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Single-Source Shortest Paths with Negative Edge

Lengths

Single-Source Shortest
Path Problems

Input: A directed graph

G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),

£(e) = £(u, v) is its length.

© Given nodes s, t find
shortest path from s to t.

@ Given node s find shortest
path from s to all other
nodes.

v
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose
@ G has a negative length cycle C, and
@ s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose
@ G has a negative length cycle C, and
@ s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

@ undefined, that is —oco
OR

© the length of a shortest simple path from s to t.
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose
@ G has a negative length cycle C, and
@ s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

@ undefined, that is —oco
OR

© the length of a shortest simple path from s to t. NP-Hard!
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Alterantively: Finding Shortest Walks

Given a graph G = (V, E):
@ A path is a sequence of distinct vertices vy, Vo, ..., Vg, such
that (v, viy1) € Efor1 < i< k —1,
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(vi, viz1) € E for1 < i < k — 1. Vertices are allowed to
repeat.
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@ A path is a sequence of distinct vertices vy, Vo, ..., Vg, such
that (v, viy1) € Efor1 < i< k —1,
@ A walk is a sequence of vertices vy, v, ..., Vi such that

(vi, viz1) € E for1 < i < k — 1. Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

© If there is a walk from u to v that contains negative length cycle
then dist(u, v) = —o0
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Alterantively: Finding Shortest Walks

Given a graph G = (V, E):
@ A path is a sequence of distinct vertices vy, Vo, ..., Vg, such
that (v, viy1) € Efor1 < i< k —1,
@ A walk is a sequence of vertices vy, v, ..., Vi such that

(vi, viz1) € E for1 < i < k — 1. Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.
© If there is a walk from u to v that contains negative length cycle
then dist(u, v) = —o0
@ Else there is a path with at most n — 1 edges whose length is
equal to the length of a shortest walk and dist(u, v) is finite

Helpful to think about walks
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Shortest Paths with Negative Edge Lengths

Problems

Algorithmic Problems

Input: A directed graph G = (V/, E) with edge lengths (could be
negative). For edge e = (u, v), £(e) = £(u, v) is its length.

Questions:

© Given nodes s, t, either find a negative length cycle C that s
can reach or find a shortest path from s to t.

@ Given node s, either find a negative length cycle C that s can
reach or find shortest path distances from s to all reachable
nodes.

© Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths

In Undirected Graphs

Note: Negative cycle detection in undirected graph can not be
reduced to directed gaph by bi-directing edges, why?

Ruta (UIUC) CS473 9 Spring 2021 9 /45



Shortest Paths with Negative Edge Lengths

In Undirected Graphs

Note: Negative cycle detection in undirected graph can not be
reduced to directed gaph by bi-directing edges, why?

Problem can be solved efficiently in undirected graphs but algorithms
are different and more involved than those for directed graphs. Need
min-cost matchings which we will see later in the course.
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Why Negative Lengths?

Several Applications

@ Shortest path problems useful in modeling many situations — in
some negative lenths are natural

© Negative length cycle can be used to find arbitrage opportunities
in currency trading

© Important sub-routine in algorithms for more general problem:
minimum-cost flow
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What are the distances computed by Dijkstra’s

algorithm?

The distance as computed
by Dijkstra algorithm start-

ing from s:

(A) s=0,x=05,
y=12z=0.

(B) s=0, x=1,
y=2 z=5.

(C) s=0,x=25,
y=12z=2

(D) IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra's algorithm can fail

1@ Shortest path

False assumption: Dijkstra’s algorithm is based on the assumption
that if s = vp — vy — v»... — v, is a shortest path from s to v
then dist(s, v;) < dist(s, vi+1) for 0 < i < k. Holds true only for

non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma

Let G be a directed graph with arbitrary edge lengths. If

S — Vi — Vp — ... — Vi is a shortest path from s to vy then for
1<i<k:

Q@ s —> vy = v, — ... — V;is a shortest path from s to v;
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Shortest Paths with Negative Lengths

Lemma

Let G be a directed graph with arbitrary edge lengths. If

S — Vi — Vp — ... — Vi is a shortest path from s to vy then for
1<i<k:

Q@ s —> vy = v, — ... — V;is a shortest path from s to v;

Q False: dist(s, v;) < dist(s, vk) for1 < i < k. Holds true
only for non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If
S — Vi — Vp — ... — Vi is a shortest path from s to vy then for
1<i<k:
Q@ s —> vy = v, — ... — V;is a shortest path from s to v;
@ false: dist(s, v;) < dist(s, vx) for1 < i < k. Holds true
only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other
strategies.
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Shortest Paths: Sub-problems

@ What are the smaller sub-problems?
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@ What are the smaller sub-problems?

