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Integer Linear Programming (ILP)

Reductions
@ Reductions and consequences: Algorithmic and hardness
@ Poly-time reduction (Karp)
@ Examples

@ Turing reduction

SAT: Satisfiability problem, 3SAT, and equivalence.
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Integer Linear Programming

Find a vector x € Z9 (integer values) that

.. d
maximize Z{'j:l i Xj
subject to > ._; a;x; < b; fori=1...n

Input is matrix A = (a;) € R"™ 4, column vector b = (b;) € R",
and row vector ¢ = (¢;) € R
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Factory Example

maximize x1 + 6x
subject to x3 <200 x; <300 x; + x; < 400
X149 X2 Z 0

Suppose we want xj, X, to be integer valued.
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Factory Example Figure

X2

3 @ Feasible values of x; and x, are
: “ """" integer points in shaded region
l @ Optimization function is a line; moving
the line until it just leaves the final
integer point in feasible region, gives
optimal values
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Factory Example Figure

@ Feasible values of x; and x, are
integer points in shaded region

@ Optimization function is a line; moving
the line until it just leaves the final
integer point in feasible region, gives
optimal values
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Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.
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Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.
Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods
@ branch and bound
© branch and cut
© adding cutting planes

© linear programming plays a fundamental role
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Example: Maximum Independent Set

Definition

Given undirected graph G = (V/, E) a subset of nodes S C V is an
independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u,v € S then (u,v) € E.

Input Graph G = (V, E)

Goal Find maximum sized independent set in G
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Example: Dominating Set

Definition
Given undirected graph G = (V/, E) a subset of nodes S C V is a
dominating set if for all v € V, either v € S or a neighbor of v is in

S.

Input Graph G = (V, E), weights w(v) > 0 for v € V
Goal Find minimum weight dominating set in G
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Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.
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Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.

Then solving linear program = solving integer program. Linear
programs can be solved efficiently (polynomial time) and hence we
get an integer solution for free!
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Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.

Then solving linear program = solving integer program. Linear

programs can be solved efficiently (polynomial time) and hence we
get an integer solution for free!

Luck or Structure:

© Linear program for flows with integer capacities have integer
vertices

© Linear program for matchings in bipartite graphs have integer
vertices

© A complicated linear program for matchings in general graphs
have integer vertices.

All of above problems can hence be solved efficiently.
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Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved
efficiently if and only if there is a linear program for problem with
integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations
such as convex programming are the most general problems that we
can solve efficiently.
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Summary

@ Linear Programming is a useful and powerful (modeling)
problem.
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@ Linear Programming is a useful and powerful (modeling)
problem.

@ Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

© Geometry and linear algebra are important to understand the
structure of LP and in algorithm design. Vertex solutions imply
that LPs have poly-sized optimum solutions. This implies that
LP is in NP.
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Linear Programming is a useful and powerful (modeling)
problem.

Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

Geometry and linear algebra are important to understand the
structure of LP and in algorithm design. Vertex solutions imply
that LPs have poly-sized optimum solutions. This implies that
LP is in NP.

Integer Programming in NP-Complete. LP-based techniques
critical in heuristically solving integer programs.
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A reduction from Problem X to Problem Y means (informally) that

if we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions

@ We use reductions to find algorithms to solve problems.
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A reduction from Problem X to Problem Y means (informally) that

if we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions

@ We use reductions to find algorithms to solve problems.

© We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)
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Example 1: Bipartite Matching and Flows

How do we solve the Bipartite Matching Problem?

Given a bipartite graph G = (U U V, E) and number k, does G
have a matching of size > k?

Solution

Reduce it to Max-Flow. G has a matching of size > k iff there is a
flow from s to t of value > k in the auxiliary graph G’.

| A\

v
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Types of Problems

Decision, Search, and Optimization

© Decision problem. Example: given n, is n prime?.

@ Search problem. Example: given n, find a factor of n if it
exists.

© Optimization problem. Example: find the smallest prime
factor of n.
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Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a
flow in G, from s to t, of value at least K7

While using reductions and comparing problems, we typically work
with the decision versions. Decision problems have Yes/No answers.
This makes them easy to work with.
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Problems vs Instances

@ A problem I consists of an infinite collection of inputs
{h, bh,...,}. Each input is referred to as an instance.
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vertices s, t, and an integer k constitutes an instance.
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Problems vs Instances

@ A problem I consists of an infinite collection of inputs
{h, bh,...,}. Each input is referred to as an instance.

