CS 473: Algorithms, Spring 2021

Network Flow Algorithms

Lecture 14 Feb 18, 2021

Most slides are courtesy Prof. Chekuri

Question

Given a network G = (V, E) with capacity c(e) on edge e, let $f : E \to \mathbb{R}^+$ be a valid edge flow.

If there is an s-t path p such that on all edges of this path f(e) < c(e). Then,

- We can send some more flow from s to t.
- Both of the above
- None of the first two.

Part I

Algorithm(s) for Maximum Flow

Recall...

Given a network G = (V, E) with capacity non-negative c(e) on each edge e, an s-t (edge-based) flow $f : E \to \mathbb{R}^+$ satisfies.

Capacity constraints: $f(e) \le c(e)$ for all $e \in E$.

Flow conservation: For all vertices $v \in V$ other than s, t,

(flow in to
$$v$$
) = (flow out of v)

Flow value:

$$v(f) = (flow out of s) - (flow in to s)$$

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.

Flow value: v(f) = (flow out of s)

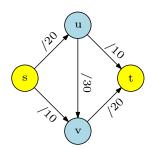
Question

Given a network G = (V, E) with capacity c(e) on edge e, let $f: E \to \mathbb{R}^+$ be a valid edge flow.

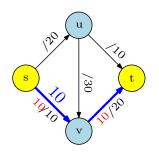
If there is an s-t path p such that on all edges of this path f(e) < c(e). Then,

- We can send some more flow from s to t.
- f is not a maximum flow in G.
- Both of the above
- None of the first two

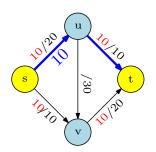
CS473 6 Spring 2021



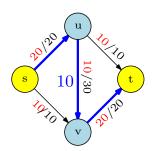
- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.



- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.

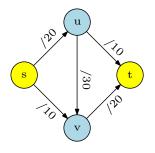


- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.



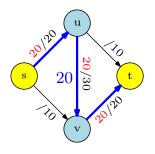
- **1** Begin with f(e) = 0 for each edge.
- Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- Augment flow along this path.
- Repeat augmentation for as long as possible.

Issues = What is this nonsense?



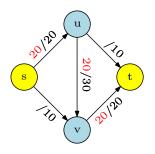
- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

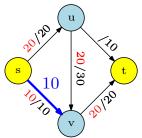
Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

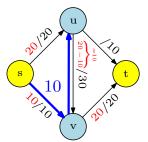
Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

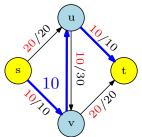
Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow! Need to "push-back" flow along edge (u, v).

Issues = What is this nonsense?



- **1** Begin with f(e) = 0 for each edge
- ② Find a s-t path P with f(e) < c(e)for every edge $e \in P$
- Augment flow along this path
- Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow! Need to "push-back" flow along edge (u, v).

> Ruta (UIUC) CS473 8 Spring 2021 8 / 46

Definition. For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is where V' = V and

Definition. For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is where V' = V and

1 Forward Edges: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) - f(e).

Definition. For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is where V' = V and

- **1** Forward Edges: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) f(e).
- **Backward Edges**: For each edge $e = (u, v) \in E$ with f(e) > 0, we add $(v, u) \in E'$ with capacity f(e).

Definition. For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is where V' = V and

- **1** Forward Edges: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) f(e).
- **Backward Edges**: For each edge $e = (u, v) \in E$ with f(e) > 0, we add $(v, u) \in E'$ with capacity f(e).

Residual graph has...

Given a network with n vertices and m edges, and a valid flow f in it, the residual network G_f , has

- (A) m edges.
- (B) $\leq 2m$ edges.
- (C) $\leq 2m + n$ edges.
- (D) 4m + 2n edges.
- (E) *nm* edges.
- (F) just the right number of edges not too many, not too few.

