CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

Introduction to Linear Programming

Lecture 17 March 30, 2021

Ruta (UIUC) CS473 2 Spring 2021 2 / 15

Part I

Introduction to Linear Programming

Problem

Your factory can produce Laptop and iPhone using Copper.

- lacktriangledown One ton of Copper ightarrow one Laptop
- ② One ton of Copper → one iPhone
- We have 200 tons of Copper.
- Laptop can be sold for \$1 and iPhone for \$6.

Problem

Your factory can produce Laptop and iPhone using Copper.

- ullet One ton of Copper o one Laptop
- $oldsymbol{\circ}$ One ton of Copper ightarrow one iPhone
- We have 200 tons of Copper.
- Laptop can be sold for \$1 and iPhone for \$6.

How many units of Laptop and iPhone should your factory manufacture to maximize profit?

Problem

Your factory can produce Laptop and iPhone using Copper.

- ullet One ton of Copper o one Laptop
- ② One ton of Copper → one iPhone
- We have 200 tons of Copper.
- Laptop can be sold for \$1 and iPhone for \$6.

How many units of Laptop and iPhone should your factory manufacture to maximize profit?

Solution:

Ruta (UIUC) CS473 4 Spring 2021 4 / 15

Problem

Your factory can produce Laptop and iPhone using Copper.

- lacktriangle One ton of Copper ightarrow one Laptop
- ② One ton of Copper → one iPhone
- We have 200 tons of Copper.
- Laptop can be sold for \$1 and iPhone for \$6.

How many units of Laptop and iPhone should your factory manufacture to maximize profit?

Solution: manufacture only iPhone

Problem

Your factory can produce Laptop and iPhone using resources C, B, A.

- **1** One unit of **A** and **C** each \rightarrow One Laptop
- ② One unit of B and C each \rightarrow One iPhone

Problem

Your factory can produce Laptop and iPhone using resources C, B, A

- One unit of **A** and **C** each \rightarrow One Laptop
- \bigcirc One unit of **B** and **C** each \rightarrow One iPhone
- We have 200 units of A. 300 units of B, and 400 units of C.
- Product Laptop can be sold for \$1 and product iPhone for \$6.

CS473 Spring 2021

Problem

Your factory can produce Laptop and iPhone using resources C, B, A.

- **1** One unit of \boldsymbol{A} and \boldsymbol{C} each \rightarrow One Laptop
- ② One unit of B and C each \rightarrow One iPhone
- We have 200 units of A, 300 units of B, and 400 units of C.
- Product Laptop can be sold for \$1 and product iPhone for \$6.

How many units of Laptop and iPhone should your factory manufacture to maximize profit?

Solution:

Ruta (UIUC) CS473 5 Spring 2021 5 / 15

Problem

Your factory can produce Laptop and iPhone using resources C, B, A.

- **1** One unit of A and C each \rightarrow One Laptop
- ② One unit of B and C each \rightarrow One iPhone
- We have 200 units of A, 300 units of B, and 400 units of C.
- Product Laptop can be sold for \$1 and product iPhone for \$6.

How many units of Laptop and iPhone should your factory manufacture to maximize profit?

Solution: Formulate as a linear program.

Problem

Can produce Laptop and iPhone, using resources *A*, *B*, *C*.

- \bullet A, C \rightarrow Laptop
- \bullet $B, C \rightarrow iPhone$
- Have A: 200, B: 300, and C: 400.
- Price of L: **\$1**, and iP: **\$6**.

How many units to manufacture to max profit?

Problem

Can produce Laptop and iPhone, using resources *A*, *B*, *C*.

- \bullet A, C \rightarrow Laptop
- \bigcirc B, $C \rightarrow iPhone$
- Have A: 200, B: 300, and C: 400.
- Price of L: \$1, and iP: \$6.

How many units to manufacture to max profit?

Suppose x_1 units of Laptop and x_2 units of iPhone.

