CS 473: Algorithms, Spring 2021

ILP, Reductions, and SAT

Lecture 20 April 20, 2021

Most slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 1 Spring 2021 1 / 53

Outline

Integer Linear Programming (ILP)

Reductions

- Reductions and consequences: Algorithmic and hardness
- Poly-time reduction (Karp)
- Examples
- Turing reduction

SAT: Satisfiability problem, 3SAT, and equivalence.

Ruta (UIUC) CS473 2 Spring 2021 2 / 5

Part I

Integer Linear Programming (ILP)

Integer Linear Programming

Problem

Find a vector $x \in Z^d$ (integer values) that

maximize
$$\sum_{j=1}^d c_j x_j$$
 subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ for $i=1\dots n$

Input is matrix $A = (a_{ij}) \in \mathbb{R}^{n \times d}$, column vector $b = (b_i) \in \mathbb{R}^n$, and row vector $c = (c_i) \in \mathbb{R}^d$

Ruta (UIUC) CS473 4 Spring 2021 4 / 53

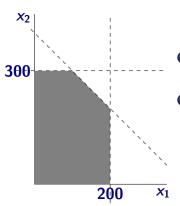
Factory Example

maximize
$$x_1+6x_2$$
 subject to $x_1\leq 200$ $x_2\leq 300$ $x_1+x_2\leq 400$ $x_1,x_2\geq 0$

Suppose we want x_1, x_2 to be integer valued.

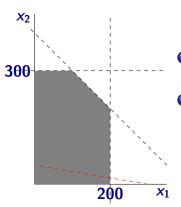
Ruta (UIUC) CS473 5 Spring 2021 5 / 53

Factory Example Figure



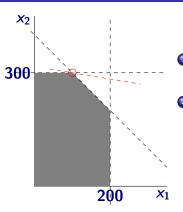
- Feasible values of x₁ and x₂ are integer points in shaded region
- Optimization function is a line; moving the line until it just leaves the final integer point in feasible region, gives optimal values

Factory Example Figure



- Feasible values of x₁ and x₂ are integer points in shaded region
- Optimization function is a line; moving the line until it just leaves the final integer point in feasible region, gives optimal values

Factory Example Figure



- Feasible values of x₁ and x₂ are integer points in shaded region
- Optimization function is a line; moving the line until it just leaves the final integer point in feasible region, gives optimal values

Integer Programming

Can model many difficult discrete optimization problems as integer programs!

Therefore integer programming is a hard problem. NP-hard.

Ruta (UIUC) CS473 7 Spring 2021 7 / 53

Integer Programming

Can model many difficult discrete optimization problems as integer programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Integer Programming

Can model many difficult discrete optimization problems as integer programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods

- branch and bound
- branch and cut
- adding cutting planes
- Iinear programming plays a fundamental role

Ruta (UIUC) CS473 7 Spring 2021 7 / 53

Example: Maximum Independent Set

Definition

Given undirected graph G = (V, E) a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \not\in E$.

Input Graph G = (V, E)

Goal Find maximum sized independent set in G

Example: Dominating Set

Definition

Given undirected graph G = (V, E) a subset of nodes $S \subseteq V$ is a dominating set if for all $v \in V$, either $v \in S$ or a neighbor of v is in S.

Input Graph G = (V, E), weights $w(v) \ge 0$ for $v \in V$ Goal Find minimum weight dominating set in G

Ruta (UIUC) CS473 9 Spring 2021 9 / 53

Suppose we know that for a linear program all vertices have integer coordinates.

Suppose we know that for a linear program all vertices have integer coordinates.

Then solving linear program \equiv solving integer program. Linear programs can be solved efficiently (polynomial time) and hence we get an integer solution for free!

Suppose we know that for a linear program all vertices have integer coordinates.

Then solving linear program \equiv solving integer program. Linear programs can be solved efficiently (polynomial time) and hence we get an integer solution for free!

Luck or Structure:

- Linear program for flows with integer capacities have integer vertices
- 2 Linear program for matchings in bipartite graphs have integer vertices
- A complicated linear program for matchings in general graphs have integer vertices.

All of above problems can hence be solved efficiently.

Ruta (UIUC) CS473 10 Spring 2021 10 / 53

Meta Theorem: A combinatorial optimization problem can be solved efficiently if and only if there is a linear program for problem with integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations such as convex programming are the most general problems that we can solve efficiently.

• Linear Programming is a useful and powerful (modeling) problem.

