CS 473: Algorithms, Spring 2021

ILP, Reductions, and SAT

Lecture 20
April 20, 2021

Most slides are courtesy Prof. Chekuri

Ruta (UIUC)

Integer Linear Programming (ILP)

Reductions
@ Reductions and consequences: Algorithmic and hardness
@ Poly-time reduction (Karp)
@ Examples

@ Turing reduction

SAT: Satisfiability problem, 3SAT, and equivalence.

Ruta (UIUC) Spring 2021 2 /53

Part |

Integer Linear Programming (ILP)

Ruta (UIUC)

Integer Linear Programming

Find a vector x € Z9 (integer values) that

.. d
maximize Z{'j:l i Xj
subject to > ._; a;x; < b; fori=1...n

Input is matrix A = (a;) € R"™ 4, column vector b = (b;) € R",
and row vector ¢ = (¢;) € R

Ruta (UIUC) Csa73 4 Spring 2021 4 / 53

Factory Example

maximize x1 + 6x
subject to x3 <200 x; <300 x; + x; < 400
X149 X2 Z 0

Suppose we want xj, X, to be integer valued.

Ruta (UIUC) CS473 5 Spring 2021 5 /53

Factory Example Figure

X2

3 @ Feasible values of x; and x, are
: “ """" integer points in shaded region
l @ Optimization function is a line; moving
the line until it just leaves the final
integer point in feasible region, gives
optimal values

Ruta (UIUC) CS473 6 Spring 2021 6 /53

Factory Example Figure

X2

3 @ Feasible values of x; and x, are
: “ """" integer points in shaded region
l @ Optimization function is a line; moving
the line until it just leaves the final
integer point in feasible region, gives
optimal values

Ruta (UIUC) CS473 6 Spring 2021 6 /53

Factory Example Figure

@ Feasible values of x; and x, are
integer points in shaded region

@ Optimization function is a line; moving
the line until it just leaves the final
integer point in feasible region, gives
optimal values

Ruta (UIUC) CS473 6 Spring 2021 6 /53

Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.

Ruta (UIUC) Spring 2021 7 /53

Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Ruta (UIUC) Spring 2021 7 /53

Integer Programming

Can model many difficult discrete optimization problems as integer
programs!

Therefore integer programming is a hard problem. NP-hard.
Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods
@ branch and bound
© branch and cut
© adding cutting planes

© linear programming plays a fundamental role

Ruta (UIUC) CS473 7 Spring 2021 7 /53

Example: Maximum Independent Set

Definition

Given undirected graph G = (V/, E) a subset of nodes S C V is an
independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u,v € S then (u,v) € E.

Input Graph G = (V, E)

Goal Find maximum sized independent set in G

Ruta (UIUC) CS473 8 Spring 2021 8 /53

Example: Dominating Set

Definition
Given undirected graph G = (V/, E) a subset of nodes S C V is a
dominating set if for all v € V, either v € S or a neighbor of v is in

S.

Input Graph G = (V, E), weights w(v) > 0 for v € V
Goal Find minimum weight dominating set in G

Ruta (UIUC) CS473 9 Spring 2021 9 /53

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.

Ruta (UIUC) Cs473 10 Spring 2021 10 / 53

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.

Then solving linear program = solving integer program. Linear
programs can be solved efficiently (polynomial time) and hence we
get an integer solution for free!

Ruta (UIUC) Cs473 10 Spring 2021 10 / 53

Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer
coordinates.

Then solving linear program = solving integer program. Linear

programs can be solved efficiently (polynomial time) and hence we
get an integer solution for free!

Luck or Structure:

© Linear program for flows with integer capacities have integer
vertices

© Linear program for matchings in bipartite graphs have integer
vertices

© A complicated linear program for matchings in general graphs
have integer vertices.

All of above problems can hence be solved efficiently.

Ruta (UIUC) Cs473 10 Spring 2021 10 / 53

Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved
efficiently if and only if there is a linear program for problem with
integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations
such as convex programming are the most general problems that we
can solve efficiently.

Ruta (UIUC) Cs473 11 Spring 2021 11/ 53

Summary

@ Linear Programming is a useful and powerful (modeling)
problem.