Let G be a directed graph with arbitrary edge lengths. If
S= Vg —> Vi — Vo, — ... —> Vi IS a shortest path from s to vy
then for 1 < i < k:

Q@ s=vy— vi = Vo...—> V; is a shortest path from s to v;
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Shortest Paths: Sub-problems

@ What are the smaller sub-problems?

Let G be a directed graph with arbitrary edge lengths. If
S= Vg —> Vi — Vo, — ... —> Vi IS a shortest path from s to vy
then for 1 < i < k:

Q@ s=vy— vi = Vo...—> V; is a shortest path from s to v;

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G. (Remove nodes
unreachable from s).

d(v, k): shortest walk length from s to v using at most k edges
(oo if none exists).
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G. (Remove nodes

unreachable from s).
d(v, k): shortest walk length from s to v using at most k edges

(oo if none exists).
Recursion for d(v, k):

. ming g vee(d(u, k — 1) + £(u, v)).
d(v, k) = min {d(v, k — 1)

Base case:
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G. (Remove nodes

unreachable from s).
d(v, k): shortest walk length from s to v using at most k edges

(oo if none exists).
Recursion for d(v, k):

. ming g vee(d(u, k — 1) + £(u, v)).
d(v, k) = min {d(v, k — 1)

Base case: d(s,0) = 0 and d(v,0) = oo for all v # s.
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A Basic Lemma

Lemma

Assume s can reach all nodes in G = (V, E). Then,

© There is a negative length cycle in G iff
d(v,n) < d(v,n — 1) for some node v € V.

@ If there is no negative length cycle in G then
dist(s,v) = d(v,n—1) forallv € V.
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Bellman-Ford Algorithm

for each u € V do
d(u,0) + oo
d(s,0) <0
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Bellman-Ford Algorithm

for each u € V do
d(u,0) + oo
d(s,0) <0

for k=1 to n do
for each v € V do
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Bellman-Ford Algorithm

for each u € V do
d(u,0) + oo
d(s,0) <0

for k=1 to n do
for each v € V do
d(v,k) < d(v,k —1)
for each edge (u,v) € In(v) do
d(v, k) = min{d(v,k),d(u, k — 1) + £(u,v)}

for each v € V do
dist(s, v) «+ d(v,n — 1)
If d(v,n) < d(v,n—1)
Return ‘‘Negative Cycle in G’

Running time: O(mn) Space: O(m + n?)
Space can be reduced to O(m + n).
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Bellman-Ford with Space Saving

for each u € V do
d(u) + oo
d(s) <0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + £(u, v)}
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Bellman-Ford with Space Saving

for each u € V do
d(u) + oo
d(s) <0

for k=1 to n—1 do
for each v € V do
for each edge (u,v) € In(v) do
d(v) = min{d(v), d(u) + £(u, v)}
(* One more iteration to check if distances change *)
for each v € V do
for each edge (u,v) € In(v) do
if (d(v) > d(u) + £(u,v))
Output ¢ ‘Negative Cycle’’

for each v € V do
dist(s, v) + d(v)

Exercise: Show that this algorithm achieves same result.
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Correctness of the Bellman-Ford Algorithm

Via induction show: For each v, d(v, k) is the length of a
shortest walk from s to v with at most k hops.
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Correctness of the Bellman-Ford Algorithm

Via induction show: For each v, d(v, k) is the length of a

shortest walk from s to v with at most k hops.
And foreach1 < k < n—1,d(v,k) <d(v,k —1).

Lemma

Assume s can reach all nodes in G = (V, E). Then,

© There is a negative length cycle in G iff
d(v,n) < d(v,n — 1) for some node v € V.
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Correctness of the Bellman-Ford Algorithm

Via induction show: For each v, d(v, k) is the length of a

shortest walk from s to v with at most k hops.
And foreach1 < k < n—1,d(v,k) <d(v,k —1).

Lemma
Assume s can reach all nodes in G = (V, E). Then,

© There is a negative length cycle in G iff
d(v,n) < d(v,n — 1) for some node v € V.

@ If there is no negative length cycle in G then
dist(s,v) = d(v,n—1) forallv € V.

Exercise: Prove algorithm correctness from above two.
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Proof of Lemma

Suppose there is no negative length cycle in G then
d(v,h) > d(v,n—1) forall h > n and for allv € V.

Proof.
By contradiction. Suppose for some v, d(v, h) < d(v,n — 1) for an h > n.
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Proof of Lemma

Suppose there is no negative length cycle in G then
d(v,h) > d(v,n—1) forall h > n and for allv € V.

Proof.

By contradiction. Suppose for some v, d(v, h) < d(v,n — 1) for an h > n.
Choose smallest such h. P : s-v walk with h edges of length d(v, h).