Ruta (UIUC) CS473 12 Spring 2021 12 / 53

- Linear Programming is a useful and powerful (modeling) problem.
- 2 Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.

Ruta (UIUC) CS473 12 Spring 2021 12 / 53

- Linear Programming is a useful and powerful (modeling) problem.
- Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.
- Geometry and linear algebra are important to understand the structure of LP and in algorithm design. Vertex solutions imply that LPs have poly-sized optimum solutions. This implies that LP is in NP.

Ruta (UIUC) CS473 Spring 2021 12 / 53

- Linear Programming is a useful and powerful (modeling) problem.
- Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.
- Geometry and linear algebra are important to understand the structure of LP and in algorithm design. Vertex solutions imply that LPs have poly-sized optimum solutions. This implies that LP is in NP.
- Integer Programming in NP-Complete. LP-based techniques critical in heuristically solving integer programs.

Ruta (UIUC) CS473 12 Spring 2021 12 / 53

Part II

Reductions

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

We use reductions to find algorithms to solve problems.

Ruta (UIUC) CS473 14 Spring 2021 14 / 5:

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Ruta (UIUC) CS473 14 Spring 2021 14 / 5:

Example 1: Bipartite Matching and Flows

How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size $\geq k$?

Solution

Reduce it to Max-Flow. G has a matching of size $\geq k$ iff there is a flow from s to t of value $\geq k$ in the auxiliary graph G'.

Ruta (UIUC) CS473 15 Spring 2021 15 / 53

Types of Problems

Decision, Search, and Optimization

- **Decision problem**. Example: given *n*, is *n* prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of n.

Ruta (UIUC) CS473 16 Spring 2021 16 / 53

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from S to C0, of value at least C1?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have $\frac{\text{Yes}}{\text{No}}$ answers. This makes them easy to work with.

Ruta (UIUC) CS473 17 Spring 2021 17 / 53

1 A problem Π consists of an **infinite** collection of inputs $\{l_1, l_2, \ldots, \}$. Each input is referred to as an **instance**.

Ruta (UIUC) CS473 18 Spring 2021 18 / 53

1 A problem Π consists of an **infinite** collection of inputs $\{l_1, l_2, \ldots, \}$. Each input is referred to as an **instance**.

Example

Max-Flow is a problem. While a graph G with edge-capacities, two vertices s, t, and an integer k constitutes an instance.

1 A problem Π consists of an **infinite** collection of inputs $\{l_1, l_2, \ldots, \}$. Each input is referred to as an **instance**.

Example

Max-Flow is a problem. While a graph G with edge-capacities, two vertices s, t, and an integer k constitutes an instance.

The size of an instance I is the number of bits in its representation.

1 A problem Π consists of an **infinite** collection of inputs $\{l_1, l_2, \ldots, \}$. Each input is referred to as an **instance**.

Example

Max-Flow is a problem. While a graph G with edge-capacities, two vertices s, t, and an integer k constitutes an instance.

- The size of an instance I is the number of bits in its representation.
- **3** For an instance I, sol(I) is a set of feasible solutions to I.
- For optimization problems each solution $s \in sol(I)$ has an associated value.

Ruta (UIUC) CS473 18 Spring 2021 18 / 53

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc \mathcal{A}_{Y} : algorithm for Y

Using reductions to solve problems

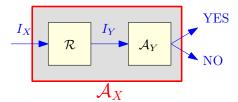
- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc \mathcal{A}_{Y} : algorithm for Y
- $\bullet \longrightarrow \text{New algorithm for } X$:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```



Using reductions to solve problems

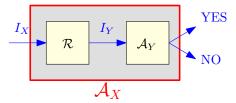
- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc \mathcal{A}_{Y} : algorithm for Y
- $\bullet \longrightarrow \text{New algorithm for } X$:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```



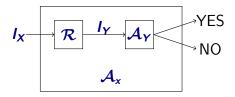
If \mathcal{R} and \mathcal{A}_Y polynomial-time $\implies \mathcal{A}_X$ polynomial-time.

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time reductions are useful.

If reduction $\mathcal{R}\colon X \to Y$ is poly-time computable then denote $X \leq_P Y$



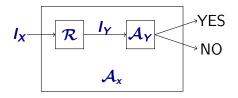
Ruta (UIUC) CS473 20 Spring 2021 20 / 53

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time reductions are useful.

If reduction $\mathcal{R}\colon X \to Y$ is poly-time computable then denote $X \leq_P Y$



Claim.