Ruta (UIUC) Cs473 12 Spring 2021 12 /53

Summary

@ Linear Programming is a useful and powerful (modeling)
problem.

@ Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

Ruta (UIUC) Cs473 12 Spring 2021 12 /53

@ Linear Programming is a useful and powerful (modeling)
problem.

@ Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

© Geometry and linear algebra are important to understand the
structure of LP and in algorithm design. Vertex solutions imply
that LPs have poly-sized optimum solutions. This implies that
LP is in NP.

Ruta (UIUC) Cs473 12 Spring 2021 12 /53

Linear Programming is a useful and powerful (modeling)
problem.

Can be solved in polynomial time. Practical solvers available
commercially as well as in open source. Whether there is a
strongly polynomial time algorithm is a major open problem.

Geometry and linear algebra are important to understand the
structure of LP and in algorithm design. Vertex solutions imply
that LPs have poly-sized optimum solutions. This implies that
LP is in NP.

Integer Programming in NP-Complete. LP-based techniques
critical in heuristically solving integer programs.

Ruta (UIUC) Cs473 12 Spring 2021 12 / 53

Part 1l

Ruta (UIUC) Spring 2021 13/ 53

A reduction from Problem X to Problem Y means (informally) that

if we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions

@ We use reductions to find algorithms to solve problems.

Ruta (UIUC) Cs473 14

Spring 2021 14 / 53

A reduction from Problem X to Problem Y means (informally) that

if we have an algorithm for Problem Y, we can use it to find an
algorithm for Problem X.

Using Reductions

@ We use reductions to find algorithms to solve problems.

© We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)

Ruta (UIUC) Cs473 14

Spring 2021 14 / 53

Example 1: Bipartite Matching and Flows

How do we solve the Bipartite Matching Problem?

Given a bipartite graph G = (U U V, E) and number k, does G
have a matching of size > k?

Solution

Reduce it to Max-Flow. G has a matching of size > k iff there is a
flow from s to t of value > k in the auxiliary graph G’.

| A\

v

Ruta (UIUC) Cs473 15 Spring 2021 15 / 53

Types of Problems

Decision, Search, and Optimization

© Decision problem. Example: given n, is n prime?.

@ Search problem. Example: given n, find a factor of n if it
exists.

© Optimization problem. Example: find the smallest prime
factor of n.

Ruta (UIUC) Cs473 16 Spring 2021 16 / 53

Optimization and Decision problems

For max flow...

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a
flow in G, from s to t, of value at least K7

While using reductions and comparing problems, we typically work
with the decision versions. Decision problems have Yes/No answers.
This makes them easy to work with.

Ruta (UIUC) Cs473 17 Spring 2021 17 / 53

Problems vs Instances

@ A problem I consists of an infinite collection of inputs
{h, bh,...,}. Each input is referred to as an instance.

Ruta (UIUC) Cs473 18 Spring 2021 18 / 53

Problems vs Instances

@ A problem I consists of an infinite collection of inputs
{h, bh,...,}. Each input is referred to as an instance.

Max-Flow is a problem. While a graph G with edge-capacities, two
vertices s, t, and an integer k constitutes an instance.

Ruta (UIUC) Cs473 18 Spring 2021 18 / 53

Problems vs Instances

@ A problem I consists of an infinite collection of inputs
{h, bh,...,}. Each input is referred to as an instance.

Max-Flow is a problem. While a graph G with edge-capacities, two
vertices s, t, and an integer k constitutes an instance.

@ The size of an instance [is the number of bits in its
representation.

Ruta (UIUC) Cs473 18 Spring 2021 18 / 53

Problems vs Instances

@ A problem I consists of an infinite collection of inputs
{h, bh,...,}. Each input is referred to as an instance.

Max-Flow is a problem. While a graph G with edge-capacities, two
vertices s, t, and an integer k constitutes an instance.

@ The size of an instance [is the number of bits in its
representation.

@ For an instance I, sol(l) is a set of feasible solutions to /.

@ For optimization problems each solution s € sol(/) has an
associated value.