CS473 10 Spring 2021 10 / 46

Observation: Residual graph captures the "residual" problem exactly.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with v(f') > v(f). Then there is a flow f'' of value v(f') - v(f) in G_f .

CS473 Spring 2021 11 / 46

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

No s to t flow in G_f then f is a maximum flow.

Observation: Residual graph captures the "residual" problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

No s to t flow in G_f then f is a maximum flow.

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

Residual Graph Property – Intuition

Let f and f' be two flows in G with $v(f') \ge v(f)$.

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{aligned} & \mathsf{MaxFlow}(G,s,t) \colon \\ & & \mathsf{if} \ \mathsf{the} \ \mathsf{flow} \ \mathsf{from} \ s \ \mathsf{to} \ t \ \mathsf{is} \ \mathsf{0} \ \mathsf{then} \\ & & & \mathsf{return} \ \mathsf{0} \\ & & \mathsf{Find} \ \mathsf{any} \ \mathsf{flow} \ f \ \mathsf{with} \ \mathsf{v}(f) > \mathsf{0} \ \mathsf{in} \ G \\ & & \mathsf{Recursively} \ \mathsf{compute} \ \mathsf{a} \ \mathsf{maximum} \ \mathsf{flow} \ f' \ \mathsf{in} \ G_f \\ & & \mathsf{Output} \ \mathsf{the} \ \mathsf{flow} \ f + f' \end{aligned}
```

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

```
\begin{array}{c} \mathsf{MaxFlow}(G,s,t)\colon\\ &\mathsf{if}\ \mathsf{the}\ \mathsf{flow}\ \mathsf{from}\ s\ \mathsf{to}\ t\ \mathsf{is}\ 0\ \mathsf{then}\\ &\mathsf{return}\ 0\\ &\mathsf{Find}\ \mathsf{any}\ \mathsf{flow}\ f\ \mathsf{with}\ \mathsf{v}(f)>0\ \mathsf{in}\ G\\ &\mathsf{Recursively}\ \mathsf{compute}\ \mathsf{a}\ \mathsf{maximum}\ \mathsf{flow}\ f'\ \mathsf{in}\ G_f\\ &\mathsf{Output}\ \mathsf{the}\ \mathsf{flow}\ f+f' \end{array}
```

Iterative algorithm for finding a maximum flow:

```
\mathsf{MaxFlow}(G,s,t):
    Start with flow f that is 0 on all edges while there is a flow f' in G_f with v(f')>0 do f=f+f' Update G_f
```

Ford-Fulkerson Algorithm

algFordFulkerson

```
for every edge e, f(e) = 0
G_f is residual graph of G with respect to f
while G_f has a simple s-t path do
let P be simple s-t path in G_f
f = \operatorname{augment}(f, P)
Construct new residual graph G_f.
```

Ford-Fulkerson Algorithm

```
algFordFulkerson

for every edge e, f(e) = 0

G_f is residual graph of G with respect to f

while G_f has a simple s-t path do

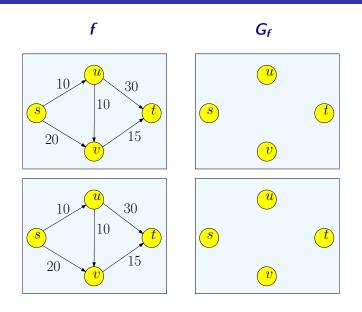
let P be simple s-t path in G_f

f = \operatorname{augment}(f, P)