Problem

Can produce Laptop and iPhone, using resources *A*, *B*, *C*.

- \bullet **A**, **C** \rightarrow Laptop
- \bigcirc B, C \rightarrow iPhone
- Have A: 200, B: 300, and C: 400.
- Price of L: **\$1**, and iP: **\$6**.

How many units to manufacture to max profit?

Suppose x_1 units of Laptop and x_2 units of iPhone.

$$\begin{array}{lll} \text{max} & x_1 + 6x_2 \\ \text{s.t.} & x_1 \leq 200 & (A) \\ & x_2 \leq 300 & (B) \\ & x_1 + x_2 \leq 400 & (C) \\ & x_1 \geq 0 \\ & x_2 \geq 0 \end{array}$$

Linear Programming Formulation

Let us produce x_1 units of Laptop and x_2 units of iPhone. Our profit can be computed by solving

maximize
$$x_1 + 6x_2$$
 subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 > 0$

Ruta (UIUC) CS473 7 Spring 2021 7 / 15

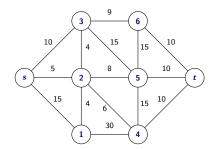
Linear Programming Formulation

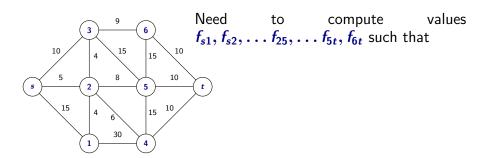
Let us produce x_1 units of Laptop and x_2 units of iPhone. Our profit can be computed by solving

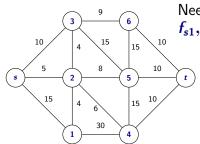
maximize
$$x_1+6x_2$$
 subject to $x_1\leq 200$ $x_2\leq 300$ $x_1+x_2\leq 400$ $x_1,x_2\geq 0$

What is the solution?

Ruta (UIUC) CS473 7 Spring 2021 7 / 15

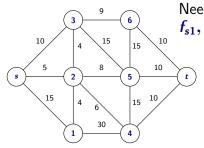






Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$f_{s1} \le 15$$
 $f_{s2} \le 5$ $f_{s3} \le 10$
 $f_{14} \le 30$ $f_{21} \le 4$ $f_{25} \le 8$
 $f_{32} \le 4$ $f_{35} \le 15$ $f_{36} \le 9$
 $f_{42} \le 6$ $f_{4t} \le 10$ $f_{54} \le 15$
 $f_{5t} < 10$ $f_{65} < 15$ $f_{6t} < 10$



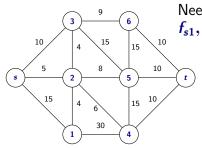
Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$f_{s1} \le 15$$
 $f_{s2} \le 5$ $f_{s3} \le 10$
 $f_{14} \le 30$ $f_{21} \le 4$ $f_{25} \le 8$
 $f_{32} \le 4$ $f_{35} \le 15$ $f_{36} \le 9$
 $f_{42} \le 6$ $f_{4t} \le 10$ $f_{54} \le 15$
 $f_{5t} < 10$ $f_{65} < 15$ $f_{6t} < 10$

and

$$f_{s1} + f_{21} = f_{14}$$
 $f_{s2} + f_{32} = f_{21} + f_{25}$ $f_{s3} = f_{32} + f_{35} + f_{36}$
 $f_{14} + f_{54} = f_{42} + f_{4t}$ $f_{25} + f_{35} + f_{65} = f_{54} + f_{5t}$ $f_{36} = f_{65} + f_{6t}$