Max-Flow is a problem. While a graph G with edge-capacities, two
vertices s, t, and an integer k constitutes an instance.

@ The size of an instance [ is the number of bits in its
representation.

@ For an instance I, sol(l) is a set of feasible solutions to /.

@ For optimization problems each solution s € sol(/) has an
associated value.
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Using reductions to solve problems

@ R: Reduction X — Y
@ Ay: algorithm for Y
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Using reductions to solve problems

@ R: Reduction X — Y
@ Ay: algorithm for Y

© = New algorithm for X:
Ax(lx):

// Ix: instance of X.
Iy < R(Ix)
return Ay (ly)

YES

Ix] Iy v

A NO

Ax
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Using reductions to solve problems

@ R: Reduction X — Y
@ Ay: algorithm for Y

© = New algorithm for X:
Ax(lx):

// Ix: instance of X.
Iy < R(Ix)
return Ay (ly)

YES

Ix] Iy v

A NO

Ax

If R and Ay polynomial-time = .Ax polynomial-time.
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Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

Ix R Y J Ay
<\ NO
Ay
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Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

/ RHY—A
X Y<\ NG

A

Claim.

o If Ay poly-time, then Ax is poly-time.
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Polynomial-time reductions and instance sizes

Proposition

Let R be a polynomial-time algorithm reducing X to Y. Then for
any instance Ix of X, if ly = R(Ix) then |ly| is polynomial in the
size of |Ix|.

‘R is a polynomial-time algorithm and hence on input Ix of size |Ix|
it runs in time p(|/x|) for some polynomial p().
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Polynomial-time reductions and instance sizes

Proposition

Let R be a polynomial-time algorithm reducing X to Y. Then for

any instance Ix of X, if ly = R(Ix) then |ly| is polynomial in the
size of |Ix|.

R is a polynomial-time algorithm and hence on input Ix of size |Ix|
it runs in time p(|/x|) for some polynomial p().
ly is the output of R on input Ix.

R can write at most p(|/x|) bits and hence |lIy| < p(|/x])- O
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Polynomial-time reductions and instance sizes

Proposition

Let R be a polynomial-time algorithm reducing X to Y. Then for
any instance Ix of X, if ly = R(Ix) then |ly| is polynomial in the
size of |Ix|.

R is a polynomial-time algorithm and hence on input Ix of size |Ix|
it runs in time p(|/x|) for some polynomial p().

ly is the output of R on input Ix.

R can write at most p(|/x|) bits and hence |lIy| < p(|/x])- O

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.
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Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

y : llyl=p(lIx]| L -YES

Ay <

~NO

A

Claim.
o If Ay poly-time, then Ay is poly-time.
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Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

L ~YES
Ix R v i Ilyl=p(lix] AY
<\’ NO

A

Claim.
o If Ay poly-time, then Ay is poly-time.
e If X is hard (no poly-time alogirthm), then sois Y (Ay can
not be poly-time)
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Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X <p Y. Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.
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Transitivity of Reductions

Proposition
X <pYandyY <p Z implies that X <p Z.

Note: X <p Y does not imply that Y <p X and hence it is very
important to know the FROM and TO in a reduction.

To prove X <p Z you need to show a reduction FROM X TO Z
In other words show that an algorithm for Z implies an algorithm for

X.
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Using Reductions to show Hardness

We say that a problem is “hard” if there is no polynomial-time

algorithm known for it (and it is believed that such an algorithm does
not exist).

To show that Y is a hard problem:

@ Start with an existing “hard” problem X
@ Prove that X <p Y

@ Then we have shown that Y is a “hard” problem
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Examples of hard problems

Q@ SAT

Q@ 3SAT

© Independent Set and Clique

© Vertex Cover

© Set Cover

© Hamilton Cycle

@ Knapsack and Subset Sum and Partition
© Integer Programming

Q...
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Examples of Reductions
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Independent Sets and Cliques

Given a graph G = (V, E), a set of vertices V' C V is:
© independent set: no two vertices of V'’ connected by an edge.

@ clique: every pair of vertices in V' is connected by an edge of
G.
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The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size > k?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size > k?
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Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.
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Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

G (complement of G): where (u, v) is an edge iff (u, v) is not an
edge of G. B
Instance of Clique: graph G and integer k.
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Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

G (complement of G): where (u, v) is an edge iff (u, v) is not an
edge of G. B
Instance of Clique: graph G and integer k.
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Independent Set and Clique

© Independent Set <p Clique.
What does this mean?

