CS 473: Algorithms

Ruta Mehta

University of lllinois, Urbana-Champaign

Spring 2021

Ruta (UIUC) CS473 1 Spring 2021 1/32

CS 473: Algorithms, Spring 2021

Universal Hashing

Lecture 10
Feb 25, 2021

Most slides are courtesy Prof. Chekuri

Ruta (UIUC)

Part |

Hash Tables

Ruta (UIUC)

Dictionary Data Structure

© U: universe of keys with total order: numbers, strings, etc.
@ Data structure to store a subset S C U
© Operations:

@ Search/look up: given x € U is x € §?
@ Insert: given x € S add x to S.
@ Delete: given x € S delete x from S

@ Static structure: S given in advance or changes very
infrequently, main operations are lookups.

© Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.

Can we do everything in O(1) time?

Ruta (UIUC) CS473 4 Spring 2021 4 /32

Hashing and Hash Tables

Hash Table data structure:
© A (hash) table/array T of size m (the table size).
@ A hash function h: U4 — {0,...,m — 1}.
@ Item x € U is stored at (hashes to) position/slot h(x) in T.

Ruta (UIUC) CS473 5 Spring 2021 5/32

Hashing and Hash Tables

Hash Table data structure:
© A (hash) table/array T of size m (the table size).
@ A hash function h: U4 — {0,...,m — 1}.
@ Item x € U is stored at (hashes to) position/slot h(x) in T.

Given S C U. How do we store S and how do we do lookups?

Ruta (UIUC) CS473 5 Spring 2021 5/32

Hashing and Hash Tables

Hash Table data structure:
@ A (hash) table/array T of size m (the table size).
@ A hash function h: U — {0,...,m — 1}.
@ Item x € U is stored at (hashes to) position/slot h(x) in T.

Given S C U. How do we store S and how do we do lookups?

Ideal situation:

@ Each element x € S hashes to a distinct slot in T. Store x in
slot h(x)

@ Lookup: Given y € U check if T[h(y)] = y. O(1) time!

Ruta (UIUC) CS473 5 Spring 2021 5/32

Hashing and Hash Tables

Hash Table data structure:
@ A (hash) table/array T of size m (the table size).
@ A hash function h: U — {0,...,m — 1}.
@ Item x € U is stored at (hashes to) position/slot h(x) in T.

Given S C U. How do we store S and how do we do lookups?

Ideal situation:

@ Each element x € S hashes to a distinct slot in T. Store x in
slot h(x)

@ Lookup: Given y € U check if T[h(y)] = y. O(1) time!

Collisions unavoidable if | T| < |U|. Several techniques to handle

them.
Ruta (UIUC) CS473 5 Spring 2021 5/32

Handling Collisions: Chaining

Collision: h(x) = h(y) for some x # y.

Chaining/Open hashing to handle collisions:

@ For each slot i store all items hashed to slot i in a linked list.

T[] points to the linked list

© Lookup: to find if y € U isin T, check the linked list at
T[h(y)]- Time proportion to size of linked list.

Does hashing give O(1) time per operation for dictionaries?

Ruta (UIUC) CS473 6 Spring 2021

6/ 32

Hash Functions

Parameters: N = |U| (very large), m = |T|, n = |S]|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N > m?, then for any hash function h: U{ — T there exists
i < m such that at least N/m > m elements of U get hashed to
slot i.

Ruta (UIUC) CS473 7 Spring 2021 7/32

Hash Functions

Parameters: N = |U| (very large), m = |T|, n = |S]|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N > m?, then for any hash function h: U{ — T there exists
i < m such that at least N/m > m elements of U get hashed to
slot i. Any S containing all of these is a very very bad set for h!

Ruta (UIUC) CS473 7 Spring 2021 7/32

Hash Functions

Parameters: N = |U| (very large), m = |T|, n = |S]|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N > m?, then for any hash function h: U{ — T there exists

i < m such that at least N/m > m elements of U get hashed to

slot i. Any S containing all of these is a very very bad set for h!
Such a bad set may lead to O(m) lookup time!

Ruta (UIUC) CS473 7 Spring 2021 7/32

Hash Functions

Parameters: N = |U| (very large), m = |T|, n = |S]|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N > m?, then for any hash function h: U{ — T there exists

i < m such that at least N/m > m elements of U get hashed to

slot i. Any S containing all of these is a very very bad set for h!
Such a bad set may lead to O(m) lookup time!

o Consider a family H of hash functions with good properties and
choose h uniformly at random.

@ Guarantees: small # collisions in expectation for a given S.

@ H should allow efficient sampling.