Ruta (UIUC) Cs473 18 Spring 2021 18 / 53

Using reductions to solve problems

@ R: Reduction X — Y
@ Ay: algorithm for Y

Ruta (UIUC) Cs473 19 Spring 2021 19 / 53

Using reductions to solve problems

@ R: Reduction X — Y
@ Ay: algorithm for Y

© = New algorithm for X:
Ax(lx):

// Ix: instance of X.
Iy < R(Ix)
return Ay (ly)

YES

Ix] Iy v

A NO

Ax

Ruta (UIUC) Cs473 19 Spring 2021 19 / 53

Using reductions to solve problems

@ R: Reduction X — Y
@ Ay: algorithm for Y

© = New algorithm for X:
Ax(lx):

// Ix: instance of X.
Iy < R(Ix)
return Ay (ly)

YES

Ix] Iy v

A NO

Ax

If R and Ay polynomial-time = .Ax polynomial-time.

Ruta (UIUC) Cs473 19 Spring 2021 19 / 53

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

Ix R Y J Ay
<\ NO
Ay
Ruta (UIUC) CS473

20 Spring 2021 20 / 53

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

/ RHY—A
X Y<\ NG

A

Claim.

o If Ay poly-time, then Ax is poly-time.

Ruta (UIUC) Cs473 20 Spring 2021 20 / 53

Polynomial-time reductions and instance sizes

Proposition

Let R be a polynomial-time algorithm reducing X to Y. Then for
any instance Ix of X, if ly = R(Ix) then |ly| is polynomial in the
size of |Ix|.

‘R is a polynomial-time algorithm and hence on input Ix of size |Ix|
it runs in time p(|/x|) for some polynomial p().

Ruta (UIUC) Cs473 21 Spring 2021 21 / 53

Polynomial-time reductions and instance sizes

Proposition

Let R be a polynomial-time algorithm reducing X to Y. Then for
any instance Ix of X, if ly = R(Ix) then |ly| is polynomial in the
size of |Ix|.

‘R is a polynomial-time algorithm and hence on input Ix of size |Ix|
it runs in time p(|/x|) for some polynomial p().
ly is the output of R on input Ix.

Ruta (UIUC) Cs473 21 Spring 2021 21 / 53

Polynomial-time reductions and instance sizes

Proposition

Let R be a polynomial-time algorithm reducing X to Y. Then for

any instance Ix of X, if ly = R(Ix) then |ly| is polynomial in the
size of |Ix|.

R is a polynomial-time algorithm and hence on input Ix of size |Ix|
it runs in time p(|/x|) for some polynomial p().
ly is the output of R on input Ix.

R can write at most p(|/x|) bits and hence |lIy| < p(|/x])- O

Ruta (UIUC) Cs473 21 Spring 2021 21 / 53

Polynomial-time reductions and instance sizes

Proposition

Let R be a polynomial-time algorithm reducing X to Y. Then for
any instance Ix of X, if ly = R(Ix) then |ly| is polynomial in the
size of |Ix|.

R is a polynomial-time algorithm and hence on input Ix of size |Ix|
it runs in time p(|/x|) for some polynomial p().

ly is the output of R on input Ix.

R can write at most p(|/x|) bits and hence |lIy| < p(|/x])- O

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Ruta (UIUC) Cs473 21 Spring 2021 21 / 53

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

y : llyl=p(lIx]| L -YES

Ay <

~NO

A

Claim.
o If Ay poly-time, then Ay is poly-time.

Ruta (UIUC) Cs473 22 Spring 2021 22 /53

Polynomial-time Reductions

Efficient Algorithm: runs in polynomial-time.

To find efficient algorithms for problems, only polynomial-time
reductions are useful.

If reduction R: X — Y is poly-time computable then denote
X<pY

L ~YES
Ix R v i Ilyl=p(lix] AY
<\’ NO

A

Claim.
o If Ay poly-time, then Ay is poly-time.
e If X is hard (no poly-time alogirthm), then sois Y (Ay can
not be poly-time)

Ruta (UIUC) Cs473 22 Spring 2021 22 /53

Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X <p Y. Then

(A) Y can be solved in polynomial time.

(B) Y can NOT be solved in polynomial time.

(C) If Y is hard then X is also hard.

(D) None of the above.

(E) All of the above.

Ruta (UIUC) Cs473 23 Spring 2021 23/ 53

Transitivity of Reductions

Proposition
X <pYandyY <p Z implies that X <p Z.

