CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

Introduction to Randomized Algorithms: QuickSort

Lecture 7 Feb 16, 2021

Most slides are courtesy Prof. Chekuri

Ruta (UIUC) CS473 2 Spring 2021 2 / 53

Outline

Randomization is very powerful

How do you play R-P-S?

Outline

Randomization is very powerful

How do you play R-P-S? Calculating insurance.

Ruta (UIUC) CS473 3 Spring 2021 3 / 53

Outline

Randomization is very powerful

How do you play R-P-S? Calculating insurance.

Our goal

- Basics of randomization probability space, expectation, events, random variables, etc.
- Randomized Algorithms Two types
 - Las Vegas
 - Monte Carlo
- Randomized Quick Sort

Ruta (UIUC) CS473 3 Spring 2021 3 / 53

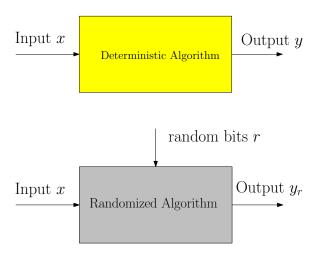
Part I

Introduction to Randomized Algorithms

Randomized Algorithms

Ruta (UIUC) CS473 5 Spring 2021 5 / 53

Randomized Algorithms



Ruta (UIUC) CS473 5 Spring 2021 5 / 53

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Deterministic algorithm:

- Multiply A and B and check if equal to C.
- Running time?

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Deterministic algorithm:

- Multiply \boldsymbol{A} and \boldsymbol{B} and check if equal to \boldsymbol{C} .
- 2 Running time? $O(n^3)$ by straight forward approach. $O(n^{2.37})$ with fast matrix multiplication (complicated and impractical).

Ruta (UIUC) CS473 6 Spring 2021 6 / 5:

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- 2 Return the answer of the equality ABr = Cr.
- Running time?

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- ② Return the answer of the equality ABr = Cr.
- 3 Running time? $O(n^2)!$

Problem

Given three $n \times n$ matrices A, B, C is AB = C?

Randomized algorithm:

- Pick a random $n \times 1$ vector r.
- ② Return the answer of the equality ABr = Cr.
- 3 Running time? $O(n^2)!$

Theorem

If AB = C then the algorithm will always say YES. If $AB \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1/2^{100}$.

Ruta (UIUC) CS473 7 Spring 2021 7 / 53

Many many applications in algorithms, data structures and computer science!

- Many many applications in algorithms, data structures and computer science!
- ② In some cases only known algorithms are randomized, i.e., polynomial identity testing.

Ruta (UIUC) CS473 8 Spring 2021 8 / 53

- Many many applications in algorithms, data structures and computer science!
- In some cases only known algorithms are randomized, i.e., polynomial identity testing.
- Often randomized algorithms are (much) simpler and/or more efficient.

Ruta (UIUC) CS473 8 Spring 2021 8 / 5

- Many many applications in algorithms, data structures and computer science!
- In some cases only known algorithms are randomized, i.e., polynomial identity testing.
- Often randomized algorithms are (much) simpler and/or more efficient.
- Several deep connections to mathematics, physics etc.
- **5** . . .
- Lots of fun!

Ruta (UIUC) CS473 8 Spring 2021 8 / 53

Average case analysis vs Randomized algorithms

Average case analysis:

- Fix a deterministic algorithm.
- Assume inputs comes from a probability distribution.
- Analyze the algorithm's average performance over the distribution over inputs.

Ruta (UIUC) CS473 9 Spring 2021 9 / 53

Average case analysis vs Randomized algorithms

Average case analysis:

- Fix a deterministic algorithm.
- Assume inputs comes from a probability distribution.
- Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

- Input is arbitrary (worst case).
- Algorithm uses random bits, and therefore on each input the behavior of the algorithm is random.
- Analyze algorithms average performance over any given (worst case) input where the average is over the random bits that the algorithm uses.

Ruta (UIUC) CS473 9 Spring 2021 9 / 5:

Part II

Basics of Discrete Probability

Ruta (UIUC) CS473 10 Spring 2021 10 / 53

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, Pr)

 Ω : set of elementary events

Function $\Pr[:]\Omega o [0,1]$ which assigns a probability $\Pr[\omega]$ for each

 $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair (Ω, Pr)

 Ω : set of elementary events

Function $\Pr[:] \Omega \to [0,1]$ which assigns a probability $\Pr[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \Pr[\omega] = 1$.

Example

An unbiased coin. $\Omega = \{H, T\}$ and Pr[H] = Pr[T] = 1/2.

Example

A 6-sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\Pr[i]=1/6$ for $1\leq i\leq 6$.

Ruta (UIUC) CS473 11 Spring 2021 11 / 53

Probability space (Ω, Pr)

Definition

An **event** is a subset of Ω – a collection of elementary events. For an event $A \subseteq \Omega$, $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$.