Ruta (UIUC) CS473 8 Spring 2021 8 / 15



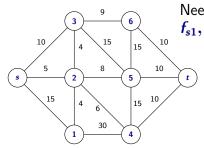
Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$f_{s1} \le 15$$
 $f_{s2} \le 5$ $f_{s3} \le 10$
 $f_{14} \le 30$ $f_{21} \le 4$ $f_{25} \le 8$
 $f_{32} \le 4$ $f_{35} \le 15$ $f_{36} \le 9$
 $f_{42} \le 6$ $f_{4t} \le 10$ $f_{54} \le 15$
 $f_{5t} < 10$ $f_{65} < 15$ $f_{6t} < 10$

and

$$\begin{array}{lll} f_{s1} + f_{21} = f_{14} & f_{s2} + f_{32} = f_{21} + f_{25} & f_{s3} = f_{32} + f_{35} + f_{36} \\ f_{14} + f_{54} = f_{42} + f_{4t} & f_{25} + f_{35} + f_{65} = f_{54} + f_{5t} & f_{36} = f_{65} + f_{6t} \\ f_{s1} \geq 0 & f_{s2} \geq 0 & f_{s3} \geq 0 & \cdots & f_{4t} \geq 0 & f_{5t} \geq 0 & f_{6t} \geq 0 \end{array}$$

Ruta (UIUC) CS473 8 Spring 2021 8 / 15



Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$f_{s1} \le 15$$
 $f_{s2} \le 5$ $f_{s3} \le 10$
 $f_{14} \le 30$ $f_{21} \le 4$ $f_{25} \le 8$
 $f_{32} \le 4$ $f_{35} \le 15$ $f_{36} \le 9$
 $f_{42} \le 6$ $f_{4t} \le 10$ $f_{54} \le 15$
 $f_{5t} < 10$ $f_{65} < 15$ $f_{6t} < 10$

and

$$\begin{array}{lll} f_{s1}+f_{21}=f_{14} & f_{s2}+f_{32}=f_{21}+f_{25} & f_{s3}=f_{32}+f_{35}+f_{36} \\ f_{14}+f_{54}=f_{42}+f_{4t} & f_{25}+f_{35}+f_{65}=f_{54}+f_{5t} & f_{36}=f_{65}+f_{6t} \\ f_{s1}\geq 0 & f_{s2}\geq 0 & f_{s3}\geq 0 & \cdots & f_{4t}\geq 0 & f_{5t}\geq 0 & f_{6t}\geq 0 \end{array}$$

maximize: $f_{s1} + f_{s2} + f_{s3}$.

Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c_e on edge $e \in E$, we have variables f_e indicating flow on edge e

Maximize
$$\sum_{e \text{ out of } s} f_e$$
 subject to $f_e \leq c_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = 0$ $\forall v \in V \setminus \{s,t\}$ for each $e \in E$.

Ruta (UIUC) CS473 9 Spring 2021 9 / 15

Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c_e on edge $e \in E$, we have variables f_e indicating flow on edge e

Maximize
$$\sum_{e \text{ out of } s} f_e$$
 subject to $f_e \leq c_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = 0$ $\forall v \in V \setminus \{s,t\}$ for each $e \in E$.

Number of variables: m, one for each edge. Number of constraints: m + n - 2 + m.

Ruta (UIUC) CS473 9 Spring 2021 9 / 15

Minimum Cost Flow with Lower Bounds

... as a Linear Program

For a general flow network G = (V, E) with capacities c_e , lower bounds ℓ_e , and costs w_e , we have variables f_e indicating flow on edge e. Suppose we want a min-cost flow of value at least F.

Minimize
$$\sum_{e \in E} w_e f_e$$
 subject to $\sum_{e \text{ out of } s} f_e \geq F$ $f_e \leq c_e$ $f_e \geq \ell_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = 0$ for each $v \in V - \{s, t\}$ $f_e \geq 0$ for each $e \in E$.

Ruta (UIUC) CS473 10 Spring 2021 10 / 15

Minimum Cost Flow with Lower Bounds

... as a Linear Program

For a general flow network G = (V, E) with capacities c_e , lower bounds ℓ_e , and costs w_e , we have variables f_e indicating flow on edge e. Suppose we want a min-cost flow of value at least F.