@ If we have an algorithm for Clique, then we have an algorithm
for Independent Set.

© Clique is at least as hard as Independent Set.
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Independent Set and Clique

© Independent Set <p Clique.
What does this mean?

@ If we have an algorithm for Clique, then we have an algorithm
for Independent Set.

© Clique is at least as hard as Independent Set.
@ Does Clique <p Independent Set?
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Independent Set and Clique

© Independent Set <p Clique.
What does this mean?

@ If we have an algorithm for Clique, then we have an algorithm
for Independent Set.

© Clique is at least as hard as Independent Set.
@ Does Clique <p Independent Set?

YES!

Independent Set is at least as hard as Clique.
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Given a graph G = (V/, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.
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Vertex Cover

Given a graph G = (V/, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.
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The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size < k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if
V' \ S is a vertex cover.
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Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if
V' \ S is a vertex cover.

Exercise. ] l
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Independent Set <p Vertex Cover

© G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

@ Claim. G has an independent set of size > k iff G has a vertex
cover of size < n — k
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Independent Set <p Vertex Cover

© G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

@ Claim. G has an independent set of size > k iff G has a vertex
cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G, n — k) is
an instance of Vertex Cover with the same answer.
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Independent Set <p Vertex Cover

© G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

@ Claim. G has an independent set of size > k iff G has a vertex
cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G, n — k) is
an instance of Vertex Cover with the same answer.

© Therefore,
Independent Set <p Vertex Cover.
Also Vertex Cover <p Independent Set.
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Proving Reductions

To prove that X <p Y you need to give an algorithm A that:

@ Transforms an instance Ix of X into an instance Iy of Y.
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Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.
@ Satisfies the property that answer to Ix is YES iff Iy is YES.
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Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.
@ Satisfies the property that answer to Ix is YES iff Iy is YES.

@ typical easy direction to prove: answer to Iy is YES if answer to
Ix is YES
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Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.
@ Satisfies the property that answer to Ix is YES iff Iy is YES.
@ typical easy direction to prove: answer to Iy is YES if answer to
Ix is YES
@ typical difficult direction to prove: answer to Ix is YES if
answer to ly is YES (equivalently answer to Iy is NO if answer
to Ix is NO).
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Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.

@ Satisfies the property that answer to Ix is YES iff Iy is YES.

@ typical easy direction to prove: answer to Iy is YES if answer to
Ix is YES

@ typical difficult direction to prove: answer to Ix is YES if
answer to ly is YES (equivalently answer to Iy is NO if answer
to Ix is NO).

© Runs in polynomial time.
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Example of incorrect reduction proof

Try proving Matching <p Bipartite Matching via following
reduction:
@ Given graph G = (V, E) obtain a bipartite graph
G’ = (V’, E’) as follows.
O let Vi={unn|ueV}and Vo ={u|u e V}. Weset
V' = Vj U V; (that is, we make two copies of V)
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Example of incorrect reduction proof

Try proving Matching <p Bipartite Matching via following
reduction:
@ Given graph G = (V, E) obtain a bipartite graph
G’ = (V’, E’) as follows.
O let Vi={unn|ueV}and Vo ={u|u e V}. Weset
V' = Vj U V; (that is, we make two copies of V)

Q E’={u1v2 ’u;ﬁvanduveE}
@ Given G and integer k the reduction outputs G’ and k.
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Reduction is a poly-time algorithm. If G has a matching of size k
then G’ has a matching of size k.

Exercise. ] l

If G’ has a matching of size k then G has a matching of size k.
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If G’ has a matching of size k then G has a matching of size k.
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Reduction is a poly-time algorithm. If G has a matching of size k
then G’ has a matching of size k.

Exercise. ] l

If G’ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u € V has two copies u; and up in G'. A
matching in G’ may use both copies!
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More General Reductions
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Turing Reduction

A More General Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

@ on an instance Ix of X, A uses polynomial in |Ix| “steps”
© a step is either a standard computation step, or
© a sub-routine call to an algorithm that solves Y.

This is a Turing reduction.
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Turing Reduction

A More General Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

@ on an instance Ix of X, A uses polynomial in |Ix| “steps”
© a step is either a standard computation step, or
© a sub-routine call to an algorithm that solves Y.