Ruta (UIUC) Csa73 7 Spring 2021 7/ 32

Universal Hashing

Question: What are good properties of H in distributing data?

Ruta (UIUC) Spring 2021 8 /32

Universal Hashing

Question: What are good properties of H in distributing data?

© Uniform: Consider any element x € U. Then if h € H is
picked randomly then x should go into a random slot in T. In
other words Pr[h(x) = i] = 1/m for every 0 < i < m.

Ruta (UIUC) Spring 2021 8 /32

Universal Hashing

Question: What are good properties of H in distributing data?

© Uniform: Consider any element x € U. Then if h € H is
picked randomly then x should go into a random slot in T. In
other words Pr[h(x) = i] =1/m for every 0 < i < m.

© Universal: Consider any two distinct elements x,y € U. Then
if h € H is picked randomly then the probability of a collision
between x and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

Ruta (UIUC) CS473 8 Spring 2021 8 /32

Universal Hashing

Question: What are good properties of H in distributing data?

© Uniform: Consider any element x € U. Thenif h € H is
picked randomly then x should go into a random slot in T. In
other words Pr[h(x) = i] = 1/m for every 0 < i < m.

@ Universal: Consider any two distinct elements x,y € U. Then
if h € H is picked randomly then the probability of a collision
between x and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

© Second property is stronger than the first and crucial.

Definition

A family of hash function H is (2-)universal if for all distinct
x,y € U, Prpy[h(x) = h(y)] = 1/m where m is the table size.

Ruta (UIUC) Csa73 8 Spring 2021 8 / 32

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Ruta (UIUC) CS473 9 Spring 2021 9 /32

Analyzing Universal Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:
© O(1) expected time also holds for insertion.

@ Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.

© Worst-case: look up time can be large! How large?
Q(log n/ log log n)

Ruta (UIUC) CS473 9 Spring 2021 9 /32

Compact Universal Hash Family

Parameters: N = [U|, m = |T|, n = |S]|

@ Choose a prime number p > N. Define function
h,p(x) = ((ax + b) mod p) mod m.

Q@ let H=1{h,p|a,b€Z,a#0}Z,=1{01,...,p—1}).

Ruta (UIUC) Cs473 10 Spring 2021 10 / 32

Compact Universal Hash Family

Parameters: N = [U|, m = |T|, n = |S]|

@ Choose a prime number p > N. Define function
h,p(x) = ((ax + b) mod p) mod m.

Q Let H = {h.p | a,b € Zp,a# 0} (Zp, ={0,1,...,p—1}).
Note that |H| = p(p — 1).

Ruta (UIUC) Cs473 10 Spring 2021 10 / 32

Compact Universal Hash Family

Parameters: N = [U|, m = |T|, n = |S]|

@ Choose a prime number p > N. Define function
h,p(x) = ((ax + b) mod p) mod m.

Q Let H = {h.p | a,b € Zp,a# 0} (Zp, ={0,1,...,p—1}).
Note that |H| = p(p — 1).

H is a universal hash family. \

Ruta (UIUC) Cs473 10 Spring 2021 10 / 32

Compact Universal Hash Family

Parameters: N = |U|, m = |T|, n = |S|
@ Choose a prime number p > N. Define function
h,p(x) = ((ax + b) mod p) mod m.

Q Let H = {h.p | a,b € Zp,a# 0} (Zp, ={0,1,...,p—1}).
Note that |H| = p(p — 1).

H is a universal hash family. \

Comments:
© h,p can be evaluated in O(1) time.

@ Easy to store, i.e., just store a, b. Easy to sample.

Ruta (UIUC) Cs473 10 Spring 2021 10 / 32

Some math required...

Lemma (LemmaUnique)

Let p be a prime number, and Z, = {0,1,...,p — 1}.
x: an integer number in Zp, x 7 0
= There exists a unique y € Z, s.t. xy =1 mod p.

In other words: For every element there is a unique inverse.
= set Z, = {0,1,..., p — 1} when working modulo p is a
field.

Ruta (UIUC) Cs473 11 Spring 2021 11/ 32

Proof of LemmaUnique

Let p be a prime number. For any x,y,z € {0,...,p — 1} s.t.
x # 0 and y # z, we have that xy mod p # xz mod p.

Ruta (UIUC) Cs473 12 Spring 2021 12 /32

Proof of LemmaUnique

Let p be a prime number. For any x,y,z € {0,...,p — 1} s.t.
x # 0 and y # z, we have that xy mod p # xz mod p.