The **complement event** of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \bar{A} .

Ruta (UIUC) CS473 12 Spring 2021 12 / 53

Probability space (Ω, Pr)

Definition

An **event** is a subset of Ω – a collection of elementary events. For an event $A \subseteq \Omega$, $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$.

The **complement event** of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \bar{A} .

Example

A pair of independent dice. $\Omega = \{(i,j) \mid 1 \leq i \leq 6, 1 \leq j \leq 6\}.$

Ruta (UIUC) CS473 12 Spring 2021 12 / 53

Probability space (Ω, Pr)

Definition

An **event** is a subset of Ω – a collection of elementary events. For an event $A \subseteq \Omega$, $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$.

The **complement event** of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \bar{A} .

Example

A pair of independent dice. $\Omega = \{(i,j) \mid 1 \leq i \leq 6, 1 \leq j \leq 6\}.$

Event A: the sum of the two numbers on the dice is even.

Then
$$A = \{(i,j) \in \Omega \mid (i+j) \text{ is even } \}.$$

Ruta (UIUC) CS473 12 Spring 2021 12 / 53

Probability space (Ω, Pr)

Definition

An **event** is a subset of Ω – a collection of elementary events. For an event $A \subseteq \Omega$, $\Pr[A]$, is $\sum_{\omega \in A} \Pr[\omega]$.

The **complement event** of an event $A \subseteq \Omega$ is the event $\Omega \setminus A$ frequently denoted by \bar{A} .

Example

A pair of independent dice. $\Omega = \{(i,j) \mid 1 \leq i \leq 6, 1 \leq j \leq 6\}.$

Event A: the sum of the two numbers on the dice is even.

Then $A = \{(i,j) \in \Omega \mid (i+j) \text{ is even } \}.$

$$Pr[A] = |A|/36 = 1/2$$

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words **A**, **B** independent implies one does not affect the other.

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words A, B independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and

$$Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.$$

1 A: the first coin is heads. **B**: second coin is tails.

Ruta (UIUC) CS473 13 Spring 2021 13 / 53

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words A, B independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and

$$Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.$$

A: the first coin is heads. B: second coin is tails.Pr[A] =

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words **A**, **B** independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and

$$Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.$$

• A: the first coin is heads. B: second coin is tails. Pr[A] = 1/2, Pr[B] = 1/2, $Pr[A \cap B] =$

Ruta (UIUC) CS473 13 Spring 2021 13 / 53

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words **A**, **B** independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and

$$Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.$$

1 A: the first coin is heads. B: second coin is tails. Pr[A] = 1/2, Pr[B] = 1/2, $Pr[A \cap B] = 1/4$. independent.

Ruta (UIUC) CS473 13 Spring 2021 13 / 53

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words **A**, **B** independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and

$$Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.$$

- 4: the first coin is heads. B: second coin is tails. Pr[A] = 1/2, Pr[B] = 1/2, $Pr[A \cap B] = 1/4$. independent.
- A: both are not tails. B: second coin is heads.Pr[A] =

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words **A**, **B** independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and

$$Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.$$

- **1** A: the first coin is heads. B: second coin is tails. Br[A] = 1/2 Br[B] = 1/2 $Br[A \cap B] = 1/4$ independ
 - Pr[A] = 1/2, Pr[B] = 1/2, $Pr[A \cap B] = 1/4$. independent.
- 2 A: both are not tails. B: second coin is heads. Pr[A] = 3/4, Pr[B] = 1/2, $Pr[A \cap B] =$

Probability space (Ω, Pr)

Definition

Two events **A**, **B** are **independent** if and only if

 $Pr[A \cap B] = Pr[A] Pr[B]$. Otherwise they are dependent.

In other words A, B independent implies one does not affect the other.

Example

Two coins. $\Omega = \{HH, TT, HT, TH\}$ and

$$Pr[HH] = Pr[TT] = Pr[HT] = Pr[TH] = 1/4.$$

- 4: the first coin is heads. B: second coin is tails. Pr[A] = 1/2, Pr[B] = 1/2, $Pr[A \cap B] = 1/4$. independent.
- 2 A: both are not tails. B: second coin is heads. Pr[A] = 3/4, Pr[B] = 1/2, $Pr[A \cap B] = 1/2$. dependent.

Union bound

The probability of the union of two events, is no bigger than the sum of their probabilities.

Lemma

For any two events \mathcal{E} and \mathcal{F} , we have that

$$\Pr\!\left[\mathcal{E}\cup\mathcal{F}\right]\leq\Pr\!\left[\mathcal{E}\right]+\Pr\!\left[\mathcal{F}\right].$$

Proof.