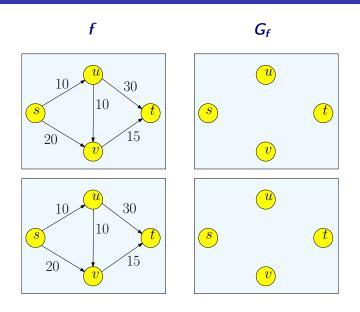
Construct new residual graph G_f.
```

```
\begin{array}{l} \operatorname{augment}(f,P) \\ \text{let } b \text{ be bottleneck capacity,} \\ \text{i.e., min capacity of edges in } P \text{ (in } G_f) \\ \text{for each edge } (u,v) \text{ in } P \text{ do} \\ \text{if } e = (u,v) \text{ is a forward edge then} \\ f(e) = f(e) + b \\ \text{else } (*(u,v) \text{ is a backward edge *}) \\ \text{let } e = (v,u) \text{ (*}(v,u) \text{ is in } G \text{ *}) \\ f(e) = f(e) - b \\ \text{return } f \end{array}
```

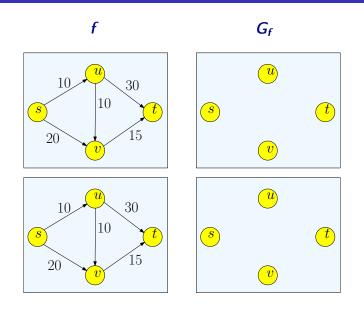
Example



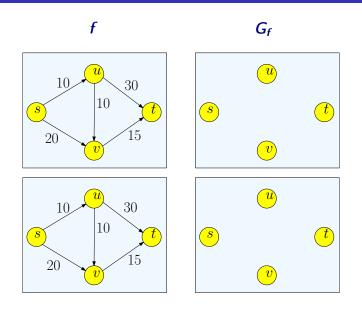
Example continued



Example continued



Example continued



Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

• Capacity constraint: If $(u, v) \in P$ is a forward edge then $b \le c(e) - f(e)$ (capacity of e in G_f). Hence $f'(e) = f(e) + b \le c(e)$.

Ruta (UIUC) CS473 19 Spring 2021 19 / 46

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- ① Capacity constraint: If $(u, v) \in P$ is a forward edge then $b \le c(e) f(e)$ (capacity of e in G_f). Hence $f'(e) = f(e) + b \le c(e)$.
 - If $(u, v) \in P$ is a backward edge, then let e = (v, u). c(u, v) in G_f is f(e)

Lemma

If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- ① Capacity constraint: If $(u, v) \in P$ is a forward edge then $b \le c(e) f(e)$ (capacity of e in G_f). Hence $f'(e) = f(e) + b \le c(e)$.
 - If $(u, v) \in P$ is a backward edge, then let e = (v, u). c(u, v) in G_f is $f(e) \Rightarrow b \leq f(e)$. $f'(e) = f(e) - b \geq 0$.

Ruta (UIUC) CS473 19 Spring 2021 19 / 46

Lemma

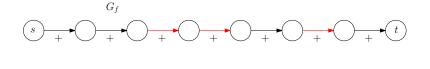
If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **1** Capacity constraint: If $(u, v) \in P$ is a forward edge then $b \le c(e) f(e)$ (capacity of e in G_f). Hence $f'(e) = f(e) + b \le c(e)$.
 - If $(u, v) \in P$ is a backward edge, then let e = (v, u). c(u, v) in G_f is $f(e) \Rightarrow b < f(e)$. f'(e) = f(e) - b > 0.
- **2** Conservation constraint: Let v be an internal node. Let e_1 , e_2 be edges of P incident to v. Four cases based on whether e_1 , e_2 are forward or backward edges. Check cases (see fig next slide).

Conservation Constraint



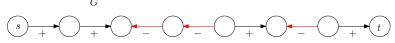


Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof by Induction.

Base case: Initial flow and residual capacities are integers.

Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof by Induction.

Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in (j+1)st iteration, minimum capacity edge b is

Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof by Induction.

Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in (j+1)st iteration, minimum capacity edge b is an integer.

Integer Flow

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof by Induction.

Base case: Initial flow and residual capacities are integers.

Inductive step: Suppose lemma holds for j iterations. Then in (j+1)st iteration, minimum capacity edge b is an integer.

And so flow after augmentation is an integer.

Proposition

Let f be a flow and f' be flow after one augmentation. Then v(f) < v(f').

Proposition

Let f be a flow and f' be flow after one augmentation. Then v(f) < v(f').

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the following.

First edge e in P must leave s.

Proposition

Let f be a flow and f' be flow after one augmentation. Then v(f) < v(f').

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the following.

- First edge e in P must leave s.
- ② Since no incoming edges to s in G, e is a forward edge.