Note: X <p Y does not imply that Y <p X and hence it is very
important to know the FROM and TO in a reduction.

To prove X <p Z you need to show a reduction FROM X TO Z
In other words show that an algorithm for Z implies an algorithm for

X.

Ruta (UIUC) CS473 24 Spring 2021 24 /53

Using Reductions to show Hardness

We say that a problem is “hard” if there is no polynomial-time

algorithm known for it (and it is believed that such an algorithm does
not exist).

To show that Y is a hard problem:

@ Start with an existing “hard” problem X
@ Prove that X <p Y

@ Then we have shown that Y is a “hard” problem

Ruta (UIUC) CS473 25

Spring 2021 25 / 53

Examples of hard problems

Q@ SAT

Q@ 3SAT

© Independent Set and Clique

© Vertex Cover

© Set Cover

© Hamilton Cycle

@ Knapsack and Subset Sum and Partition
© Integer Programming

Q...

Ruta (UIUC) Cs473 26 Spring 2021 26 / 53

Part |11

Examples of Reductions

Ruta (UIUC) Spring 2021 27 / 53

Independent Sets and Cliques

Given a graph G = (V, E), a set of vertices V' C V is:
© independent set: no two vertices of V'’ connected by an edge.

@ clique: every pair of vertices in V' is connected by an edge of
G.

Ruta (UIUC) Cs473 28 Spring 2021 28 / 53

Independent Sets and Cliques

Given a graph G = (V, E), a set of vertices V' C V is:
© independent set: no two vertices of V'’ connected by an edge.

@ clique: every pair of vertices in V' is connected by an edge of
G.

Ruta (UIUC) Cs473 28 Spring 2021 28 / 53

Independent Sets and Cliques

Given a graph G = (V, E), a set of vertices V' C V is:
© independent set: no two vertices of V'’ connected by an edge.

@ clique: every pair of vertices in V' is connected by an edge of
G.

Ruta (UIUC) Cs473 28 Spring 2021 28 / 53

Independent Sets and Cliques

Given a graph G = (V, E), a set of vertices V' C V is:
© independent set: no two vertices of V'’ connected by an edge.

@ clique: every pair of vertices in V' is connected by an edge of
G.

Ruta (UIUC) Cs473 28 Spring 2021 28 / 53

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size > k?

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size > k?

Ruta (UIUC) Cs473 29 Spring 2021 29 / 53

Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 53

Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 53

Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

G (complement of G): where (u, v) is an edge iff (u, v) is not an
edge of G. B
Instance of Clique: graph G and integer k.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 53

Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

G (complement of G): where (u, v) is an edge iff (u, v) is not an
edge of G. B
Instance of Clique: graph G and integer k.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 53

Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

G (complement of G): where (u, v) is an edge iff (u, v) is not an
edge of G. B
Instance of Clique: graph G and integer k.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 53

Reducing Independent Set to Clique

Instance of Independent Set: graph G and an integer k.

G (complement of G): where (u, v) is an edge iff (u, v) is not an
edge of G. B
Instance of Clique: graph G and integer k.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 53

Independent Set and Clique

© Independent Set <p Clique.
What does this mean?

@ If we have an algorithm for Clique, then we have an algorithm
for Independent Set.

© Clique is at least as hard as Independent Set.

Ruta (UIUC) Cs473 31 Spring 2021 31 /53

Independent Set and Clique

© Independent Set <p Clique.
What does this mean?

@ If we have an algorithm for Clique, then we have an algorithm
for Independent Set.

© Clique is at least as hard as Independent Set.
@ Does Clique <p Independent Set?

Ruta (UIUC) Cs473 31 Spring 2021 31 /53

Independent Set and Clique

© Independent Set <p Clique.
What does this mean?

@ If we have an algorithm for Clique, then we have an algorithm
for Independent Set.

© Clique is at least as hard as Independent Set.
@ Does Clique <p Independent Set?

YES!

Independent Set is at least as hard as Clique.

Ruta (UIUC) Cs473 31 Spring 2021 31 /53

Given a graph G = (V/, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.

Ruta (UIUC) Cs473 32 Spring 2021 32 /53

Vertex Cover

Given a graph G = (V/, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.

