be solved in polynomial time. $Y \in P$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
 - **1** Let $Y \in NP$. We know $Y \leq_P X$.
 - 2 Then Y can be solved in polynomial time. $Y \in P$.

 - **3** Since $P \subseteq NP$, we have P = NP.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose **X** can be solved in polynomial time
 - **1** Let $Y \in NP$. We know $Y \leq_P X$.
 - 2 Then Y can be solved in polynomial time. $Y \in P$.
 - **3** Thus, $Y \in NP \Rightarrow Y \in P$; $NP \subseteq P$.
 - 3 Since $P \subseteq NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

Ruta (UIUC) CS473 33 Spring 2021 33 / 55

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- ② and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

If X is NP-Complete

- Since we believe $P \neq NP$,
- ② and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

Ruta (UIUC) CS473 34 Spring 2021 34 / 55

If X is NP-Complete

- Since we believe $P \neq NP$,
- ② and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

Ruta (UIUC) CS473 34 Spring 2021 34 / 55

If X is NP-Complete

- Since we believe $P \neq NP$,
- ② and solving X efficiently implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem:

Theorem

SAT *is* NP-Complete.

Question

Are there any problems that are **NP-Complete**?

Answer

Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem:

Theorem

SAT *is* NP-Complete.

Using reductions one can prove that many other problems are **NP-Complete**

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - 2 polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as 3SAT or SAT to X

Ruta (UIUC) CS473 36 Spring 2021 36 / 55

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - 2 polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as 3SAT or SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - 2 polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as 3SAT or SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Recap ...

Problems

- Independent Set
- Clique
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

Recap . . .

Problems

- Independent Set
- Olique
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Relationship

3SAT \leq_P Independent Set

Recap ...

Problems

- Independent Set
- Olique
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Clique $\overset{\leq_P}{\geq_P}$ Vertex Cover

Ruta (UIUC) CS473 37 Spring 2021 37 / 55

Recap . . .

Problems

- Independent Set
- Olique
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Clique $\overset{\leq_P}{\geq_P}$ Vertex Cover $<_P$ Set Cover

Recap . . .

Problems

- Independent Set
- Olique
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Relationship

3SAT
$$\leq_P$$
 Independent Set $\overset{\leq_P}{\geq_P}$ Clique $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover

 $3SAT <_P SAT <_P 3SAT$

NP-Completeness via Reductions

- **SAT** is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is NP-Complete.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Clique is NP-Complete
- Vertex Cover is NP-Complete
- Set Cover is NP-Complete
- Mamilton Cycle is NP-Complete
- 3-Color is NP-Complete

NP-Completeness via Reductions

- **SAT** is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is **NP-Complete**.
- **3-SAT** \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Clique is NP-Complete
- **Vertex Cover is NP-Complete**
- **Set Cover** is NP-Complete
- Mamilton Cycle is NP-Complete
- 3-Color is NP-Complete

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!

Ruta (UIUC) CS473 38 Spring 2021 38 / 55

$3SAT \leq_P Independent Set$

The reduction 3SAT \leq_P Independent Set

Input: Given a 3CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an

independent set of size ${\it k}$ if and only if ${\it \varphi}$ is satisfiable.

$3SAT \leq_P Independent Set$

The reduction 3SAT \leq_P Independent Set

Input: Given a 3 CNF formula φ

Goal: Construct a graph $extbf{\emph{G}}_{arphi}$ and number $extbf{\emph{\emph{k}}}$ such that $extbf{\emph{\emph{G}}}_{arphi}$ has an

independent set of size k if and only if φ is satisfiable.

 G_{φ} should be constructable in time polynomial in size of φ

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_{P} **Independent Set**

Input: Given a 3 CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

 $extbf{\emph{G}}_{arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Ruta (UIUC) CS473 39 Spring 2021 39 / 55

There are two ways to think about **3SAT**

There are two ways to think about **3SAT**

ullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

Ruta (UIUC) CS473 40 Spring 2021 40 / 55

There are two ways to think about **3SAT**

- ullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- ② Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

We will take the second view of **3SAT** to construct the reduction.