• If A_Y poly-time, then A_X is poly-time.

Ruta (UIUC) CS473 20 Spring 2021 20 / 53

Proposition

Let \mathcal{R} be a polynomial-time algorithm reducing X to Y. Then for any instance I_X of X, if $I_Y = \mathcal{R}(I_X)$ then $|I_Y|$ is polynomial in the size of $|I_X|$.

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

Proposition

Let \mathcal{R} be a polynomial-time algorithm reducing X to Y. Then for any instance I_X of X, if $I_Y = \mathcal{R}(I_X)$ then $|I_Y|$ is polynomial in the size of $|I_X|$.

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). I_{Y} is the output of \mathcal{R} on input I_{X} .

CS473 Spring 2021 21 / 53

Proposition

Let \mathcal{R} be a polynomial-time algorithm reducing X to Y. Then for any instance I_X of X, if $I_Y = \mathcal{R}(I_X)$ then $|I_Y|$ is polynomial in the size of $|I_X|$.

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| < p(|I_X|)$.

CS473 Spring 2021 21 / 53

Proposition

Let \mathcal{R} be a polynomial-time algorithm reducing X to Y. Then for any instance I_X of X, if $I_Y = \mathcal{R}(I_X)$ then $|I_Y|$ is polynomial in the size of $|I_X|$.

Proof.

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p().

 I_Y is the output of \mathcal{R} on input I_X .

 $\mathcal R$ can write at most $p(|I_X|)$ bits and hence $|I_Y| \leq p(|I_X|)$.

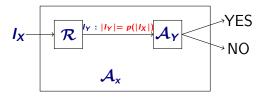
Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time reductions are useful.

If reduction $\mathcal{R}\colon X \to Y$ is poly-time computable then denote $X <_P Y$



Claim.

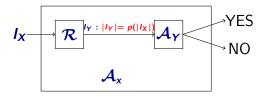
• If A_Y poly-time, then A_X is poly-time.

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time reductions are useful.

If reduction $\mathcal{R}\colon X \to Y$ is poly-time computable then denote $X \leq_P Y$



Claim.

- If A_Y poly-time, then A_X is poly-time.
- If X is hard (no poly-time alogirthm), then so is Y (A_Y can not be poly-time)

Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial time, and $X \leq_P Y$. Then

- (A) Y can be solved in polynomial time.
- (B) Y can NOT be solved in polynomial time.
- (C) If Y is hard then X is also hard.
- (D) None of the above.
- (E) All of the above.

Transitivity of Reductions

Proposition

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Z$ you need to show a reduction FROM X TO Z In other words show that an algorithm for Z implies an algorithm for X.

Using Reductions to show Hardness

We say that a problem is "hard" if there is no polynomial-time algorithm known for it (and it is believed that such an algorithm does not exist).

To show that Y is a hard problem:

- Start with an existing "hard" problem X
- Prove that $X \leq_P Y$
- Then we have shown that Y is a "hard" problem

Examples of hard problems

Problems

- SAT
- **2** 3SAT
- Independent Set and Clique
- Vertex Cover
- Set Cover
- 6 Hamilton Cycle
- Knapsack and Subset Sum and Partition
- Integer Programming
- **9** ...

Part III

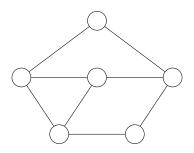
Examples of Reductions

Given a graph G = (V, E), a set of vertices $V' \subseteq V$ is:

- **1** independent set: no two vertices of V' connected by an edge.
- Clique: every pair of vertices in V' is connected by an edge of G.

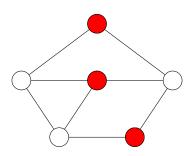
Given a graph G = (V, E), a set of vertices $V' \subseteq V$ is:

- **1** independent set: no two vertices of V' connected by an edge.
- clique: every pair of vertices in V' is connected by an edge of G.



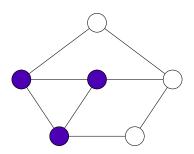
Given a graph G = (V, E), a set of vertices $V' \subseteq V$ is:

- **1** independent set: no two vertices of V' connected by an edge.
- clique: every pair of vertices in V' is connected by an edge of G.



Given a graph G = (V, E), a set of vertices $V' \subseteq V$ is:

- **1** independent set: no two vertices of V' connected by an edge.
- clique: every pair of vertices in V' is connected by an edge of G.



The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.

Question: Does G has an independent set of size $\geq k$?