P has a cycle C. P’ : walk after removing C from P. k : #edges on P’
£(P") = £(P) — £(C) < £(P).

Case | k < (n—1): d(v, k) < £(P’) < £(P) < d(v,n — 1), a contradiction.

Case Il k > (n — 1): k < h = a contradiction to the choice of h. L]

o’
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Proof of Lemma

Proposition

Suppose there is no negative length cycle in G then
d(v,h) > d(v,n—1) forall h > n and for allv € V.
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Proof of Lemma cond

If G has a negative length cycle reachable from s then there is some
v such that d(v,n) < d(v,n —1).

Proof.

v
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Proof of Lemma cond

If G has a negative length cycle reachable from s then there is some
v such that d(v,n) < d(v,n —1).

Proof.

Suppose not.
Let C = v; — ... — v — v be negative length cycle reachable from s.
d(vi,n — 1) is finite for 1 < i < h since C is reachable from s.
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Proof of Lemma cond

If G has a negative length cycle reachable from s then there is some
v such that d(v,n) < d(v,n —1).

Proof.

Suppose not.

Let C = v; — ... — v — v be negative length cycle reachable from s.
d(vi,n — 1) is finite for 1 < i < h since C is reachable from s.

By assumption d(v,n — 1) < d(v, n) for all v € C; this means

d(vi,n—1) < d(vi,n) < d(vi_1,n —1) + £(vi—1,vi) for2 < i < h
and d(vi,n — 1) < d(vi,n) < d(vy,n — 1) + £(vp, v1).
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Proof of Lemma cond

If G has a negative length cycle reachable from s then there is some
v such that d(v,n) < d(v,n —1).

Proof.

Suppose not.

Let C = v; — ... — v — v be negative length cycle reachable from s.
d(vi,n — 1) is finite for 1 < i < h since C is reachable from s.

By assumption d(v,n — 1) < d(v, n) for all v € C; this means
d(vi,n—1) < d(vi,n) < d(vi_1,n —1) + £(vi—1,vi) for2 < i < h
and d(vi,n — 1) < d(vi,n) < d(vy,n — 1) + £(vp, v1).

Adding up all these inequalities results in the inequality 0 < £(C) which
contradicts the assumption that £(C) < 0. []

v
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Proof of Lemma contd

Exercise: Finish proof of lemma using the two propositions.
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

@ For each v the d(v) can only get smaller as algorithm proceeds.

e If d(v) becomes smaller it is because we found a vertex u such

that d(v) > d(u) + £(u, v) and we update
d(v) = d(u) + £(u, v). That is, we found a shorter path to v

through u.
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Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

@ For each v the d(v) can only get smaller as algorithm proceeds.

e If d(v) becomes smaller it is because we found a vertex u such
that d(v) > d(u) + £(u, v) and we update
d(v) = d(u) + £(u, v). That is, we found a shorter path to v
through u.

@ For each v have a prev(v) pointer and update it to point to u
if v finds a shorter path via u.

@ At end of algorithm prev(v) pointers give a shortest path tree
oriented towards the source s.

Ruta (UIUC) Cs473 25 Spring 2021 25 / 45



Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?
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Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

@ Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.
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Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a
negative length cycle?

@ Bellman-Ford checks whether there is a negative cycle C that is
reachable from a specific vertex s. There may negative cycles
not reachable from s.

@ Run Bellman-Ford | V| times, one from each node u?
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Negative Cycle Detection

© Add a new node s’ and connect it to all nodes of G with zero
length edges. Bellman-Ford from s’ will fill find a negative
length cycle if there is one. Exercise: why does this work?

© Negative cycle detection can be done with one Bellman-Ford
invocation.
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Part 1l

Shortest Paths in DAGs
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V/, E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.
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Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V/, E) with arbitrary
(including negative) edge lengths. For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

© No cycles and hence no negative length cycles! Hence can find
shortest paths even for negative edge weights.

@ Can order nodes using topological sort.

Ruta (UIUC) Cs473 29 Spring 2021 29 / 45



Algorithm for DAGs

@ Want to find shortest paths from s. Ignore nodes not reachable
from s.

Q Let s = vy, o, Vjt1,...,V, be a topological sort of G
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Algorithm for DAGs

@ Want to find shortest paths from s. Ignore nodes not reachable
from s.

Q Let s = vy, o, Vjt1,...,V, be a topological sort of G

Observation:

@ shortest path from s to v; cannot use any node from
Vitlyeeey Vn
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Algorithm for DAGs

@ Want to find shortest paths from s. Ignore nodes not reachable
from s.

Q Let s = vy, o, Vjt1,...,V, be a topological sort of G

Observation:

@ shortest path from s to v; cannot use any node from
Vitls« .« Vp, Since no path from s to v; uses any of them.