Proof.
Assume for the sake of contradiction xy mod p = xz mod p.
Then

x(y—z)=0 modp
=> pdivides x(y — z)
=—> pdivides x OR p divides (y — z) (why?)
= y—z=0 = y==2z

And that is a contradiction.]

Ruta (UIUC) Cs473 12 Spring 2021 12 /32

v

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x: an integer number in {1,...,p — 1}.
== There exists a unique y s.t. xy =1 mod p.

Proof.

By the above claim if xy =1 mod p and xz =1 mod p then
y = z. Hence uniqueness follows.

y

Ruta (UIUC) Cs473 13 Spring 2021 13/ 32

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x: an integer number in {1,...,p — 1}.
== There exists a unique y s.t. xy =1 mod p.

Proof.

By the above claim if xy =1 mod p and xz =1 mod p then
y = z. Hence uniqueness follows.

Existence. For any x € {1,...,p — 1} we have that
{x*1 mod p,x*2 mod p,...,x*(p—1) mod p} =

y

Ruta (UIUC) Cs473 13 Spring 2021 13/ 32

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,
x: an integer number in {1,...,p — 1}.
== There exists a unique y s.t. xy =1 mod p.

Proof.

By the above claim if xy =1 mod p and xz =1 mod p then
y = z. Hence uniqueness follows.

Existence. For any x € {1,...,p — 1} we have that

{x*1 mod p,x*2 mod p,...,x*(p—1) mod p} =
{1,2,...,p—1}.

== There exists a number y € {1,...,p — 1} such that

xy =1 mod p. O

y

Ruta (UIUC) Cs473 13 Spring 2021 13/ 32

Proof of the Theorem: Outline

h,p(x) = ((ax + b) mod p) mod m).

H ={h,p | a,b € Zp,a # 0} is universal.

_

Proof.
Fix x,y € U. Show that Prp, ,~3[hap(x) = hap(y)] < 1/m.
Note that |H| = p(p — 1).

v

Ruta (UIUC) Cs473 14 Spring 2021 14 / 32

Proof of the Theorem: Outline

h,p(x) = ((ax + b) mod p) mod m).

H ={h,p | a,b € Zp,a # 0} is universal.

_

Proof.
Fix x,y € U. Show that Prp, ,~3[hap(x) = hap(y)] < 1/m.
Note that |H| = p(p — 1).
Q Let (a, b) (equivalently h,) be bad for x, y if
ha,b(x) = ha,b(y)'

v

Ruta (UIUC) Cs473 14 Spring 2021 14 / 32

Proof of the Theorem: Outline

h,p(x) = ((ax + b) mod p) mod m).

H ={h,p | a,b € Zp,a # 0} is universal.

_

Proof.
Fix x,y € U. Show that Prp, ,~3[hap(x) = hap(y)] < 1/m.
Note that |H| = p(p — 1).
Q Let (a, b) (equivalently h,) be bad for x, y if
h, p(x) = h,p(y). At most howmany bad h is ok?

v

Ruta (UIUC) Cs473 14 Spring 2021 14 / 32

Proof of the Theorem: Outline

h,p(x) = ((ax + b) mod p) mod m).

H ={h,p | a,b € Zp,a # 0} is universal.

_

Proof.
Fix x,y € U. Show that Prp, ,~3[hap(x) = hap(y)] < 1/m.
Note that |H| = p(p — 1).
Q Let (a, b) (equivalently h,) be bad for x, y if
h, p(x) = h,p(y). At most howmany bad h is ok?
@ Claim: Number of bad (a, b) is at most p(p — 1)/m.

v

Ruta (UIUC) Cs473 14 Spring 2021 14 / 32

Proof of the Theorem: Outline

h,p(x) = ((ax + b) mod p) mod m).

H ={h,p | a,b € Zp,a # 0} is universal.

Proof.
Fix x,y € U. Show that Prp, ,~3[hap(x) = hap(y)] < 1/m.
Note that |H| = p(p — 1).
Q Let (a, b) (equivalently h,) be bad for x, y if
h, p(x) = h,p(y). At most howmany bad h is ok?

@ Claim: Number of bad (a, b) is at most p(p — 1)/m.

@ Total number of hash functions is p(p — 1) and hence
probability of a collision is < 1/m. O

v

Ruta (UIUC) Cs473 14 Spring 2021 14 / 32

Intuition for the Claim

8a,b(x) = (ax + b) mod p
First map x # y to r = g, p(x) and s = g, p(y)-
LemmaUnique proof =—> r # s
0 12 3 X

Ruta (UIUC) Cs473 15 Spring 2021 15 / 32

Intuition for the Claim

8a,b(x) = (ax + b) mod p
First map x # y to r = g, p(x) and s = g, p(y)-
LemmaUnique proof =—> r # s
0 12 3 x 0 12 3

(7,)
—

As (a, b) varies, (r, s) takes all possible p(p — 1) values. Since
(a, b) is picked u.a.r., every value of (r, s) has equal probability.