Consider ${\mathcal E}$ and ${\mathcal F}$ to be a collection of elmentery events (which they are). We have

$$\Pr[\mathcal{E} \cup \mathcal{F}] = \sum_{x \in \mathcal{E} \cup \mathcal{F}} \Pr[x]$$

$$\leq \sum_{x \in \mathcal{E}} \Pr[x] + \sum_{x \in \mathcal{F}} \Pr[x] = \Pr[\mathcal{E}] + \Pr[\mathcal{F}].$$

Probability space (Ω, Pr)

Definition (Random Variable)

Random variable X over Ω is a function that maps each elementary event to a real number. In other words $X:\Omega\to\mathbb{R}$.

Probability space (Ω, Pr)

Definition (Random Variable)

Random variable X over Ω is a function that maps each elementary event to a real number. In other words $X:\Omega\to\mathbb{R}$.

Definition (Expectation)

The Expectation of X is defined as $E[X] = \sum_{\omega \in \Omega} \Pr[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\Pr[\cdot]$.

Example

An unbiased coin. $\Omega = \{H, T\}$ and Pr[H] = Pr[T] = 1/2

Probability space (Ω, Pr)

Definition (Random Variable)

Random variable X over Ω is a function that maps each elementary event to a real number. In other words $X:\Omega\to\mathbb{R}$.

Definition (Expectation)

The Expectation of X is defined as $E[X] = \sum_{\omega \in \Omega} \Pr[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\Pr[\cdot]$.

Example

An unbiased coin. $\Omega = \{H, T\}$ and Pr[H] = Pr[T] = 1/2 $X : \Omega \to \mathbb{R}$ where X(H) = 3 and X(T) = 2.

Probability space (Ω, Pr)

Definition (Random Variable)

Random variable X over Ω is a function that maps each elementary event to a real number. In other words $X:\Omega\to\mathbb{R}$.

Definition (Expectation)

The Expectation of X is defined as $E[X] = \sum_{\omega \in \Omega} \Pr[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\Pr[\cdot]$.

Example

An unbiased coin.
$$\Omega = \{H, T\}$$
 and $Pr[H] = Pr[T] = 1/2$

$$X:\Omega \to \mathbb{R}$$
 where $X(H)=3$ and $X(T)=2$.

$$E[[]X] = 3 * 1/2 + 2 * 1/2 = 5/2$$

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for each $i \in \Omega$.

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for each $i \in \Omega$.

1 $X: \Omega \to \mathbb{R}$ where $X(i) = i \mod 2 \in \{0, 1\}$. Then $\mathsf{E}[X] = \sum_{i=1}^6 \mathsf{Pr}[i] \cdot X(i) = \frac{1}{6} \sum_{i=1}^6 X(i) = 1/2$.

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for each $i \in \Omega$.

- $\textbf{1} \quad X: \Omega \to \mathbb{R} \text{ where } X(i) = i \mod 2 \in \{0,1\}.$ Then $\mathsf{E}[X] = \sum_{i=1}^6 \mathsf{Pr}[i] \cdot X(i) = \frac{1}{6} \sum_{i=1}^6 X(i) = 1/2.$
- $Y: \Omega \to \mathbb{R}$ where $Y(i) = i^2$.

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for each $i \in \Omega$.

- $\textbf{1} \quad X: \Omega \to \mathbb{R} \text{ where } X(i) = i \mod 2 \in \{0,1\}.$ Then $\mathsf{E}[X] = \sum_{i=1}^6 \mathsf{Pr}[i] \cdot X(i) = \frac{1}{6} \sum_{i=1}^6 X(i) = 1/2.$
- ② $Y:\Omega \to \mathbb{R}$ where $Y(i)=i^2$. Then $\mathbf{E}[Y]=\sum_{i=1}^6 \frac{1}{6} \cdot i^2=91/6$.

Expected number of vertices?

- (A) n/2.
- **(B)** n/4.
- (C) m/2.
- **(D)** m/4.
- (E) none of the above.

Expected number of vertices is:

Probability Space

- $\Omega = \{0,1\}^n$. For $\omega \in \{0,1\}^n$, $\omega_{\nu} = 1$ if vertex ν is present in H, else is zero.
- For each $\omega \in \Omega$, $\Pr[\omega] = \frac{1}{2^n}$.

Expected number of vertices is:

Probability Space

- $\Omega = \{0,1\}^n$. For $\omega \in \{0,1\}^n$, $\omega_{\nu} = 1$ if vertex ν is present in H, else is zero.
- For each $\omega \in \Omega$, $\Pr[\omega] = \frac{1}{2^n}$.
- $X(\omega) = \#$ vertices in H as per $\omega = \#$ 1s in ω .