Minimize
$$\sum_{e \in E} w_e f_e$$
 subject to $\sum_{e \text{ out of } s} f_e \geq F$ $f_e \leq c_e$ $f_e \geq \ell_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = 0$ for each $v \in V - \{s, t\}$ for each $e \in E$.

Number of variables: m, one for each edge Number of constraints: 1 + m + m + n - 2 + m = 3m + n - 1.

Ruta (UIUC) CS473 10 Spring 2021 10 / 15

Linear Programs

Problem

Find a vector $\mathbf{x} \in \mathbb{R}^d$ that

$$\begin{array}{ll} \text{maximize/minimize} & \sum_{j=1}^{d} c_{j}x_{j} \\ \text{subject to} & \sum_{j=1}^{d} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1\dots p \\ & \sum_{j=1}^{d} a_{ij}x_{j} = b_{i} \quad \text{for } i=p+1\dots q \\ & \sum_{j=1}^{d} a_{ij}x_{j} \geq b_{i} \quad \text{for } i=q+1\dots n \end{array}$$

Linear Programs

Problem

Find a vector $\mathbf{x} \in \mathbb{R}^d$ that

$$\begin{array}{ll} \text{maximize/minimize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \quad \text{for } i=1\dots p \\ & \sum_{j=1}^d a_{ij} x_j = b_i \quad \text{for } i=p+1\dots q \\ & \sum_{j=1}^d a_{ij} x_j \geq b_i \quad \text{for } i=q+1\dots n \end{array}$$

Input is matrix $A = (a_{ij}) \in \mathbb{R}^{n \times d}$, column vector $b = (b_i) \in \mathbb{R}^n$, and row vector $c = (c_i) \in \mathbb{R}^d$

Ruta (UIUC) CS473 11 Spring 2021 11 / 15

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

maximize
$$\sum_{j=1}^d c_j x_j$$
 subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ for $i=1\ldots n$

Ruta (UIUC) CS473 12 Spring 2021 12 / 15

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

maximize
$$\sum_{j=1}^d c_j x_j$$

subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ for $i=1\ldots n$

Conversion to Canonical Form

1 Replace $\sum_{j} a_{ij} x_j = b_i$ by

$$\sum_{j} a_{ij} x_{j} \leq b_{i}$$
 and $-\sum_{j} a_{ij} x_{j} \leq -b_{i}$

2 Replace $\sum_i a_{ij}x_j \geq b_i$ by $-\sum_i a_{ij}x_j \leq -b_i$

Ruta (UIUC) CS473 12 Spring 2021 12 / 15

Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize
$$c \cdot x$$
 subject to $Ax \leq b$

where $A = (a_{ij}) \in \mathbb{R}^{n \times d}$, column vector $b = (b_i) \in \mathbb{R}^n$, row vector $c = (c_j) \in \mathbb{R}^d$, and column vector $x = (x_j) \in \mathbb{R}^d$

- Number of variable is d
- 2 Number of constraints is *n*

Other Standard Forms for Linear Programs

$$\begin{array}{lll} \text{maximize} & c \cdot x & \text{minimize} & c \cdot x \\ \text{subject to} & Ax \leq b & \text{subject to} & Ax \geq b \\ & x \geq 0 & x \geq 0 \end{array}$$

minimize
$$c \cdot x$$

subject to $Ax = b$
 $x \ge 0$

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West
- Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics

Ruta (UIUC) CS473 15 Spring 2021 15 / 15

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West
- Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
- First algorithm (Simplex) to solve linear programs by George Dantzig in 1947

Ruta (UIUC) CS473 15 Spring 2021 15 / 15

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West
- Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
- First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
- Kantorovich and Koopmans receive Nobel Prize for economics in 1975; Dantzig, however, was ignored
 - Koopmans contemplated refusing the Nobel Prize to protest Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as "a means for apologists of capitalism"