Ruta (UIUC) Cs473 15 Spring 2021 15 / 32

Intuition for the Claim

gab(x) = (ax + b) mod p, h,p(x) = (ga,6(x)) mod m
0 1 2 3 T

Ruta (UIUC) Cs473 15 Spring 2021 15 / 32

Intuition for the Claim

8ab(x) = (ax + b) mod p, h,p(x) = (ga,b(x)) mod m

.
n _

Ruta (UIUC) Spring 2021 15 / 32

Intuition for the Claim

For a fixed a € {0,..., m — 1} what is an upper bound on the size
ofset {s € {0,...,(p—1)} | a=s mod m}?

(A) m.

(B) m?.

(C) p.

(D) p/m.

(E) Many. At least two.

Ruta (UIUC) Cs473 15 Spring 2021 15 / 32

Intuition for the Claim

gab(x) = (ax + b) mod p, h,p(x) = (ga,6(x)) mod m
© First part of mapping maps
(x, y) to a random location

(ga,b(x), ga,b(y)) in the
“matrix”.

Q (ga,6(x), ga,(y)) is not on
main diagonal.

© All blue locations are “bad” —
map by mod m to a
location of collision.

© But... at most 1/m fraction
of allowable locations in the
matrix are bad.

Ruta (UIUC) Cs473 15 Spring 2021 15 / 32

We need

to show at most 1/m fraction of bad

h,b(x) = (((ax + b) mod p) mod m)

2 lemmas ...

Fix x # y € Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

Ruta (UIUC) Cs473 16 Spring 2021 16 / 32

We need

to show at most 1/m fraction of bad

h,b(x) = (((ax + b) mod p) mod m)

2 lemmas ...

Fix x # y € Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

© 1-to-1 correspondence between p(p — 1) pairs of (a, b)
(equivalently h,p) and p(p — 1) pairs of (r, s).

Ruta (UIUC) Cs473 16 Spring 2021 16 / 32

We need

to show at most 1/m fraction of bad

h,b(x) = (((ax + b) mod p) mod m)

2 lemmas ...

Fix x # y € Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

© 1-to-1 correspondence between p(p — 1) pairs of (a, b)
(equivalently h,p) and p(p — 1) pairs of (r, s).
@ Out of all possible p(p — 1) pairs of (r,s), at most

p(p — 1)/m fraction satisfies r mod m = s mod m.

Ruta (UIUC) Cs473 16 Spring 2021 16 / 32

Some Lemmas

If x # y then for any a, b € 7Z, such that a # 0, we have
ax+b mod p#ay+ b mod p.

Ruta (UIUC) Cs473 17 Spring 2021 17 / 32

Some Lemmas

If x # y then for any a, b € Z, such that a # 0, we have
ax+b mod p#ay+ b mod p.

Suppose not

ax+b modp=ay+b modp=a(x—y) modp=20

Ruta (UIUC) Cs473 17 Spring 2021 17 / 32

Some Lemmas

If x # y then for any a, b € Z, such that a # 0, we have
ax+b mod p#ay+ b mod p.

Proof.

Suppose not
ax+b modp=ay+b modp=a(x—y) modp=20

Since p is a prime, p divides either a or (x — y).

Ruta (UIUC) Cs473 17 Spring 2021 17 / 32

Some Lemmas

If x # y then for any a, b € Z, such that a # 0, we have
ax+b mod p#ay+ b mod p.

Proof.

Suppose not
ax+b modp=ay+b modp=a(x—y) modp=20

Since p is a prime, p divides either a or (x — y). But a < p and
(x —y) < p, and hence a = 0 or (x — y) = 0. Contradiction! [

’

Ruta (UIUC) Cs473 17 Spring 2021 17 / 32

Some Lemmas

If x # y then for each (r, s) such that r # s and
0 < r,s < p— 1 there is exactly one a, b such that
ax+b mod p=randay+b mod p=s

Solve the two equations:

ax+b=r modp and ay+b=s modp

Ruta (UIUC) Cs473 18 Spring 2021 18 / 32

Some Lemmas

If x # y then for each (r, s) such that r # s and
0 < r,s < p— 1 there is exactly one a, b such that
ax+b mod p=randay+b mod p=s

Proof.