Expected number of vertices is:

Probability Space

- $\Omega = \{0,1\}^n$. For $\omega \in \{0,1\}^n$, $\omega_{\nu} = 1$ if vertex ν is present in H, else is zero.
- For each $\omega \in \Omega$, $\Pr[\omega] = \frac{1}{2^n}$.
- $X(\omega) = \#$ vertices in H as per $\omega = \#$ 1s in ω .

$$E[X] = \sum_{\omega \in \Omega} \Pr[\omega] X(\omega)$$

$$= \sum_{\omega \in \Omega} \frac{1}{2^n} X(\omega)$$

$$= \frac{1}{2^n} \sum_{k=0}^n {n \choose k} k$$

$$= \frac{1}{2^n} (2^n \frac{n}{2})$$

$$= n/2$$

- (A) n/2.
- **(B)** n/4.
- (C) m/2.
- **(D)** m/4.
- (E) none of the above.

Probability Space

- $\Omega = \{0,1\}^n$. For $\omega \in \{0,1\}^n$, $\omega_{\nu} = 1$ if vertex ν is present in H, else is zero.
- For each $\omega \in \Omega$, $\Pr[\omega] = \frac{1}{2^n}$.

Probability Space

- $\Omega = \{0,1\}^n$. For $\omega \in \{0,1\}^n$, $\omega_{\nu} = 1$ if vertex ν is present in H, else is zero.
- For each $\omega \in \Omega$, $\Pr[\omega] = \frac{1}{2^n}$.
- $X(\omega) = \#$ edges present in H as per $\omega = ??$

Probability Space

- $\Omega = \{0,1\}^n$. For $\omega \in \{0,1\}^n$, $\omega_{\nu} = 1$ if vertex ν is present in H, else is zero.
- For each $\omega \in \Omega$, $\Pr[\omega] = \frac{1}{2^n}$.
- $X(\omega) = \#$ edges present in H as per $\omega = ??$

How to compute $\mathbf{E}[X]$?

Indicator Random Variables

Definition

A binary random variable is one that takes on values in $\{0,1\}$.

Indicator Random Variables

Definition

A binary random variable is one that takes on values in $\{0,1\}$.

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \notin A$.

Indicator Random Variables

Definition

A binary random variable is one that takes on values in $\{0,1\}$.

Special type of random variables that are quite useful.

Definition

Given a probability space (Ω, Pr) and an event $A \subseteq \Omega$ the indicator random variable X_A is a binary random variable where $X_A(\omega) = 1$ if $\omega \in A$ and $X_A(\omega) = 0$ if $\omega \notin A$.

Example

A 6-sided unbiased die. $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\Pr[i] = 1/6$ for each $i \in \Omega$. Let A be the even that i is divisible by 3, i.e., $A = \{3, 6\}$. Then $X_A(i) = 1$ if $i \in \{3, 6\}$ and 0 otherwise.

Proposition

For an indicator variable X_A , $E[X_A] = Pr[A]$.

Proof.

$$\begin{aligned} \mathsf{E}[X_A] &= \sum_{\omega \in \Omega} X_A(\omega) \, \mathsf{Pr}[\omega] \\ &= \sum_{\omega \in A} 1 \cdot \mathsf{Pr}[\omega] + \sum_{\omega \in \Omega \setminus A} 0 \cdot \mathsf{Pr}[\omega] \\ &= \sum_{\omega \in A} \mathsf{Pr}[\omega] \\ &= \mathsf{Pr}[A] \, . \end{aligned}$$

Linearity of Expectation

Lemma

Let X, Y be two random variables (not necessarily independent) over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Proof.

$$\begin{aligned} \mathsf{E}[X+Y] &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \left(X(\omega) + Y(\omega) \right) \\ &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, X(\omega) + \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, Y(\omega) = \mathsf{E}[X] + \mathsf{E}[Y] \, . \end{aligned}$$

Linearity of Expectation

Lemma

Let X, Y be two random variables (not necessarily independent) over a probability space (Ω, Pr) . Then E[X + Y] = E[X] + E[Y].

Proof.

$$\begin{aligned} \mathsf{E}[X+Y] &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \left(X(\omega) + Y(\omega) \right) \\ &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, X(\omega) + \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \, Y(\omega) = \mathsf{E}[X] + \mathsf{E}[Y] \, . \end{aligned}$$

Corollary

$$E[a_1X_1 + a_2X_2 + ... + a_nX_n] = \sum_{i=1}^n a_i E[X_i].$$

Let G = (V, E) be a graph with n vertices and m edges. Let H be the graph resulting from independently deleting every vertex of G with probability 1/2. The expected number of edges in H is

- Event $A_e = \text{edge } e \in E$ is present in H.
- $\Pr[A_{e=(u,v)}] = \Pr[u \text{ and } v \text{ both are present}] = \Pr[u \text{ is present}] \cdot \Pr[v \text{ is present}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.

- Event $A_e = \text{edge } e \in E$ is present in H.
- $\Pr[A_{e=(u,v)}] = \Pr[u \text{ and } v \text{ both are present}] = \Pr[u \text{ is present}] \cdot \Pr[v \text{ is present}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.
- X_{A_e} indicator random variables, then $E[X_{A_e}] = Pr[A_e]$.

