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Part I

Introduction to Linear Programming
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A Factory Example

Problem
Your factory can produce Laptop and iPhone using Copper.

1 One ton of Copper→ one Laptop

2 One ton of Copper→ one iPhone

3 We have 200 tons of Copper.

4 Laptop can be sold for $1 and iPhone for $6.

How many units of Laptop and iPhone should your factory
manufacture to maximize profit?

Solution: manufacture only iPhone
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A Factory Example

Problem
Can produce Laptop and iPhone,
using resources A,B,C .

1 A,C → Laptop

2 B,C → iPhone

3 Have A: 200, B: 300 , and
C : 400.

4 Price of L: $1, and iP: $6.

How many units to manufacture
to max profit?

Suppose x1 units of Laptop and
x2 units of iPhone.

max x1 + 6x2

s.t. x1 ≤ 200 (A)

x2 ≤ 300 (B)

x1 + x2 ≤ 400 (C)

x1 ≥ 0

x2 ≥ 0
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Linear Programming Formulation

Let us produce x1 units of Laptop and x2 units of iPhone. Our profit
can be computed by solving

maximize x1 + 6x2

subject to x1 ≤ 200 x2 ≤ 300 x1 + x2 ≤ 400
x1, x2 ≥ 0

What is the solution?
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Maximum Flow in Network

s

1
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15

15
10

Need to compute values
fs1, fs2, . . . f25, . . . f5t, f6t such that

fs1 ≤ 15 fs2 ≤ 5 fs3 ≤ 10
f14 ≤ 30 f21 ≤ 4 f25 ≤ 8
f32 ≤ 4 f35 ≤ 15 f36 ≤ 9
f42 ≤ 6 f4t ≤ 10 f54 ≤ 15
f5t ≤ 10 f65 ≤ 15 f6t ≤ 10

and

fs1 + f21 = f14 fs2 + f32 = f21 + f25 fs3 = f32 + f35 + f36
f14 + f54 = f42 + f4t f25 + f35 + f65 = f54 + f5t f36 = f65 + f6t

fs1 ≥ 0 fs2 ≥ 0 fs3 ≥ 0 · · · f4t ≥ 0 f5t ≥ 0 f6t ≥ 0

maximize: fs1 + fs2 + fs3.
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Maximum Flow as a Linear Program

For a general flow network G = (V ,E) with capacities ce on edge
e ∈ E , we have variables fe indicating flow on edge e

Maximize
∑

e out of s

fe

subject to fe ≤ ce for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 ∀v ∈ V \ {s, t}

fe ≥ 0 for each e ∈ E .

Number of variables: m, one for each edge.
Number of constraints: m + n − 2 + m.
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Minimum Cost Flow with Lower Bounds
... as a Linear Program

For a general flow network G = (V ,E) with capacities ce , lower
bounds `e , and costs we , we have variables fe indicating flow on
edge e. Suppose we want a min-cost flow of value at least F .

Minimize
∑
e ∈ E

wefe

subject to
∑

e out of s

fe ≥ F

fe ≤ ce fe ≥ `e for each e ∈ E∑
e out of v

fe −
∑

e into v

fe = 0 for each v ∈ V − {s, t}

fe ≥ 0 for each e ∈ E .

Number of variables: m, one for each edge
Number of constraints: 1 + m + m + n − 2 + m = 3m + n − 1.
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Linear Programs

Problem
Find a vector x ∈ Rd that

maximize/minimize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . p∑d
j=1 aijxj = bi for i = p + 1 . . . q∑d
j=1 aijxj ≥ bi for i = q + 1 . . . n

Input is matrix A = (aij) ∈ Rn×d , column vector b = (bi) ∈ Rn,
and row vector c = (cj) ∈ Rd
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Canonical Form of Linear Programs

Canonical Form
A linear program is in canonical form if it has the following structure

maximize
∑d

j=1 cjxj

subject to
∑d

j=1 aijxj ≤ bi for i = 1 . . . n

Conversion to Canonical Form
1 Replace

∑
j aijxj = bi by∑
j

aijxj ≤ bi and −
∑

j

aijxj ≤ −bi

2 Replace
∑

j aijxj ≥ bi by −
∑

j aijxj ≤ −bi
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Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize c · x
subject to Ax ≤ b

where A = (aij) ∈ Rn×d , column vector b = (bi) ∈ Rn, row vector
c = (cj) ∈ Rd , and column vector x = (xj) ∈ Rd

1 Number of variable is d
2 Number of constraints is n
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Other Standard Forms for Linear Programs

maximize c · x
subject to Ax ≤ b

x ≥ 0

minimize c · x
subject to Ax ≥ b

x ≥ 0

minimize c · x
subject to Ax = b

x ≥ 0
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Linear Programming: A History

1 First formal application to problems in economics by Leonid
Kantorovich in the 1930s

1 However, work was ignored behind the Iron Curtain and
unknown in the West

2 Rediscovered by Tjalling Koopmans in the 1940s, along with
applications to economics

3 First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947

4 Kantorovich and Koopmans receive Nobel Prize for economics in
1975

; Dantzig, however, was ignored

1 Koopmans contemplated refusing the Nobel Prize to protest
Dantzig’s exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
“a means for apologists of capitalism”
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