Solve the two equations:

ax+b=r modp and ay+b=s modp

r—s
X=y

We get a = mod p and b = r — ax mod p. O

One-to-one correspondence between (a, b) and (r, s)

Ruta (UIUC) Cs473 18 Spring 2021 18 / 32

Understanding the hashing

Once we fix a and b, and we are given a value x, we compute the
hash value of x in two stages:

© Compute: r + (ax + b) mod p.
Q Fold: r' < r mod m

Ruta (UIUC) Cs473 19 Spring 2021 19 /32

Understanding the hashing

Once we fix a and b, and we are given a value x, we compute the
hash value of x in two stages:

@ Compute: r < (ax + b) mod p.
@ Fold: r' + r mod m

Given two distinct values x and y they might collide only because of
folding.

not equal pairs (r,s) of Z, X Z, that are folded to the same
number is p(p — 1)/ m.

Ruta (UIUC) Cs473 19 Spring 2021 19 /32

Folding numbers

pairs (ryS) € Zp X Zp such that r # s andr mod m=s
mod m (folded to the same number) is p(p — 1)/m.

Proof.
Consider a pair (r,s) € {0,1,...,p — 1} st. r # s. Fix r:

Q@ a=r mod m.

.

Ruta (UIUC) Cs473 20 Spring 2021 20 / 32

Folding numbers

pairs (ryS) € Zp X Zp such that r # s andr mod m=s
mod m (folded to the same number) is p(p — 1)/m.

Proof.
Consider a pair (r,s) € {0,1,...,p — 1} st. r # s. Fix r:

Q@ a=r mod m
@ There are [p/m]| values of s that fold into a. That is

r mod m=s mod m.
@ One of them is when r = s.

Q@ — # of colliding pairs

.

Ruta (UIUC) Cs473 20 Spring 2021 20 / 32

Folding numbers

pairs (ryS) € Zp X Zp such that r # s andr mod m=s
mod m (folded to the same number) is p(p — 1)/m.

Proof.
Consider a pair (r,s) € {0,1,...,p — 1} st. r # s. Fix r:

Q@ a=r mod m
@ There are [p/m]| values of s that fold into a. That is

r mod m=s mod m.
@ One of them is when r = s.

Q@ = # of colliding pairs ([p/m] —1)p < (p — 1)p/m

O

.

Ruta (UIUC) Cs473 20 Spring 2021 20 / 32

Proof of Claim

of bad pairs is p(p — 1)/m

Let a, b € Z, such that a # 0 and h, p(x) = h, p(y).
Q letr=ax+b mod pands=ay+ b mod p.

@ Collision if and only if r mod m =s mod m.

@ (Folding error): Number of pairs (r, s) such that r # s and
0<r,s<p—1landr mod m=s mod mis
p(p —1)/m.

© From previous lemma there is one-to-one correspondence
between (a, b) and (r, s). Hence total number of bad (a, b)
pairs is p(p — 1)/ m.

Ruta (UIUC) Cs473 21 Spring 2021 21/ 32

Proof of Claim

of bad pairs is p(p — 1)/m

Let a, b € Z, such that a # 0 and h, p(x) = h, p(y).
Q letr=ax+b mod pands=ay+ b mod p.

@ Collision if and only if r mod m =s mod m.

@ (Folding error): Number of pairs (r, s) such that r # s and
0<r,s<p—1landr mod m=s mod mis
p(p —1)/m.

© From previous lemma there is one-to-one correspondence
between (a, b) and (r, s). Hence total number of bad (a, b)
pairs is p(p — 1)/ m.

bad (a, b) pairs __ p(p—1)/m — 1

#(a, b) pairs — p(p—1) m’
Ruta (UIUC) CS473 21 Spring 2021 21 /32

Prob of x and y to collide:

Say |S| = |T| = m.
For0 < i< m—1,£(i) : list of elements hashed to slot i in T.

Expected look up time

Since for x # y, Pr[hap(x) = hap(y)] = 1/m, we get
E[lE()]] = |S|/m < 1.

Ruta (UIUC) Cs473 22 Spring 2021 22 /32

Say |S| = |T| = m.
For0 < i< m—1,£(i) : list of elements hashed to slot i in T.

Expected look up time

Since for x # y, Pr[hap(x) = hap(y)] = 1/m, we get
E[lE()]] = |S|/m < 1.

Expected worst case look up time

Like in Balls & Bins, E[max;';gl |£(i)|} > O(Inn/Inn n).

Ruta (UIUC) Cs473 22 Spring 2021 22 / 32

Say |S| = |T| = m.
For0 < i< m—1,£(i) : list of elements hashed to slot i in T.