Proposition

Let f be a flow and f' be flow after one augmentation. Then v(f) < v(f').

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the following.

- First edge e in P must leave s.
- 2 Since no incoming edges to s in G, e is a forward edge.
- P is simple and so never returns to s.
- Thus, value of flow increases by the flow on edge e.

Since edges in G_f have integer capacities, v(f') > v(f) + 1.

Spring 2021 22 / 46

Theorem

Let C be the minimum cut value. We know max-flow $\leq C$.

Theorem

Let C be the minimum cut value. We know max-flow $\leq C$. Ford-Fulkerson algorithm terminates after finding at most ?? augmenting paths.

Theorem

Let C be the minimum cut value. We know max-flow $\leq C$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Theorem

Let C be the minimum cut value. We know max-flow $\leq C$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least ${\bf 1}$ after each augmentation. Maximum value of flow is at most ${\bf C}$.

Theorem

Let C be the minimum cut value. We know max-flow $\leq C$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least ${\bf 1}$ after each augmentation. Maximum value of flow is at most ${\bf C}$.

Running time

- **1** Number of iterations $\leq C$.
- ② Number of edges in $G_f \leq 2m$.
- **3** Time to find augmenting path is O(n + m).
- Running time is O(C(n+m)) (or O(mC)).

Ruta (UIUC) CS473 23

Spring 2021

23 / 46

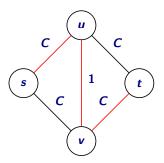
Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.

Efficiency of Ford-Fulkerson

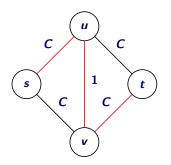
Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

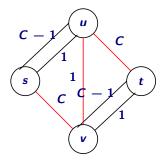


Ford-Fulkerson can take $\Omega(C)$ iterations.

Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?





Ford-Fulkerson can take $\Omega(C)$ iterations.

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum *s-t* flow?

Ruta (UIUC) CS473 25 Spring 2021 25 / 46

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum *s-t* flow?

Lemma

Let f^* be a maximum flow. For any feasible flow f, there is a flow f' in G_f of value $v(f^*) - v(f)$.

Ruta (UIUC) CS473 25 Spring 2021 25 / 46

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum *s-t* flow?

Lemma

Let f^* be a maximum flow. For any feasible flow f, there is a flow f' in G_f of value $v(f^*) - v(f)$.

No s to t flow in G_f then f is a maximum flow.

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum *s-t* flow?

Lemma

Let f^* be a maximum flow. For any feasible flow f, there is a flow f' in G_f of value $v(f^*) - v(f)$.

No s to t flow in G_f then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow. Also shows that maximum flow is equal to minimum cut!

Ruta (UIUC) CS473 25 Spring 2021 25 / 46

Why the augmenting path approach works

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Lemma

Let f^* be a maximum flow. For any feasible flow f, there is a flow f' in G_f of value $v(f^*) - v(f)$.

No s to t flow in G_f then f is a maximum flow.

Alternate proof idea: Find a cut of value equal to the maximum flow. Also shows that maximum flow is equal to minimum cut!

Exercise

Ruta (UIUC) CS473 25 Spring 2021 25 / 46

Recalling Cuts

Definition

Given a flow network an **s-t cut** is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. Capacity of cut E' is $\sum_{e \in E'} c(e)$.

Let $A \subset V$ such that

- \bullet $s \in A$, $t \notin A$, and
- $B = V \setminus -A$ and hence $t \in B$.

Define
$$(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$$

Claim

(A, B) is an s-t cut.

Recall: Every minimal s-t cut E' is a cut of the form (A, B).