- Event $A_e = \text{edge } e \in E$ is present in H.
- $\Pr[A_{e=(u,v)}] = \Pr[u \text{ and } v \text{ both are present}] = \Pr[u \text{ is present}] \cdot \Pr[v \text{ is present}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.
- X_{A_e} indicator random variables, then $E[X_{A_e}] = Pr[A_e]$.
- Let $X = \sum_{e \in E} X_{A_e}$ (Number of edges in H)

Let G = (V, E) be a graph with n vertices and m edges. Let H be the graph resulting from independently deleting every vertex of G with probability 1/2. The expected number of edges in H is

- Event $A_e = \text{edge } e \in E$ is present in H.
- $\Pr[A_{e=(u,v)}] = \Pr[u \text{ and } v \text{ both are present}] = \Pr[u \text{ is present}] \cdot \Pr[v \text{ is present}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.
- X_{A_e} indicator random variables, then $E[X_{A_e}] = Pr[A_e]$.
- Let $X = \sum_{e \in E} X_{A_e}$ (Number of edges in H)

$$\mathsf{E}[X] = \mathsf{E}\left[\sum_{e \in \mathsf{E}} X_{A_e}\right] = \sum_{e \in \mathsf{E}} \mathsf{E}[X_{A_e}] = \sum_{e \in \mathsf{E}} \mathsf{Pr}[A_e] = \frac{m}{4}$$

Let G = (V, E) be a graph with n vertices and m edges. Let H be the graph resulting from independently deleting every vertex of G with probability 1/2. The expected number of edges in H is

- Event $A_e = \text{edge } e \in E$ is present in H.
- $\Pr[A_{e=(u,v)}] = \Pr[u \text{ and } v \text{ both are present}] = \Pr[u \text{ is present}] \cdot \Pr[v \text{ is present}] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.
- X_{A_e} indicator random variables, then $E[X_{A_e}] = Pr[A_e]$.
- Let $X = \sum_{e \in E} X_{A_e}$ (Number of edges in H)

$$\mathsf{E}[X] = \mathsf{E}\left[\sum_{e \in \mathsf{E}} X_{A_e}\right] = \sum_{e \in \mathsf{E}} \mathsf{E}[X_{A_e}] = \sum_{e \in \mathsf{E}} \mathsf{Pr}[A_e] = \frac{m}{4}$$

It is important to setup random variables carefully.

Expected number of triangles?

Let G = (V, E) be a graph with n vertices and m edges. Assume G has t triangles (i.e., a triangle is a simple cycle with three vertices). Let H be the graph resulting from deleting independently each vertex of G with probability 1/2. The expected number of triangles in H is

- (A) t/2.
- **(B)** t/4.
- (C) t/8.
- (D) t/16.
- (E) none of the above.

Definition

Random variables X, Y are said to be independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Definition

Random variables X, Y are said to be independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Examples

Two independent un-biased coin flips: $\Omega = \{HH, HT, TH, TT\}$.

• X = 1 if first coin is H else 0. Y = 1 if second coin is H else 0.

Definition

Random variables X, Y are said to be independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Examples

Two independent un-biased coin flips: $\Omega = \{HH, HT, TH, TT\}$.

X = 1 if first coin is H else 0. Y = 1 if second coin is H else
0. Independent.

Definition

Random variables X, Y are said to be independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Examples

Two independent un-biased coin flips: $\Omega = \{HH, HT, TH, TT\}$.

- X = 1 if first coin is H else 0. Y = 1 if second coin is H else
 0. Independent.
- $\bullet X = \#H, Y = \#T.$

Definition

Random variables X, Y are said to be independent if

$$\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$$

Examples

Two independent un-biased coin flips: $\Omega = \{HH, HT, TH, TT\}$.

- X = 1 if first coin is H else 0. Y = 1 if second coin is H else
 0. Independent.
- X = #H, Y = #T. Dependent. Why?

Lemma

If X and Y are independent then $E[X \cdot Y] = E[X] \cdot E[Y]$

Proof.

$$\begin{aligned} \mathsf{E}[X \cdot Y] &= \sum_{\omega \in \Omega} \mathsf{Pr}[\omega] \left(X(\omega) \cdot Y(\omega) \right) \\ &= \sum_{x,y \in \mathbb{R}} \mathsf{Pr}[X = x \wedge Y = y] \left(x \cdot y \right) \\ &= \sum_{x,y \in \mathbb{R}} \mathsf{Pr}[X = x] \cdot \mathsf{Pr}[Y = y] \cdot x \cdot y \\ &= \left(\sum_{x \in \mathbb{R}} \mathsf{Pr}[X = x] x \right) \left(\sum_{y \in \mathbb{R}} \mathsf{Pr}[Y = y] y \right) = \mathsf{E}[X] \, \mathsf{E}[Y] \end{aligned}$$

Types of Randomized Algorithms

Typically one encounters the following types:

• Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.