1 G_{φ} will have one vertex for each literal in a clause

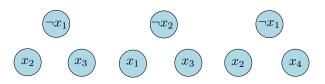


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

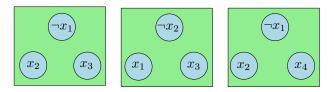
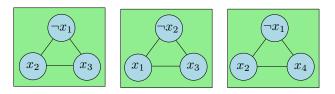


Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Figure: Graph for

- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true



Ruta (UIUC) CS473 41 Spring 2021 41 / 55

 $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- **1** G_{φ} will have one vertex for each literal in a clause
- 2 Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict



$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

- **1** G_{φ} will have one vertex for each literal in a clause
- Onnect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses

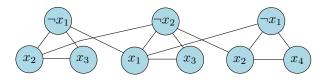


Figure: Graph for

$$\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

Ruta (UIUC) CS473 41 Spring 2021 41 / 55

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let a be the truth assignment satisfying arphi

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying φ
 - 1 Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

Ruta (UIUC) CS473 42 Spring 2021 42 /

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \leftarrow Let **S** be an independent set of size **k**
 - S must contain exactly one vertex from each clause
 - S cannot contain vertices labeled by conflicting clauses
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Part IV

co-NP

SAT: Given a CNF formula ϕ , does there exists a satisfying assignment? - Poly-time verification (proof) for "yes" instances.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

SAT: Given a CNF formula ϕ , does there exists a satisfying assignment? - Poly-time verification (proof) for "yes" instances.

Definition |

Given a decision problem X, its **complement** \bar{X} is the same problem with "yes" and "no" answeres reversed.

SAT: Given a CNF formula ϕ , does there exists a satisfying assignment? - Poly-time verification (proof) for "yes" instances.

Definition

Given a decision problem \boldsymbol{X} , its **complement** $\bar{\boldsymbol{X}}$ is the same problem with "yes" and "no" answeres reversed.

complement-SAT: Is ϕ always false?

SAT: Given a CNF formula ϕ , does there exists a satisfying assignment?

- Poly-time verification (proof) for "yes" instances.

Definition

Given a decision problem X, its **complement** \bar{X} is the same problem with "yes" and "no" answeres reversed.

complement-SAT: Is ϕ always false?

- Poly-time verification (proof) for "no" instances.

- **NP**: Problems with polynomial time verifier for a "yes" instance.
- **SAT**: Given a CNF formula ϕ , does there exists a satisfying assignment?
 - Poly-time verification (proof) for "yes" instances.

Definition

Given a decision problem X, its **complement** \bar{X} is the same problem with "yes" and "no" answeres reversed.

- **complement-SAT**: Is ϕ always false?
 - Poly-time verification (proof) for "no" instances.
- co-NP: Complements of decision problems in NP.
 - No-Independent-Set, Is-Prime, No-Clique...

SAT: Given a CNF formula ϕ , does there exists a satisfying assignment?

- Poly-time verification (proof) for "yes" instances.

Definition

Given a decision problem X, its complement \bar{X} is the same problem with "yes" and "no" answeres reversed.

complement-SAT: Is ϕ always false?

- Poly-time verification (proof) for "no" instances.

co-NP: Complements of decision problems in NP.

- No-Independent-Set, Is-Prime, No-Clique...
- Poly-time verification for "no" instances
- "no" instances can be solved in non-deterministic polynomial time.

Ruta (UIUC) CS473 45 Spring 2021 45 / 55

Given integers q and n, is there a prime factor of q larger than n?

Input size: $\log(q) + \log(n)$

Given integers q and n, is there a prime factor of q larger than n?

Input size: $\log(q) + \log(n)$

Verifier for a "yes" instance?

Ruta (UIUC) CS473 46 Spring 2021 46 / 55

Given integers q and n, is there a prime factor of q larger than n?

Input size: $\log(q) + \log(n)$

Verifier for a "yes" instance?

Verifier for a "no" instance?

Given integers q and n, is there a prime factor of q larger than n?

Input size: $\log(q) + \log(n)$

Verifier for a "yes" instance?

Verifier for a "no" instance?

Int-Factorization \in NP \cap co-NP.

Given integers q and n, is there a prime factor of q larger than n?

Input size: $\log(q) + \log(n)$

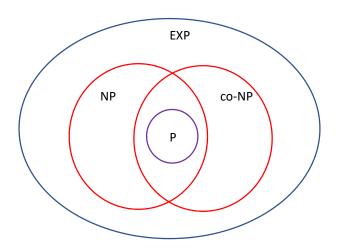
Verifier for a "yes" instance?

Verifier for a "no" instance?

Int-Factorization \in NP \cap co-NP. But not known to be in P.