Expected look up time

Since for x # y, Pr[hap(x) = hap(y)] = 1/m, we get
E[lE()]] = |S|/m < 1.

Expected worst case look up time

Like in Balls & Bins, E[max;';_ol |£(i)|} > O(Inn/Inn n).

What if | T| = m? (# Bins is m?)

Claim: If | T| = m?, then E[max;';gl |E(i)|} = 0(1).

Ruta (UIUC) Cs473 22 Spring 2021 22 / 32

Perfect Hashing

Two levels of hash tables

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data

@ Do hashing once.

o If Y; = |£(i)| > 10 then hash elements of £(i) to a table of
size Y7

Ruta (UIUC) Cs473 23 Spring 2021 23 / 32

Perfect Hashing

Two levels of hash tables

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data

@ Do hashing once.
o If Y; = |£(i)| > 10 then hash elements of £(i) to a table of

size Y,.2.

Lemma (Look-up)
Expected worst case look up time is O(1).

Ruta (UIUC) Cs473 23 Spring 2021 23 / 32

Perfect Hashing

Two levels of hash tables

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data
@ Do hashing once.
o If Y; = |£(i)| > 10 then hash elements of £(i) to a table of
size Y7

Lemma (Look-up)
Expected worst case look up time is O(1).

If |S| = O(m) then space usage of perfect hashing is O(m). \

Spring 2021 23 /32

Ruta (UIUC) Cs473 23

Intuition: Throwing m Balls in to m? Bins

@ Pr[ith ball lands in jth bin]

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Intuition: Throwing m Balls in to m? Bins

e Pr[ith ball lands in jth bin] = 1/m?
@ For a fixed bin j, Y; =# balls in bin j.

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Intuition: Throwing m Balls in to m? Bins

e Pr[ith ball lands in jth bin] = 1/m?
o For a fixed bin j, Y; =# balls in bin j. E[Y;] = 1/m.

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Intuition: Throwing m Balls in to m? Bins

e Pr[ith ball lands in jth bin] = 1/m?
o For a fixed bin j, Y; =# balls in bin j. E[Y;] = 1/m.
e Forc >3, let (1 4+ 96) = cm. Pr[Y; > c]?

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Intuition: Throwing m Balls in to m? Bins

e Pr[ith ball lands in jth bin] = 1/m?
o For a fixed bin j, Y; =# balls in bin j. E[Y;] = 1/m.
e Forc >3, let (1 4+ 96) = cm. Pr[Y; > c]?

PrlY; > cm/m] = Pr[Y; > (1 +) E[Y]]

86
(Chernoff) m

= ()" < Cerera/m)
< 1/m

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Intuition: Throwing m Balls in to m? Bins

Pr[ith ball lands in jth bin] = 1/m?
For a fixed bin j, Y; =# balls in bin j. E[Y;] = 1/m.
e Forc >3, let (1 4+ 96) = cm. Pr[Y; > c]?

Pr[Y; > cm/m] = Pr[Y; > (14 6)E[Y]]]
n

(%)Um < (e/c)<(1/m")
1/m?

IA

m?
o Primax”, Y; > c} <

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Intuition: Throwing m Balls in to m? Bins

Pr[ith ball lands in jth bin] = 1/m?
For a fixed bin j, Y; =# balls in bin j. E[Y;] = 1/m.
For c > 3, let (1 4+ 6) = cm. Pr[Y; > c]?

Pr[Y; > ecm/m] = Pr[Y; > (14 6) E[Y]]]
(Chernoff) < L

((1+5)(1+5)

(%)Um < (e/c)<(1/m")
1/m?

IA

° Pr[maxj’.":1 Y, > c} < 1/m (Union bound).

m?2
° Pr[maxj=1 Y; < c} >

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Intuition: Throwing m Balls in to m? Bins

Pr[ith ball lands in jth bin] = 1/m?
For a fixed bin j, Y; =# balls in bin j. E[Y;] = 1/m.
For c > 3, let (1 4+ 6) = cm. Pr[Y; > c]?

PrlY; > cm/m] = Pr[Y; > (1 +) E[Y]]

(Chernoff) < ((eymm

(%)Um < (e/c)<(1/m")
1/m?

IA

° Pr[maxj’.":1 Y, > c} < 1/m (Union bound).

° Pr[maxj’.":1 Y; < c} >1—1/m—-(w.h.p.)
o E[max; Yj] <

Ruta (UIUC) CS473 24 Spring 2021 24 /32

Intuition: Throwing m Balls in to m? Bins

e Pr[ith ball lands in jth bin] = 1/m?
o For a fixed bin j, Y; =# balls in bin j. E[Y;] = 1/m.
e Forc >3, let (1 4+ 96) = cm. Pr[Y; > c]?