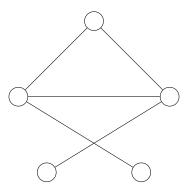
Problem: Clique

Instance: A graph G and an integer k.

Question: Does G has a clique of size > k?

Instance of Independent Set: graph G and an integer k.

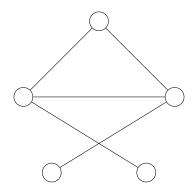
Instance of Independent Set: graph G and an integer k.



Instance of Independent Set: graph G and an integer k.

 \overline{G} (complement of G): where (u, v) is an edge iff (u, v) is not an edge of G.

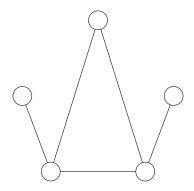
Instance of Clique: graph \overline{G} and integer k.



Instance of Independent Set: graph G and an integer k.

 \overline{G} (complement of G): where (u, v) is an edge iff (u, v) is not an edge of G.

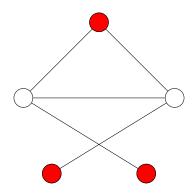
Instance of Clique: graph \overline{G} and integer k.



Instance of Independent Set: graph G and an integer k.

 \overline{G} (complement of G): where (u, v) is an edge iff (u, v) is not an edge of G.

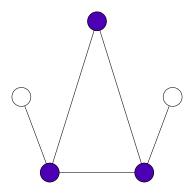
Instance of Clique: graph \overline{G} and integer k.



Instance of Independent Set: graph G and an integer k.

 \overline{G} (complement of G): where (u, v) is an edge iff (u, v) is not an edge of G.

Instance of Clique: graph \overline{G} and integer k.



- Independent Set \leq_P Clique. What does this mean?
- If we have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.

- Independent Set ≤_P Clique.
 What does this mean?
- If we have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Open Clique ≤ P Independent Set?

- Independent Set \leq_P Clique. What does this mean?
- If we have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- **1** Does Clique \leq_P Independent Set?

YES!

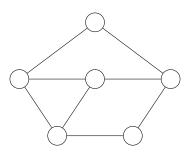
Independent Set is at least as hard as **Clique**.

Given a graph G = (V, E), a set of vertices S is:

1 A **vertex cover** if every $e \in E$ has at least one endpoint in S.

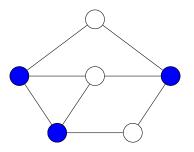
Given a graph G = (V, E), a set of vertices S is:

1 A **vertex cover** if every $e \in E$ has at least one endpoint in S.



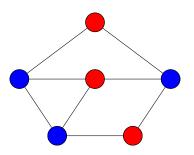
Given a graph G = (V, E), a set of vertices S is:

1 A **vertex cover** if every $e \in E$ has at least one endpoint in S.



Given a graph G = (V, E), a set of vertices S is:

1 A **vertex cover** if every $e \in E$ has at least one endpoint in S.



The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.

Goal: Is there a vertex cover of size $\leq k$ in G?

Can we relate **Independent Set** and **Vertex Cover**?

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover.

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover.

Proof.

Exercise.

Independent Set \leq_{P} Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- **2 Claim.** G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n-k$

Independent Set \leq_P Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- **2 Claim.** G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n-k$
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.

Independent Set \leq_P Vertex Cover

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- **2 Claim.** G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n-k$
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤_P Vertex Cover. Also Vertex Cover <_P Independent Set.

Proving Reductions

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that:

1 Transforms an instance I_X of X into an instance I_Y of Y.

To prove that $X \leq_{P} Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- 2 Satisfies the property that answer to I_X is YES iff I_Y is YES.

Ruta (UIUC) CS473 36 Spring 2021 36 / 53

To prove that $X \leq_{P} Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to
 I_X is YES

Ruta (UIUC) CS473 36 Spring 2021 36 / 53

To prove that $X \leq_{P} Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to
 I_X is YES
 - 2 typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_Y is NO).

Ruta (UIUC) CS473 36 Spring 2021 36 / 53

To prove that $X \leq_{P} Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to
 I_X is YES
 - 2 typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_Y is NO).
- Runs in polynomial time.

Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)

Ruta (UIUC) CS473 37 Spring 2021 37 / 53

Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)
 - $\mathbf{0} \ \mathbf{E'} = \left\{ \mathbf{u}_1 \mathbf{v}_2 \ \middle| \ \mathbf{u} \neq \mathbf{v} \text{ and } \mathbf{u}\mathbf{v} \in \mathbf{E} \right\}$

Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - **1** Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)
- Given G and integer k the reduction outputs G' and k.