This is a Turing reduction.

v

Note: In making sub-routine call to algorithm to solve Y, A can only
ask questions of size polynomial in |Ix|. Why?
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Comparing reductions

© Karp reduction:

yes
I I >
X Reduction " »! Solver for Y’
o
Solver for X
@ Turing reduction:
yes
Ix Turing reduction
Algorithm
> @ Algorithm to solve X can
call solver for Y
poly(|l«|) many times.
Solver for ¥’ @ Input to every call is of
size poly(|/x]).
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Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How?
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Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How? Uses algorithm for interval problem multiple times.
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Turing vs Karp Reductions

© Turing reductions more general than Karp reductions.
@ Turing reduction useful in obtaining algorithms via reductions.

© Karp reduction is simpler and easier to use to prove hardness of
problems.

© Perhaps surprisingly, Karp reductions, although limited, suffice
for most known NP-Completeness proofs.

© Karp reductions allow us to distinguish between NP and co-NP
(more on this later).
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Part V

The Satisfiability Problem (SAT)
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Propositional Formulas

Consider a set of boolean variables xq, X2, . . . X,.

© A literal is either a boolean variable x; or its negation —x;.
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Propositional Formulas

Definition
Consider a set of boolean variables xq, X2, . . . X,.
© A literal is either a boolean variable x; or its negation —x;.

@ A clause is a disjunction of literals.
For example, x; V x2 V —x4 is a clause.

© A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

O (x1V x2V —xa) A (x2V —x3) A x5 is a CNF formula.
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Propositional Formulas

Consider a set of boolean variables xq, X2, . . . X,.

© A literal is either a boolean variable x; or its negation —x;.
@ A clause is a disjunction of literals.
For example, x; V X2 V —x4 is a clause.

© A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

O (x1V x2V —xa) A (x2V —x3) A x5 is a CNF formula.
Q A formula ¢ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

O (x1Vx2V xa)A(x2V —x3V x1)is a 3CNF formula, but
(x1 V x2 V =ixg) A (x2 V —x3) A X5 is not.
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Satisfiability

Problem: SAT

Instance: A CNF formula ¢.
Question: Is there a truth assignment to the variable of
o such that ¢ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ¢.
Question: Is there a truth assignment to the variable of
o such that ¢ evaluates to true?
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Satisfiability

SAT

Given a CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?

Example
Q (x1VxV xg) A (x2V —x3) A x5 is satisfiable; take
X145 X24 - « « X5 to be all true

Q (x1Vx)A(mx1Vx) A (—x1V—x) A (x1 V x2) is not
satisfiable.
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Importance of SAT and 3SAT

© SAT and 3SAT are basic constraint satisfaction problems.

@ Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

© Arise naturally in many applications involving hardware and
software verification and correctness.

© As we will see, it is a fundamental problem in theory of
NP-Completeness.
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3SAT <p SAT

Q@ 3SAT <, SAT.

@ Because...
A 3SAT instance is also an instance of SAT.
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SAT <p 3SAT

SAT <p 3SAT. \
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SAT <p 3SAT

SAT <p 3SAT. \

Given ¢ a SAT formula we create a 3SAT formula ¢’ such that
Q ( is satisfiable iff ¢ is satisfiable.
@ ¢’ can be constructed from ¢ in time polynomial in |¢p|.
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SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(x\/y\/sz>/\<—|x\/—|yv—|szVu)/\<—|x>

In 3SAT every clause must have exactly 3 different literals.
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SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(x\/y\/sz>/\<—|x\/—|yv—|szVu)/\<—|x>

In 3SAT every clause must have exactly 3 different literals.

Consider (x Vy VzV w)

Replace it with (x VyV a) N <—|a vV wV u)
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SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(x\/y\/sz>/\<—|x\/—|yv—|z\/qu)/\<—|x>

In 3SAT every clause must have exactly 3 different literals.

Consider (x Vy VzV w)

Replace it with (x VyV a> N <—|a vV wV u)

@ Pad short clauses so they have 3 literals.
@ Break long clauses into shorter clauses. (Need to add new
variables)

© Repeat the above till we have a 3CNF
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What about 2SAT?
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2SAT can be solved in polynomial time! (specifically, linear time!)
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What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.
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What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x V y V z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable ¢, and rewrite this as

(xVyVa)A(—aV 2) (bad! clause with 3 vars)
oo (xVa)AN(—aVyVz) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
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What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...

Look in books etc.
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