PrlY; > cm/m] = Pr[Y; > (1 +) E[Y]]

(Chernoff) < ((eymm

(%)Um < (e/c)<(1/m")
1/m?

IA

° Pr[maxj’.":1 Y, > c} < 1/m (Union bound).

° Pr[maxj’.":1 Y; < c} >1—1/m—-(w.h.p.)
e E[max; Y;] < c+1= 0(1).

Ruta (UIUC) CS473 24 Spring 2021 24 / 32

Perfect Hashing

Two levels of hash tables

Question: Can we make look up time O(1) in worst case?

Perfect Hashing for Static Data
@ Do hashing once.
o If Y; = |£(i)| > 10 then hash elements of £(i) to a table of
size Y7

Lemma (Look-up)
Expected worst case look up time is O(1).

If |S| = O(m) then space usage of perfect hashing is O(m). \

Spring 2021 25 /32

Ruta (UIUC) Cs473 25

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

Ruta (UIUC) Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

Ruta (UIUC) Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

E[Z?;Gl m,z] < 3m where m = |S|.

Ruta (UIUC) Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

E[Z;’;l mlz] < 3m where m = |S|.

Let [h(x) = i] represent indicator variable. m; =} s[h(x) = i].

Ruta (UIUC) Cs473 26 Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

E[Z;’;l mlz] < 3m where m = |S|.

Let [h(x) = i] represent indicator variable. m; =} s[h(x) = i].

> ’"i2 = Yi(Xxeslh(x) = i1)?

Ruta (UIUC) Cs473 26 Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

E[Z;’;l mlz] < 3m where m = |S|.

4

Let [h(x) = i] represent indicator variable. m; =} s[h(x) = i].

> ’"i2 >i(Xxeslh(x) = i1)?
SO Mh(x) = iP + 23, [h(x) = i][h(y) = i])

Ruta (UIUC)

CS473 26 Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage
h : the primary hash function. m; = # x in S such that h(x) = i.

E[Z;’;l mlz] < 3m where m = |S|.

Let [h(x) = i] represent indicator variable. m; =} s[h(x) = i].

> m} i(Cxeslh(x) = i)?
ik [h(x) = il> + 23, . [h(x) = illh(y) = i])
«(2ilh(x) = il) + 230, 22i[h(x) = i][h(y) = i]

= L
= X
= 2

Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

E[Z;’;l mlz] < 3m where m = |S|.

Let [h(x) = i] represent indicator variable. m; =} s[h(x) = i].

> ’"i2 i xeslh(x) = i1)?

S ik Ih(x) = i + 23, . [h(x) = il[h(y) = i])
S (ilh(x) = i) + 23, o, STilh(x) = illh(y) = i]
2ox(1) +250, [h(x) = h(y)]

Spring 2021 26 / 32

Perfect Hashing: Proof of Lemma Size

O(m) space usage

h : the primary hash function. m; = # x in S such that h(x) = i.

E[Z;’;l mlz] < 3m where m = |S|.

Let [h(x) = i] represent indicator variable. m; =} s[h(x) = i].

> ’"i2 i xeslh(x) = i1)?

S ik Ih(x) = i + 23, . [h(x) = il[h(y) = i])
S (ilh(x) = i) + 23, o, STilh(x) = illh(y) = i]
2ox(1) +250, [h(x) = h(y)]

E[X;m?f] =m+2Y,_, Prlh(x) = h(y)] = m+2™2-D 1 <o

Ruta (UIUC) Spring 2021 26 / 32

Rehashing, amortization and...

. making the hash table dynamic

So far we assumed fixed S of size ~ m.
Question: What happens as items are inserted and deleted?

Q If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

@ If |S| stays around >~ m but incurs many insertions and
deletions then the initial random hash function is no longer
random enough!

Ruta (UIUC) Cs473 27 Spring 2021 27 / 32

Rehashing, amortization and...

. making the hash table dynamic

So far we assumed fixed S of size ~ m.
Question: What happens as items are inserted and deleted?

Q If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

@ If | S| stays around >~ m but incurs many insertions and

deletions then the initial random hash function is no longer
random enough!

Solution: Rebuild hash table periodically!

@ Choose a new table size based on current number of elements in
the table.
© Choose a new random hash function and rehash the elements.
© Discard old table and hash function.
Question: When to rebuild? How expensive?

Ruta (UIUC) Cs473 27 Spring 2021 27 / 32

Rebuilding the hash table

© Start with table size m where m is some estimate of |S| (can
be some large constant).