Ruta (UIUC) CS473 46 Spring 2021 46 / 55

Landscape of Containment



Ruta (UIUC) CS473 47 Spring 2021 47 / 55

Part V

Hardness of Subset Sum

Ruta (UIUC) CS473 48 Spring 2021 48 / 55

Subset Sum

Problem: Subset Sum

Instance: S, set of positive integers; t, an integer num-

ber (Target)

Question: Is there a subset $X \subseteq S$ such that

$$\sum_{x \in X} x = t?$$

Claim

Subset Sum is NP-Complete.

Vec Subset Sum

We will prove following problem is **NP-Complete**...

Problem: Vec Subset Sum

Instance: S, set of n vectors of dimension k, each vector has non-negative numbers for its coordinates, and a target vector \overrightarrow{t} .

Question: Is there a subset $X \subseteq S$ such that $\sum_{\overrightarrow{X} \in X} \overrightarrow{X} = \overrightarrow{t}$?

Reduction from 3SAT.

Vec Subset Sum

Handling a single clause

Think about vectors as being lines in a table.

How to "select" exactly one of x = 0 and x = 1.

First gadget

Selecting between two lines.

Target	??	??	01	???
a ₁	??	??	01	??
a ₂	??	??	01	??

Vec Subset Sum

Handling a single clause

Think about vectors as being lines in a table.

How to "select" exactly one of x = 0 and x = 1.

First gadget

Selecting between two lines.

Target	??	??	01	???
a_1	??	??	01	??
a ₂	??	??	01	??

Two rows for every variable x: selecting either x = 0 or x = 1.

Handling a clause...

We will have a column for every clause...

-	1		
numbers		$C \equiv a \lor b \lor \overline{c}$	
а		01	
ā		00	
Ь		01	
\overline{b}		00	
С		00	
<u></u> <u> </u>		01	
C fix-up 1	000	07	000
C fix-up 2	000	08	000
C fix-up 3	000	09	000
TARGET		10	

3SAT to Vec Subset Sum

numbers	a∨ā	$b \vee \overline{b}$	c ∨ c	$d \vee \overline{d}$	$D \equiv \overline{b} \lor c \lor \overline{d}$	$C \equiv a \lor b \lor \overline{c}$
Humbers	uvu	D V D		uvu	D _ D v c v u	C _ U \ D \ C
а	1	0	0	0	00	01
ā	1	0	0	0	00	00
ь	0	1	0	0	00	01
<u></u>	0	1	0	0	01	00
С	0	0	1	0	01	00
C	0	0	1	0	00	01
d	0	0	0	1	00	00
d	0	0	0	1	01	01
C fix-up 1	0	0	0	0	00	07
C fix-up 2	0	0	0	0	00	08
C fix-up 3	0	0	0	0	00	09
D fix-up 1	0	0	0	0	07	00
D fix-up 2	0	0	0	0	08	00
D fix-up 3	0	0	0	0	09	00
TARGET	1	1	1	1	10	10

Vec Subset Sum to Subset Sum

numbers
010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
00000010000
000000010101
000000000007
80000000000
000000000009
000000000700
00800000000
000000000900

010101011010

Ruta (UIUC) CS473 54 Spring 2021 54 / 55

Subset Sum: Weak vs Strong NP-completeness

Subset Sum can be solved in O(nB) time using dynamic programming (exercise).

Ruta (UIUC) CS473 55 Spring 2021 55 / 55

Subset Sum: Weak vs Strong NP-completeness

Subset Sum can be solved in O(nB) time using dynamic programming (exercise).

Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.

Number problems of the above type are said to be **weakly NP-Complete**.

Number problems which are **NP-Complete** even when the numbers are written in unary are **strongly NP-Complete**.

Ruta (UIUC) CS473 55 Spring 2021 55 / 55

A Strongly NP-Complete Number Problem

3-Partition: Given 3n numbers a_1, a_2, \ldots, a_{3n} and target B can the numbers be partitioned into n groups of 3 each such that the sum of numbers in each group is exactly B?

Can further assume that each number a_i is between B/3 and 2B/3.

Can reduce 3-D-Matching to 3-Partition in polynomial time such that each number a_i can be written in unary.

Ruta (UIUC) CS473 56 Spring 2021 56 / 55

Other NP-Complete Problems

- Hamiltonian cycle
- Graph coloring
- 3-Dimensional Matching
- 3-Partition
- ...

Read book.