Types of Randomized Algorithms

Typically one encounters the following types:

- Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.
- Monte Carlo randomized algorithms: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).
- Algorithms whose running time and output may both be random.

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :

- **1** Let Q(x) be the time for Q to run on input x.
- ② Worst-case analysis: run time on worst input for a given size n.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :

- **1** Let Q(x) be the time for Q to run on input x.
- ② Worst-case analysis: run time on worst input for a given size n.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Randomized algorithm R for a problem Π :

- **1** Let R(x) be the time for Q to run on input x.
- (2) R(x) is a random variable: depends on random bits used by R.
- **Solution** $\mathbf{E}[R(x)]$ is the expected running time for R on x

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :

- **1** Let Q(x) be the time for Q to run on input x.
- **②** Worst-case analysis: run time on worst input for a given size n.

$$T_{wc}(n) = \max_{x:|x|=n} Q(x).$$

Randomized algorithm R for a problem Π :

- Let R(x) be the time for Q to run on input x.
- **3** E[R(x)] is the expected running time for R on x
- Worst-case analysis: expected time on worst input of size n

$$T_{rand-wc}(n) = \max_{x:|x|=n} \mathbf{E}[R(x)].$$

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π :

- Let M(x) be the time for M to run on input x. For Monte Carlo, assumption is that run time is deterministic.
- ② Let Pr[x] be the probability that M is correct on x.
- **Oracle Pr**[x] is a random variable: depends on random bits used by M.

Ruta (UIUC) CS473 30 Spring 2021 30 / 53

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π :

- Let M(x) be the time for M to run on input x. For Monte Carlo, assumption is that run time is deterministic.
- ② Let Pr[x] be the probability that M is correct on x.
- **Pr**[x] is a random variable: depends on random bits used by M.
- Worst-case analysis: success probability on worst input

$$P_{rand-wc}(n) = \min_{x:|x|=n} \Pr[x].$$

Part III

Why does randomization help?

Ruta (UIUC) CS473 31 Spring 2021 31 / 53

Ping and find.

Consider a deterministic algorithm \boldsymbol{A} that is trying to find an element in an array \boldsymbol{X} of size \boldsymbol{n} . At every step it is allowed to ask the value of one cell in the array, and the adversary is allowed after each such ping, to shuffle elements around in the array in any way it seems fit. For the best possible deterministic algorithm the number of rounds it has to play this game till it finds the required element is

- (A) O(1)
- (B) O(n)
- (C) $O(n \log n)$
- (D) $O(n^2)$
- (E) ∞ .

Ping and find randomized.

Consider an algorithm **randFind** that is trying to find an element in an array X of size n. At every step it asks the value of one <u>random</u> cell in the array, and the adversary is allowed after each such ping, to shuffle elements around in the array in any way it seems fit. This algorithm would stop in expectation after

- (A) O(1)
- (B) $O(\log n)$
- (C) O(n)
- (D) $O(n^2)$
- (E) ∞ .

steps.

Abundance of witnesses

Consider the problem of finding an "approximate median" of an unsorted array A[1..n]: an element of A with rank between n/4 and 3n/4.

 Finding an approximate median is not any easier than a proper median.

Abundance of witnesses

Consider the problem of finding an "approximate median" of an unsorted array A[1..n]: an element of A with rank between n/4 and 3n/4.

- Finding an approximate median is not any easier than a proper median.
- n/2 elements of A qualify as approximate medians and hence a random element is good with probability 1/2!

Part IV

Randomized Quick Sort

Ruta (UIUC) CS473 35 Spring 2021 35 / 53

QuickSort

Deterministic QuickSort

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Ruta (UIUC) CS473 36 Spring 2021 36 / 53

QuickSort

Deterministic QuickSort

- Pick a pivot element from array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

Ruta (UIUC) CS473 36 Spring 2021 36 / 53

Randomized Quicksort

Recall: Deterministic QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Ruta (UIUC) CS473 37 Spring 2021 37 / 53

Randomized Quicksort

Recall: Deterministic QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Randomized Quicksort

Recall: Deterministic QuickSort can take $\Omega(n^2)$ time to sort array of size n.

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Ruta (UIUC) CS473 37 Spring 2021 37 / 53

Randomized QuickSort

Randomized QuickSort

- Pick a pivot element uniformly at random from the array.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Recursively sort the subarrays, and concatenate them.

What events to count?

Number of Comparisions.

What events to count?

• Number of Comparisions.

What is the probability space?

• All the coin tosses at all levels and parts of recursion.

Ruta (UIUC) CS473 39 Spring 2021 39 / 53

What events to count?

Number of Comparisions.

What is the probability space?