Ruta (UIUC) CS473 26 Spring 2021 26 / 46

Lemma

If there is no s-t path in G_f then there is some cut (A,B) such that v(f)=c(A,B)

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

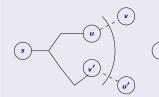
Let A be all vertices reachable from s in G_f ; $B = V \setminus A$.

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

Let A be all vertices reachable from s in G_f ; $B = V \setminus A$.



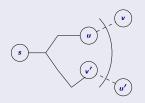
1 $s \in A$ and $t \notin A$. So (A, B) is an s-t cut in G.

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

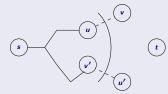
Let A be all vertices reachable from s in G_f ; $B = V \setminus A$.



- \bullet $s \in A$ and $t \notin A$. So (A, B) is an s-t cut in G.
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f .

Lemma Proof Continued

Proof.



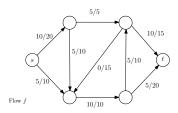
- If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then f(e) = 0 because otherwise u' is reachable from s in G_f
- Thus,

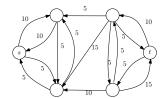
$$v(f) = f^{\text{out}}(A) - f^{\text{in}}(A)$$

= $f^{\text{out}}(A) - 0$
= $c(A, B) - 0$
= $c(A, B)$.

Ruta (UIUC) CS473 28 Spring 2021 28 / 46

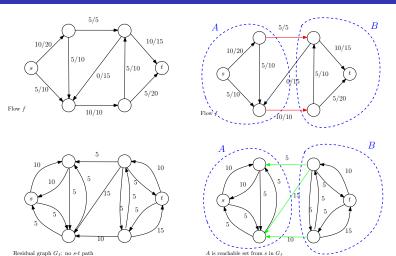
Example





Residual graph G_f : no s-t path

Example



Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \le c(A, B)$.
- ② For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-t cut (A^*, B^*) .
- **3** Hence, f^* is maximum.

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

- **1** f: maximum s-t flow f in G.
- **2** A: Nodes reachable from s in G_f .
- Output the cut (A, B).

Note: The cut is found in G while A is found in G_f

Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

- f: maximum s-t flow f in G.
- **2** A: Nodes reachable from s in G_f .
- **3** Output the cut (A, B).

Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, output a minimum cut. How?

Does it terminate?

- (A) algFordFulkerson always terminates.
- (B) algFordFulkerson might not terminate if the input has real numbers.
- (C) algFordFulkerson might not terminate if the input has rational numbers.
- (D) algFordFulkerson might not terminate if the input is only integer numbers that are sufficiently large.

Part II

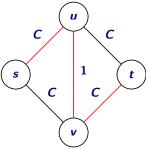
Polynomial Time Algorithms

Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be achieved?

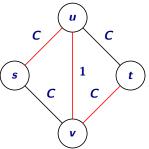
Efficiency of Ford-Fulkerson

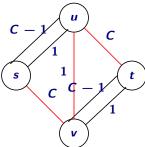
Running time = O(mC) is not polynomial. Can the upper bound be achieved?



Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the upper bound be achieved?





Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Ruta (UIUC) CS473 35 Spring 2021 35 / 46

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way?

Polynomial Time Algorithms

Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.

Part III

Polynomial-time Augmenting Path Algorithms

Augmenting along high capacity paths

Definition

Given G = (V, E) with edge capacities and a path P, the bottlneck capacity of P is smallest capacity among edges of P.

Algorithm: In each iteration of Ford-Fulkerson choose an augmenting path with largest bottleneck capacity.

Question: How many iterations does the algorithm take?

Ruta (UIUC) CS473 37 Spring 2021 37 / 46

Finding path with largest bottleneck capacity

 G_f - residual network with (residual) capacities.

n vertices and m edges.

Finding the s-t path with largest bottleneck capacity can be done (faster is better) in:

- (A) O(n+m)
- (B) $O(m + n \log n)$