Ruta (UIUC) Cs473 32 Spring 2021 32 /53

Vertex Cover

Given a graph G = (V/, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.

Ruta (UIUC) Cs473 32 Spring 2021 32 /53

Vertex Cover

Given a graph G = (V/, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.

Ruta (UIUC) Cs473 32 Spring 2021 32 /53

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k.
Goal: Is there a vertex cover of size < k in G?

Can we relate Independent Set and Vertex Cover?

Ruta (UIUC) Cs473 EE Spring 2021 33 /53

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if
V' \ S is a vertex cover.

Ruta (UIUC) CS473 34 Spring 2021 34 /53

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if
V' \ S is a vertex cover.

Exercise.] l

Ruta (UIUC) Cs473 34 Spring 2021 34 / 53

Independent Set <p Vertex Cover

© G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

@ Claim. G has an independent set of size > k iff G has a vertex
cover of size < n — k

Ruta (UIUC) Cs473 35 Spring 2021 35/ 53

Independent Set <p Vertex Cover

© G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

@ Claim. G has an independent set of size > k iff G has a vertex
cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G, n — k) is
an instance of Vertex Cover with the same answer.

Ruta (UIUC) Cs473 35 Spring 2021 35/ 53

Independent Set <p Vertex Cover

© G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

@ Claim. G has an independent set of size > k iff G has a vertex
cover of size < n — k

@ (G, k) is an instance of Independent Set , and (G, n — k) is
an instance of Vertex Cover with the same answer.

© Therefore,
Independent Set <p Vertex Cover.
Also Vertex Cover <p Independent Set.

Ruta (UIUC) Cs473 35 Spring 2021 35/ 53

Proving Reductions

To prove that X <p Y you need to give an algorithm A that:

@ Transforms an instance Ix of X into an instance Iy of Y.

Ruta (UIUC) Cs473 36 Spring 2021 36 / 53

Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.
@ Satisfies the property that answer to Ix is YES iff Iy is YES.

Ruta (UIUC) Cs473 36 Spring 2021 36 / 53

Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.
@ Satisfies the property that answer to Ix is YES iff Iy is YES.

@ typical easy direction to prove: answer to Iy is YES if answer to
Ix is YES

Ruta (UIUC) Cs473 36 Spring 2021 36 / 53

Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.
@ Satisfies the property that answer to Ix is YES iff Iy is YES.
@ typical easy direction to prove: answer to Iy is YES if answer to
Ix is YES
@ typical difficult direction to prove: answer to Ix is YES if
answer to ly is YES (equivalently answer to Iy is NO if answer
to Ix is NO).

Ruta (UIUC) Cs473 36 Spring 2021 36 / 53

Proving Reductions

To prove that X <p Y you need to give an algorithm A that:
@ Transforms an instance Ix of X into an instance Iy of Y.

@ Satisfies the property that answer to Ix is YES iff Iy is YES.

@ typical easy direction to prove: answer to Iy is YES if answer to
Ix is YES

@ typical difficult direction to prove: answer to Ix is YES if
answer to ly is YES (equivalently answer to Iy is NO if answer
to Ix is NO).

© Runs in polynomial time.

Ruta (UIUC) Cs473 36 Spring 2021 36 / 53

Example of incorrect reduction proof

Try proving Matching <p Bipartite Matching via following
reduction:
@ Given graph G = (V, E) obtain a bipartite graph
G’ = (V’, E’) as follows.
O let Vi={unn|ueV}and Vo ={u|u e V}. Weset
V' = Vj U V; (that is, we make two copies of V)

Ruta (UIUC) Cs473 37 Spring 2021 37 /53

Example of incorrect reduction proof

Try proving Matching <p Bipartite Matching via following
reduction:
@ Given graph G = (V, E) obtain a bipartite graph
G’ = (V’, E’) as follows.
O let Vi={unn|ueV}and Vo ={u|u e V}. Weset
V' = Vj U V; (that is, we make two copies of V)
(>} E’={u1v2 ’u;ﬁvanduveE}

Ruta (UIUC) Cs473 37 Spring 2021 37 /53

Example of incorrect reduction proof

Try proving Matching <p Bipartite Matching via following
reduction:
@ Given graph G = (V, E) obtain a bipartite graph
G’ = (V’, E’) as follows.
O let Vi={unn|ueV}and Vo ={u|u e V}. Weset
V' = Vj U V; (that is, we make two copies of V)

Q E’={u1v2 ’u;ﬁvanduveE}
@ Given G and integer k the reduction outputs G’ and k.