All the coin tosses at all levels and parts of recursion.

Too Big!!

Ruta (UIUC) CS473 39 Spring 2021 39 / 53

What events to count?

• Number of Comparisions.

What is the probability space?

• All the coin tosses at all levels and parts of recursion.

Too Big!!

What random variables to define? What are the events of the algorithm?

- $lue{0}$ Given array $oldsymbol{A}$ of $oldsymbol{n}$ distinct numbers.
- ② Q(A): number of comparisons of randomized QuickSort on A. Note that Q(A) is a random variable.

- Given array A of n distinct numbers.
- ② Q(A): number of comparisons of randomized QuickSort on A. Note that Q(A) is a random variable.
- 3 X_i : Indicator random variable, which is set to 1 if pivot is of rank i in A, else zero.

Let A_{left}^{i} and A_{right}^{i} be the corresponding left and right subarrays.

- Given array A of n distinct numbers.
- **2** Q(A): number of comparisons of randomized **QuickSort** on **A**. Note that Q(A) is a random variable.
- **3** X_i : Indicator random variable, which is set to **1** if pivot is of rank i in A, else zero.

Let A_{left}^{i} and A_{right}^{i} be the corresponding left and right subarrays.

$$Q(A) = n + \sum_{i=1}^{n} X_i \cdot \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right).$$

- Given array A of n distinct numbers.
- **2** Q(A): number of comparisons of randomized **QuickSort** on **A**. Note that Q(A) is a random variable.
- 3 X_i : Indicator random variable, which is set to 1 if pivot is of rank i in A, else zero.

Let A_{left}^{i} and A_{right}^{i} be the corresponding left and right subarrays.

$$Q(A) = n + \sum_{i=1}^{n} X_i \cdot \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right).$$

Since each element of \boldsymbol{A} has probability exactly of 1/n of being chosen:

$$E[X_i] = Pr[pivot has rank i] = 1/n$$
.

Independence of Random Variables

Lemma

Random variables X_i is independent of random variables $Q(A_{left}^i)$ as well as $Q(A_{right}^i)$, i.e.

$$E[X_i \cdot Q(A_{left}^i)] = E[X_i] E[Q(A_{left}^i)]$$

$$E[X_i \cdot Q(A_{right}^i)] = E[X_i] E[Q(A_{right}^i)]$$

Proof.

This is because the algorithm, while recursing on $Q(A_{left}^i)$ and $Q(A_{right}^i)$ uses new random coin tosses that are independent of the coin tosses used to decide the first pivot. Only the latter decides value of X_i .

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

Let $T(n) = \max_{A:|A|=n} \mathbb{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

Let $T(n) = \max_{A:|A|=n} \mathbb{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

By linearity of expectation, and independence random variables:

$$\mathsf{E}\big[Q(A)\big] = n + \sum_{i=1}^n \mathsf{E}[X_i] \Big(\mathsf{E}\big[Q(A_{\mathsf{left}}^i)\big] + \mathsf{E}\big[Q(A_{\mathsf{right}}^i)\big]\Big).$$

Let $T(n) = \max_{A:|A|=n} \mathbb{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n.

We have, for any A:

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

By linearity of expectation, and independence random variables:

$$\mathsf{E}\big[Q(A)\big] = n + \sum_{i=1}^n \mathsf{E}[X_i] \Big(\mathsf{E}\big[Q(A^i_{\mathsf{left}})\big] + \mathsf{E}\big[Q(A^i_{\mathsf{right}})\big]\Big).$$

$$\Rightarrow \quad \mathsf{E}\!\left[Q(A)\right] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} \mathbb{E}[Q(A)]$ be the worst-case expected running time of randomized **QuickSort** on arrays of size n. We derived:

$$\mathsf{E}\!\left[Q(A)\right] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Let $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size n. We derived:

$$\mathsf{E}\!\left[Q(A)\right] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Note that above holds for any A of size n. Therefore

$$\max_{A:|A|=n} \mathsf{E}[Q(A)] = T(n) \le n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i) \right).$$

CS473 43 Spring 2021 43 / 53

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i) \right)$$

with base case T(1) = 0.

Solving the Recurrence

$$T(n) \le n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i))$$

with base case T(1) = 0.

Lemma

$$T(n) = O(n \log n).$$

Solving the Recurrence

$$T(n) \le n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i))$$

with base case T(1) = 0.

Lemma

$$T(n) = O(n \log n).$$

Proof.

(Guess and) Verify by induction.

44

Part V

Slick analysis of QuickSort

Ruta (UIUC) CS473 45 Spring 2021 45 / 53

Let Q(A) be number of comparisons done on input array A:

• For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.