CS473 37 Spring 2021 37 / 53

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why?

"Proof"

Claim

Reduction is a poly-time algorithm. If G has a matching of size k then G' has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $u \in V$ has two copies u_1 and u_2 in G'. A matching in G' may use both copies!

Ruta (UIUC) CS473 38 Spring 2021 38 / 53

Part IV

More General Reductions

Ruta (UIUC) CS473 39 Spring 2021 39 / 53

Turing Reduction

A More General Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm \mathcal{A} for X that has the following properties:

- **1** on an instance I_X of X, A uses polynomial in $|I_X|$ "steps"
- 2 a step is either a standard computation step, or
- \odot a sub-routine call to an algorithm that solves Y.

This is a **Turing reduction**.

Turing Reduction

A More General Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm \mathcal{A} for X that has the following properties:

- lacktriangle on an instance I_X of X, A uses polynomial in $|I_X|$ "steps"
- 2 a step is either a standard computation step, or
- 3 a sub-routine call to an algorithm that solves Y.

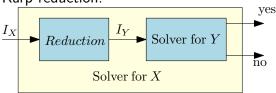
This is a **Turing reduction**.

Note: In making sub-routine call to algorithm to solve Y, A can only ask questions of size polynomial in $|I_X|$. Why?

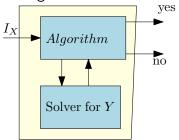
Ruta (UIUC) CS473 40 Spring 2021 40 / 53

Comparing reductions

• Karp reduction:



Turing reduction:



Turing reduction

- Algorithm to solve X can call solver for Y poly(|I_x|) many times.
- Input to every call is of size poly(|I_x|).

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.

Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.

Goal: Compute the maximum number of non-overlapping intervals.

How?

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.

Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.

Goal: Compute the maximum number of non-overlapping intervals.

How? Uses algorithm for interval problem multiple times.

Turing vs Karp Reductions

- Turing reductions more general than Karp reductions.
- Turing reduction useful in obtaining algorithms via reductions.
- Karp reduction is simpler and easier to use to prove hardness of problems.
- Perhaps surprisingly, Karp reductions, although limited, suffice for most known NP-Completeness proofs.
- Karp reductions allow us to distinguish between NP and co-NP (more on this later).

Ruta (UIUC) CS473 43 Spring 2021 43 / 53

Part V

The Satisfiability Problem (SAT)

Ruta (UIUC) CS473 44 Spring 2021 44 / 53

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

1 A **literal** is either a boolean variable x_i or its negation $\neg x_i$.

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- **4** A formula φ is a 3CNF:
 - A CNF formula such that every clause has **exactly** 3 literals.
 - ① $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Satisfiability

Problem: SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of

 φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of

 φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- ② $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$ is not satisfiable.

Ruta (UIUC) CS473 47 Spring 2021 47 / 53

Importance of **SAT** and **3SAT**

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-Completeness.

- **3** 3SAT \leq_P SAT.
- Because...
 A 3SAT instance is also an instance of SAT.

Ruta (UIUC) CS473 49 Spring 2021 49 / 53

Claim

 $SAT \leq_P 3SAT$.

Claim

SAT \leq_P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ' such that

- lacktriangledown is satisfiable iff $m{\varphi}'$ is satisfiable.
- ② φ' can be constructed from φ in time polynomial in $|\varphi|$.

How **SAT** is different from **3SAT**?

In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly 3** different literals.

How **SAT** is different from **3SAT**?

In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly 3** different literals.

Consider $(x \lor y \lor z \lor w)$

Replace it with
$$(x \lor y \lor \alpha) \land (\neg \alpha \lor w \lor u)$$

How **SAT** is different from **3SAT**?

In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly 3** different literals.

Consider $(x \lor y \lor z \lor w)$

Replace it with
$$(x \lor y \lor \alpha) \land (\neg \alpha \lor w \lor u)$$

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses. (Need to add new variables)
- Repeat the above till we have a 3 CNF.

2SAT can be solved in polynomial time! (specifically, linear time!)

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

Consider a clause $(x \lor y \lor z)$. We need to reduce it to a collection of **2**CNF clauses. Introduce a face variable α , and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars) or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars).

(In animal farm language: **2SAT** good, **3SAT** bad.)

A challenging exercise: Given a **2SAT** formula show to compute its satisfying assignment...

Look in books etc.