- (C) O(nm)
- (D) $O(m^2)$
- (E) $O(m^3)$

time (expected or deterministic is fine here).

Now on let κ be the largest edge capacity in G, i.e. $\kappa = \max_e c(e)$

Ruta (UIUC) CS473 39 Spring 2021 39 / 46

Now on let κ be the largest edge capacity in G, i.e. $\kappa = \max_e c(e)$

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- When the second term of the s

Ruta (UIUC) CS473 39 Spring 2021 39 / 46

Now on let κ be the largest edge capacity in G, i.e. $\kappa = \max_e c(e)$

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- Output
 Output
 Output
 Description
 Output
 Description
 - lacktriangle Assume we know lacktriangle is the *largest* bottleneck capacity.
 - 2 Remove all edges with residual capacity $\leq \Delta$

 - Do binary search to find largest

 Δ
 - **3** Running time: $O(m \log \kappa)$

Now on let κ be the largest edge capacity in G, i.e. $\kappa = \max_e c(e)$

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- Output
 Output
 Output
 Description
 Output
 Description
 - lacktriangle Assume we know lacktriangle is the *largest* bottleneck capacity.
 - 2 Remove all edges with residual capacity $\leq \Delta$

 - Do binary search to find largest
 Δ
 - **5** Running time: $O(m \log \kappa)$
 - Max bottleneck capacity is one of the edge capacities. Why?

Ruta (UIUC) CS473 39 Spring 2021 39 / 46

Now on let κ be the largest edge capacity in G, i.e. $\kappa = \max_e c(e)$

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- Output
 Output
 Output
 Description
 Output
 Description
 - \bullet Assume we know \triangle is the *largest* bottleneck capacity.
 - 2 Remove all edges with residual capacity $\leq \Delta$
 - Oheck if there is a path from s to t
 - Do binary search to find largest Δ
 - **5** Running time: $O(m \log \kappa)$
 - Max bottleneck capacity is one of the edge capacities. Why?
 - Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
 - 3 Algorithm's running time is $O(m \log m)$.
 - **9** Alternative algorithm: modify Dijkstra to get $O(m + n \log n)$.

Ruta (UIUC) CS473 39 Spring 2021 39 / 46

F* is max **s**-**t**-flow value. Edge capacities are integers.

Theorem

Algorithm terminates in $O(m \log F^*)$ iterations.

F* is max **s**-**t**-flow value. Edge capacities are integers.

Theorem

Algorithm terminates in $O(m \log F^*)$ iterations.

Suppose algorithm takes k iterations. Let α_i be flow value after i iterations. $\alpha_0 = 0$. In Ford-Fulkerson we have $\alpha_{i+1} \geq \alpha_i + 1$. For the new algorithm we have,

Lemma

If algorithm does not terminate after the *i*'th iteration, amount of flow augmented in (i + 1)st iteration is at least $\max\{1, (F^* - \alpha_i)/m\}$.

F* is max **s**-**t**-flow value. Edge capacities are integers.

Theorem

Algorithm terminates in $O(m \log F^*)$ iterations.

Suppose algorithm takes k iterations. Let α_i be flow value after i iterations. $\alpha_0 = 0$. In Ford-Fulkerson we have $\alpha_{i+1} \geq \alpha_i + 1$. For the new algorithm we have,

Lemma

If algorithm does not terminate after the *i*'th iteration, amount of flow augmented in (i + 1)st iteration is at least $\max\{1, (F^* - \alpha_i)/m\}$.

Hence,
$$\alpha_{i+1} - \alpha_i \geq \max\{1, (F^* - \alpha_i)/m\}$$
.

Assume lemma. Let $\beta_i = F^* - \alpha_i$ be residual flow left after i iterations. We have $\beta_0 = F^*$.

$$\beta_i - \beta_{i+1} = \alpha_{i+1} - \alpha_i \ge (F^* - \alpha_i)/m = \beta_i/m$$

Assume lemma. Let $\beta_i = F^* - \alpha_i$ be residual flow left after i iterations. We have $\beta_0 = F^*$.

$$\beta_i - \beta_{i+1} = \alpha_{i+1} - \alpha_i \ge (F^* - \alpha_i)/m = \beta_i/m$$