Ruta (UIUC) CS473 46 Spring 2021 46 / 53

Let Q(A) be number of comparisons done on input array A:

- For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- 2 X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

Ruta (UIUC) CS473 46 Spring 2021 46 / 53

Let Q(A) be number of comparisons done on input array A:

- For $1 \le i < j < n$ let R_{ij} be the event that rank i element is compared with rank j element.
- 2 X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

$$\mathbf{E}\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} \mathbf{E}\Big[X_{ij}\Big] = \sum_{1 \leq i < j \leq n} \Pr\Big[R_{ij}\Big].$$

Ruta (UIUC) CS473 46 Spring 2021 46 / 53

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

7 5 9 1 3 4 8 6

With ranks: 6 4 8 1 2 3 7 5

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

As such, probability of comparing 5 to 8 is $Pr[R_{4,7}]$.

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

• If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.

 $R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

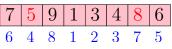
If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.

② If pivot too large (say 9 [rank 8]):

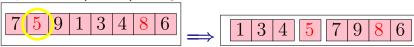
Decision if to compare 5 to 8 moved to subproblem.

Question: What is $Pr[R_{i,j}]$?



As such, probability of comparing **5** to **8** is $Pr[R_{4,7}]$.

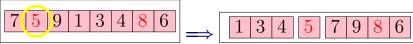
• If pivot is 5 (rank 4). Bingo!



Question: What is $Pr[R_{i,j}]$?

As such, probability of comparing **5** to **8** is $Pr[R_{4,7}]$.

• If pivot is 5 (rank 4). Bingo!

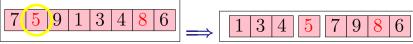


If pivot is 8 (rank 7). Bingo!

Question: What is Pr[R_{i,j}]?

As such, probability of comparing **5** to **8** is $Pr[R_{4,7}]$.

If pivot is 5 (rank 4). Bingo!



If pivot is 8 (rank 7). Bingo!

If pivot in between the two numbers (say 6 [rank 5]):

5 and 8 will never be compared to each other.

Question: What is $Pr[R_{i,j}]$?

Conclusion:

 $R_{i,j}$ happens if and only if:

ith or jth ranked element is the first pivot out of ith to jth ranked elements.

$$\Pr[R_{i,j}] = \Pr[i$$
th or j th ranked element is the pivot $|$ pivot has rank in $\{i, i+1, \ldots, j-1, j\}$

Ruta (UIUC) CS473 49 Spring 2021 49 / 53

Question: What is $Pr[R_{i,j}]$?

Conclusion:

 $R_{i,j}$ happens if and only if:

ith or jth ranked element is the first pivot out of ith to jth ranked elements.

$$\Pr[R_{i,j}] = \Pr[i$$
th or j th ranked element is the pivot $|$ pivot has rank in $\{i, i+1, \dots, j-1, j\}$

There are k = j - i + 1 relevant elements.

$$\Pr\left[R_{i,j}\right] = \frac{2}{k} = \frac{2}{j-i+1}.$$

Question: What is $Pr[R_{ij}]$?

$$\Pr\Big[R_{ij}\Big] = rac{2}{j-i+1}.$$

Question: What is $Pr[R_{ij}]$?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order.

Let
$$S = \{a_i, a_{i+1}, \dots, a_j\}$$

Question: What is $Pr[R_{ij}]$?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order.

Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Question: What is $Pr[R_{ij}]$?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order.

Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Question: What is $Pr[R_{ij}]$?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order.

Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let
$$a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$$
 be sort of A . Let $S = \{a_i, a_{i+1}, \ldots, a_i\}$

Observation: a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from S the probability that it is a_i or a_j is exactly 2/|S| = 2/(j-i+1) since the pivot is chosen uniformly at random from the array.

Continued...

$$\mathsf{E}\big[Q(A)\big] = \sum_{1 \leq i < j \leq n} \mathsf{E}[X_{ij}] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}[R_{ij}].$$

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}\Big[R_{ij}\Big] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\big[Q(A)\big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = \sum_{1 \le i < j \le n} \frac{2}{j - i + 1}$$
$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$$

Continued...

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2\sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}$$

Continued...

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}$$

$$\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i \leq n} H_n$$

$$H_k = \sum_{i=1}^k \frac{1}{i} = \Theta(\log k)$$

Ruta (UIUC) CS473 52 Spring 2021 52 / 53

Continued...

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1} = 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}$$

$$\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i < n} H_{n}$$

$$\leq 2nH_{n} = O(n \log n)$$

$$H_k = \sum_{i=1}^k \tfrac{1}{i} = \Theta(\log k)$$

Ruta (UIUC) CS473 52 Spring 2021 52 / 53

Where do I get random bits?

Question: Are true random bits available in practice?

- Buy them!
- OPUs use physical phenomena to generate random bits.
- Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
- In practice pseudo-random generators work quite well in many applications.
- The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can derandomize randomized algorithms to obtain deterministic algorithms.

Ruta (UIUC) CS473 53 Spring 2021 53 / 53