Ruta (UIUC) Cs473 37 Spring 2021 37 /53

Reduction is a poly-time algorithm. If G has a matching of size k
then G’ has a matching of size k.

Exercise.] l

If G’ has a matching of size k then G has a matching of size k.

Ruta (UIUC) Cs473 38 Spring 2021 38 / 53

Reduction is a poly-time algorithm. If G has a matching of size k
then G’ has a matching of size k.

Exercise.] l

If G’ has a matching of size k then G has a matching of size k.

Incorrect! Why?

Ruta (UIUC) Cs473 38 Spring 2021 38 / 53

Reduction is a poly-time algorithm. If G has a matching of size k
then G’ has a matching of size k.

Exercise.] l

If G’ has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex u € V has two copies u; and up in G'. A
matching in G’ may use both copies!

Ruta (UIUC) Cs473 38 Spring 2021 38 / 53

Part |V

More General Reductions

Ruta (UIUC) Spring 2021 39 / 53

Turing Reduction

A More General Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

@ on an instance Ix of X, A uses polynomial in |Ix| “steps”
© a step is either a standard computation step, or
© a sub-routine call to an algorithm that solves Y.

This is a Turing reduction.

Ruta (UIUC) Cs473 40 Spring 2021 40 / 53

Turing Reduction

A More General Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

@ on an instance Ix of X, A uses polynomial in |Ix| “steps”
© a step is either a standard computation step, or
© a sub-routine call to an algorithm that solves Y.

This is a Turing reduction.

v

Note: In making sub-routine call to algorithm to solve Y, A can only
ask questions of size polynomial in |Ix|. Why?

Ruta (UIUC) Cs473 40 Spring 2021 40 / 53

Comparing reductions

© Karp reduction:

yes
I I >
X Reduction " »! Solver for Y’
o
Solver for X
@ Turing reduction:
yes
Ix Turing reduction
Algorithm
> @ Algorithm to solve X can
call solver for Y
poly(|l«|) many times.
Solver for ¥’ @ Input to every call is of
size poly(|/x]).

Ruta (UIUC) Cs473 41 Spring 2021 41 / 53

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How?

Ruta (UIUC) Cs473 42 Spring 2021 42 / 53

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How? Uses algorithm for interval problem multiple times.

Ruta (UIUC) Cs473 42 Spring 2021 42 / 53

Turing vs Karp Reductions

© Turing reductions more general than Karp reductions.
@ Turing reduction useful in obtaining algorithms via reductions.

© Karp reduction is simpler and easier to use to prove hardness of
problems.

© Perhaps surprisingly, Karp reductions, although limited, suffice
for most known NP-Completeness proofs.

© Karp reductions allow us to distinguish between NP and co-NP
(more on this later).

Ruta (UIUC) CS473 43 Spring 2021 43 /53

Part V

The Satisfiability Problem (SAT)

Ruta (UIUC) 47 44 Spring 2021 44 / 53

Propositional Formulas

Consider a set of boolean variables xq, X2, . . . X,.

© A literal is either a boolean variable x; or its negation —x;.

Ruta (UIUC) Cs473 45 Spring 2021 45 / 53

Propositional Formulas

Consider a set of boolean variables xq, X2, . . . X,.

© A literal is either a boolean variable x; or its negation —x;.

@ A clause is a disjunction of literals.
For example, x; V x2 V —x4 is a clause.

Ruta (UIUC) Cs473 45 Spring 2021 45 / 53

Propositional Formulas

Definition
Consider a set of boolean variables xq, X2, . . . X,.
© A literal is either a boolean variable x; or its negation —x;.

@ A clause is a disjunction of literals.
For example, x; V x2 V —x4 is a clause.

© A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

O (x1V x2V —xa) A (x2V —x3) A x5 is a CNF formula.