implies

$$\beta_{i+1} \leq (1-1/m)\beta_i$$

Assume lemma. Let $\beta_i = F^* - \alpha_i$ be residual flow left after i iterations. We have $\beta_0 = F^*$.

$$\beta_i - \beta_{i+1} = \alpha_{i+1} - \alpha_i \ge (F^* - \alpha_i)/m = \beta_i/m$$

implies

$$\beta_{i+1} \leq (1-1/m)\beta_i$$

Therefore, for k > 1,

$$\beta_k \leq (1 - 1/m)^k \beta_0 \leq (1 - 1/m)^k F^*$$

Assume lemma. Let $\beta_i = F^* - \alpha_i$ be residual flow left after *i* iterations. We have $\beta_0 = F^*$.

$$\beta_i - \beta_{i+1} = \alpha_{i+1} - \alpha_i \ge (F^* - \alpha_i)/m = \beta_i/m$$

implies

$$\beta_{i+1} \leq (1-1/m)\beta_i$$

Therefore, for k > 1,

$$\beta_k \leq (1 - 1/m)^k \beta_0 \leq (1 - 1/m)^k F^*$$

Thus, after $k = m \ln F^*$ iterations,

$$\beta_k \le (1 - 1/m)^{m \ln F^*} F^* \le \exp(-\ln F^*) F^* \le 1$$

Assume lemma. Let $\beta_i = F^* - \alpha_i$ be residual flow left after *i* iterations. We have $\beta_0 = F^*$.

$$\beta_i - \beta_{i+1} = \alpha_{i+1} - \alpha_i \ge (F^* - \alpha_i)/m = \beta_i/m$$

implies

$$\beta_{i+1} \leq (1-1/m)\beta_i$$

Therefore, for k > 1,

$$\beta_k \leq (1 - 1/m)^k \beta_0 \leq (1 - 1/m)^k F^*$$

Thus, after $k = m \ln F^*$ iterations,

$$\beta_k \leq (1 - 1/m)^{m \ln F^*} F^* \leq \exp(-\ln F^*) F^* \leq 1$$

This implies that algorithm terminates in $1 + m \ln F^*$ iterations. And $F^* \leq mC$ and hence algorithm terminates in $O(m \log mC)$ iterations.

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ?

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_{f_i} decomposes into flow on how many paths?

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_{f_i} decomposes into flow on how many paths? m.

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_{f_i} decomposes into flow on how many paths? m.
- Flow of value $(F^* \alpha_i)$ in G_{f_i} decomposes into at most m paths.

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_{f_i} decomposes into flow on how many paths? m.
- Flow of value $(F^* \alpha_i)$ in G_{f_i} decomposes into at most m paths.
- Among these *m* paths, the path with maximum flow carries at least how much flow?

- f_i flow in G after i iterations of value α_i . G_f is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_f decomposes into flow on how many paths? m.
- Flow of value $(F^* \alpha_i)$ in G_f decomposes into at most mpaths.
- Among these m paths, the path with maximum flow carries at least how much flow? $(F^* - \alpha_i)/m$.

CS473 42 Spring 2021 42 / 46

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_f decomposes into flow on how many paths? m.
- Flow of value $(F^* \alpha_i)$ in G_f decomposes into at most mpaths.
- Among these m paths, the path with maximum flow carries at least how much flow? $(F^* - \alpha_i)/m$. Call it path P.

CS473 42 Spring 2021 42 / 46

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_{f_i} decomposes into flow on how many paths? m.
- Flow of value $(F^* \alpha_i)$ in G_{f_i} decomposes into at most m paths.
- Among these m paths, the path with maximum flow carries at least how much flow? $(F^* \alpha_i)/m$. Call it path P.
- Flow on max bottleneck path must be at least as large as that on P. This implies that the amount of augmentation that the algorithm does in iteration i+1 is at least $(F^* \alpha_i)/m$.

- f_i flow in G after i iterations of value α_i . G_{f_i} is residual graph.
- Max-flow value in G_{f_i} ? $(F^* \alpha_i)$.
- This flow in G_{f_i} decomposes into flow on how many paths? m.
- Flow of value $(F^* \alpha_i)$ in G_{f_i} decomposes into at most m paths.