@ If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

Spring 2021 28 / 32

Ruta (UIUC)

Rebuilding the hash table

© Start with table size m where m is some estimate of |S| (can
be some large constant).

@ If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

@ If | S| stays roughly the same but more than c|S| operations on
table for some chosen constant ¢ (say 10), rebuild.

Ruta (UIUC) Spring 2021 28 / 32

Rebuilding the hash table

@ Start with table size m where m is some estimate of |S| (can
be some large constant).

@ If | S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

@ If | S| stays roughly the same but more than c|S| operations on
table for some chosen constant ¢ (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations.
Rebuilding ensures O(1) expected analysis holds even when S
changes. Hence O(1) expected look up/insert/delete time dynamic
data dictionary data structure!

Ruta (UIUC) Cs473 28 Spring 2021 28 / 32

Bloom Filters

Hashing:
@ To insert x in dictionary store x in table in location h(x)
@ To lookup y in dictionary check contents of location h(y)

© Storing items in dictionary expensive in terms of memory,
especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

Ruta (UIUC) Spring 2021 29 / 32

Bloom Filters

Hashing:
@ To insert x in dictionary store x in table in location h(x)
@ To lookup y in dictionary check contents of location h(y)

© Storing items in dictionary expensive in terms of memory,
especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

Bloom Filter: tradeoff space for false positives

@ To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

@ To lookup y if bit in location h(y) is 1 say yes, else no.

Ruta (UIUC) Spring 2021 29 / 32

Bloom Filters

Bloom Filter: tradeoff space for false positives

@ To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

@ To lookup y if bit in location h(y) is 1 say yes, else no
© No false negatives but false positives possible due to collisions

Ruta (UIUC) Cs473 30 Spring 2021 30 / 32

Bloom Filters

Bloom Filter: tradeoff space for false positives

@ To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

@ To lookup y if bit in location h(y) is 1 say yes, else no
© No false negatives but false positives possible due to collisions

Reducing false positives:
© Pick k hash functions hy, hy, . .., hy independently

Ruta (UIUC) Cs473 30 Spring 2021 30 / 32

Bloom Filters

Bloom Filter: tradeoff space for false positives

@ To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

@ To lookup y if bit in location h(y) is 1 say yes, else no
© No false negatives but false positives possible due to collisions

Reducing false positives:
© Pick k hash functions hy, hy, . .., hy independently
@ To insert set h;(x)th bit to one in table i for each 1 < i < k

Ruta (UIUC) Cs473 30 Spring 2021 30 / 32

Bloom Filters

Bloom Filter: tradeoff space for false positives

@ To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

@ To lookup y if bit in location h(y) is 1 say yes, else no
© No false negatives but false positives possible due to collisions

Reducing false positives:
© Pick k hash functions hy, hy, . .., hy independently
@ To insert set h;(x)th bit to one in table i for each 1 < i < k
@ To lookup y compute h;(y) for 1 < i < k and say yes only if

each bit in the corresponding location is 1, otherwise say no. If

probability of false positive for one hash function is a < 1 then

with k independent hash function it is a*.

Ruta (UIUC) Cs473 30 Spring 2021 30 / 32

Take away points

© Hashing is a powerful and important technique for dictionaries.
Many practical applications.

© Randomization fundamental to understand hashing.

© Good and efficient hashing possible in theory and practice with
proper definitions (universal, perfect, etc).

© Related ideas of creating a compact fingerprint/sketch for
objects is very powerful in theory and practice.

Ruta (UIUC) Cs473 31 Spring 2021 31/ 32

Practical Issues

Hashing used typically for integers, vectors, strings etc.

@ Universal hashing is defined for integers. To implement for other
objects need to map objects in some fashion to integers (via
representation)

@ Practical methods for various important cases such as vectors,
strings are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for
some pointers.

@ Details on Cuckoo hashing and its advantage over chaining
http://en.wikipedia.org/wiki/Cuckoo_hashing.

@ Relatively recent important paper bridging theory and practice of
hashing. “The power of simple tabulation hashing” by Mikkel
Thorup and Mihai Patrascu, 2011. See
http://en.wikipedia.org/wiki/Tabulation_hashing

@ Cryptographic hash functions have a different motivation and
Ruta (UIUC) Cs473 32 Spring 2021 32/ 32

http://en.wikipedia.org/wiki/Universal_hashing
http://en.wikipedia.org/wiki/Cuckoo_hashing
http://en.wikipedia.org/wiki/Tabulation_hashing
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

	Hash Tables
	Introduction
	Universal Hashing