Ruta (UIUC) Cs473 45 Spring 2021 45 / 53

Propositional Formulas

Consider a set of boolean variables xq, X2, . . . X,.

© A literal is either a boolean variable x; or its negation —x;.
@ A clause is a disjunction of literals.
For example, x; V X2 V —x4 is a clause.

© A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

O (x1V x2V —xa) A (x2V —x3) A x5 is a CNF formula.
Q A formula ¢ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

O (x1Vx2V xa)A(x2V —x3V x1)is a 3CNF formula, but
(x1 V x2 V =ixg) A (x2 V —x3) A X5 is not.

Ruta (UIUC) Cs473 45 Spring 2021 45 / 53

Satisfiability

Problem: SAT

Instance: A CNF formula ¢.
Question: Is there a truth assignment to the variable of
o such that ¢ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ¢.
Question: Is there a truth assignment to the variable of
o such that ¢ evaluates to true?

Ruta (UIUC) CS473 46 Spring 2021 46 / 53

Satisfiability

SAT

Given a CNF formula ¢, is there a truth assignment to variables
such that ¢ evaluates to true?

Example
Q (x1VxV xg) A (x2V —x3) A x5 is satisfiable; take
X145 X24 - « « X5 to be all true

Q (x1Vx)A(mx1Vx) A (—x1V—x) A (x1 V x2) is not
satisfiable.

Ruta (UIUC) Cs473 47 Spring 2021 47 / 53

Importance of SAT and 3SAT

© SAT and 3SAT are basic constraint satisfaction problems.

@ Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

© Arise naturally in many applications involving hardware and
software verification and correctness.

© As we will see, it is a fundamental problem in theory of
NP-Completeness.

Ruta (UIUC) CS473 48 Spring 2021 48 / 53

3SAT <p SAT

Q@ 3SAT <, SAT.

@ Because...
A 3SAT instance is also an instance of SAT.

Ruta (UIUC) CS473 49 Spring 2021 49 / 53

SAT <p 3SAT

SAT <p 3SAT. \

Ruta (UIUC) Cs473 50 Spring 2021 50 / 53

SAT <p 3SAT

SAT <p 3SAT. \

Given ¢ a SAT formula we create a 3SAT formula ¢’ such that
Q (is satisfiable iff ¢ is satisfiable.
@ ¢’ can be constructed from ¢ in time polynomial in |¢p|.

Ruta (UIUC) Cs473 50 Spring 2021 50 / 53

SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(x\/y\/sz>/\<—|x\/—|yv—|szVu)/\<—|x>

In 3SAT every clause must have exactly 3 different literals.

Ruta (UIUC) Spring 2021 51 / 53

SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(x\/y\/sz>/\<—|x\/—|yv—|szVu)/\<—|x>

In 3SAT every clause must have exactly 3 different literals.

Consider (x Vy VzV w)

Replace it with (x VyV a) N <—|a vV wV u)

Ruta (UIUC) Cs473 51 Spring 2021 51 / 53

SAT <p 3SAT

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(x\/y\/sz>/\<—|x\/—|yv—|z\/qu)/\<—|x>

In 3SAT every clause must have exactly 3 different literals.

Consider (x Vy VzV w)

Replace it with (x VyV a> N <—|a vV wV u)

@ Pad short clauses so they have 3 literals.
@ Break long clauses into shorter clauses. (Need to add new
variables)

© Repeat the above till we have a 3CNF
Ruta (UIUC) Cs473 Spring 2021 51 /53

What about 2SAT?

Ruta (UIUC) 2 Spring 2021 52 / 53

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

Ruta (UIUC) Spring 2021 52 / 53

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Ruta (UIUC) 2 Spring 2021 52 / 53

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x V y V z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable ¢, and rewrite this as

(xVyVa)A(—aV 2) (bad! clause with 3 vars)
oo (xVa)AN(—aVyVz) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)

Ruta (UIUC) Cs473 52 Spring 2021 52 / 53

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...

Look in books etc.

Ruta (UIUC) Cs473 53 Spring 2021 53 / 53

	Integer Linear Programming (ILP)
	Reductions
	Overview
	Definitions

	Examples of Reductions
	Independent Set and Clique
	Independent Set and Vertex Cover

	More General Reductions
	The Satisfiability Problem (SAT)