- Among these m paths, the path with maximum flow carries at least how much flow? $(F^* \alpha_i)/m$. Call it path P.
- Flow on max bottleneck path must be at least as large as that on P. This implies that the amount of augmentation that the algorithm does in iteration i+1 is at least $(F^* \alpha_i)/m$.
- Thus, $\alpha_{i+1} \geq \alpha_i + (F^* \alpha_i)/m$.

Running time analysis

- Each iteration requires finding a max bottleneck capacity path in residual graph. Can be found in $O(n \log n + m)$ or in $O(m \log m)$ time.
- Number of iterations is $O(m \log mC)$.
- Hence overall running time is $O(m^2 \log m \log mC)$ or $O(mn \log n \log mC + m^2 \log mC)$.

Many problems (like max-flow) has inputs with two types of information:

- combinatorial
- numerical

Example:

Graph problems: vertices and edges are combinatorial part and edge/vertex lengths/capacities are numerical.

Many problems (like max-flow) has inputs with two types of information:

- combinatorial
- numerical

Example:

Graph problems: vertices and edges are combinatorial part and edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called *strongly polynomial* if its running time is a polynomial and *it does not depend on the numerical part*. Here, we assume that standard arithmetic operations on the input numbers takes constant time.

Many problems (like max-flow) has inputs with two types of information:

- combinatorial
- numerical

Example:

Graph problems: vertices and edges are combinatorial part and edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called *strongly polynomial* if its running time is a polynomial and *it does not depend on the numerical part*. Here, we assume that standard arithmetic operations on the input numbers takes constant time. Otherwise it is *weakly polynomial*.

Many problems (like max-flow) has inputs with two types of information:

- combinatorial
- numerical

Example:

Graph problems: vertices and edges are combinatorial part and edge/vertex lengths/capacities are numerical.

Strongly polynomial. An algorithm for a problem is called *strongly polynomial* if its running time is a polynomial and *it does not depend on the numerical part*. Here, we assume that standard arithmetic operations on the input numbers takes constant time.

Otherwise it is weakly polynomial.

It is *pseudo-polynomial* if the run-time is polynomial assuming numerical data is in unary.

A strongly polynomial time algorithm for max flow

Algorithm: In each iteration of Ford-Fulkerson choose a shortest augmenting path in the residual graph.

```
algEdmondsKarp
    for every edge e, f(e) = 0
    G_f is residual graph of G with respect to f
    while G_f has a simple s-t path do
        Perform BFS in G_f
        P: shortest s-t path in G_f
        f = \operatorname{augment}(f, P)
        Construct new residual graph G_f.
```

CS473 45 Spring 2021 45 / 46

A strongly polynomial time algorithm for max flow

Algorithm: In each iteration of Ford-Fulkerson choose a shortest augmenting path in the residual graph.

```
algEdmondsKarp

for every edge e, f(e) = 0

G_f is residual graph of G with respect to f

while G_f has a simple s-t path do

Perform BFS in G_f

P: shortest s-t path in G_f

f = augment(f, P)

Construct new residual graph G_f.
```

Theorem

Algorithm terminates in O(mn) iterations. Thus, overall running time is $O(m^2n)$.

Orlin's Algorithm

- Currently, fastest strongly polynomial time algorithm runs in O(mn) time.
- O(mn) time is also sufficient to do flow-decomposition

You can state and use the above results in a black box fashion when using maximum flow algorithms in reductions.