@ can find shortest paths in topological sort order.
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Algorithm for DAGs

for i=1 to n do
d(s,v;) = o0
d(s,s) =0

for i=11to n—1 do
for each edge (vi,vj) in Adj(v;) do
d(s, vj) = min{d(s, v;), d(s, v;) + £(vi, v;) }

return d(s,-) values computed
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Algorithm for DAGs

for i=1 to n do
d(s,v;) = o0
d(s,s) =0

for i=11to n—1 do
for each edge (vi,vj) in Adj(v;) do
d(s, vj) = min{d(s, v;), d(s, v;) + £(vi, v;) }

return d(s,-) values computed

Correctness by induction: If by the end of ith round d(s, v;) is the
shortest path length from s to v; for each 1 < j < J, then after

(/ + 1)th round d(s, vj41) is the shortest path length from s to
Vigl-
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Algorithm for DAGs

for i=1 to n do
d(s,v;) = o0
d(s,s) =0

for i=11to n—1 do
for each edge (vi,vj) in Adj(v;) do
d(s, vj) = min{d(s, v;), d(s, v;) + £(vi, v;) }

return d(s,-) values computed

Correctness by induction: If by the end of ith round d(s, v;) is the
shortest path length from s to v; for each 1 < j < J, then after

(/ + 1)th round d(s, vj41) is the shortest path length from s to
Vi+1. Use observation in the previous slide.
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Algorithm for DAGs

for i=1 to n do
d(s,v;) = o0
d(s,s) =0

for i=11to n—1 do
for each edge (vi,vj) in Adj(v;) do
d(s, vj) = min{d(s, v;), d(s, v;) + £(vi, v;) }

return d(s,-) values computed

Correctness by induction: If by the end of ith round d(s, v;) is the
shortest path length from s to v; for each 1 < j < J, then after

(/ + 1)th round d(s, vj41) is the shortest path length from s to
Vi+1. Use observation in the previous slide.

Running time: O(m 4+ n) time algorithm! Works for negative edge
lengths and hence can find longest paths in a DAG.
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Part |lI

All Pairs Shortest Paths
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Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths (or costs). For edge e = (u, v),
£(e) = £(u, v) is its length.

© Given nodes s, t find shortest path from s to t.
@ Given node s find shortest path from s to all other nodes.

© Find shortest paths for all pairs of nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), €(e) = £(u, v) is its
length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.
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Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), €(e) = £(u, v) is its
length.

© Given nodes s, t find shortest path from s to t.

@ Given node s find shortest path from s to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time:
O((m 4+ n) log n) with heaps and O(m + nlog n)
with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time:

O(nm).
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

© Find shortest paths for all pairs of nodes.
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

© Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
@ Non-negative lengths. O(nmlog n) with heaps and
O(nm + n?log n) using advanced priority queues.
@ Arbitrary edge lengths: O(n?m).
O(n*) if m = Q(n?).
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All-Pairs Shortest Paths

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V/, E) with edge
lengths. For edge e = (u, v), £(e) = £(u, V) is its
length.

© Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

@ Non-negative lengths. O(nmlog n) with heaps and
O(nm + n?log n) using advanced priority queues.
@ Arbitrary edge lengths: O(n?m).
O(n*) if m = Q(n?).
Can we do better?
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) =
dist(i,j,1) =
dist(i,j,2) =
dist(i, j, 3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) =
dist(i,j,2) =
dist(i, j, 3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) =
dist(i, j,3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i, j,3)
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All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., Vv,

@ dist(i,j, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is at
most k (could be —oo if there is a negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i, j,3)

I
2]
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For the following graph, dist(i, j, 2) is...

(A) 9
(B) 10
(C) 11
(D) 12
(E) 15
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All-Pairs: Recursion on index of intermediate nodes

dist(i, j, k — 1)

dist(i, j, k — 1)

dist(i,j, k) = min< = . . .
dist(i, k, k — 1) + dist(k,j, k — 1)
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All-Pairs: Recursion on index of intermediate nodes

dist(i, j, k — 1)

dist(i, j, k — 1)

dist(i,j, k) = min< = . . .
dist(i, k, k — 1) + dist(k,j, k — 1)

Base case: dist(i,j,0) = £(i,j) if (i,j) € E, otherwise co
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All-Pairs: Recursion on index of intermediate nodes

dist(i, j, k — 1)

dist(i, j, k — 1)

dist(i,j, k) = min< = . . .
dist(i, k, k — 1) + dist(k,j, k — 1)

Base case: dist(i,j,0) = £(i,j) if (i,j) € E, otherwise co
Correctness: If i — j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of intermediate nodes

If dist(k, k,k — 1) < 0 then G has a negative length cycle
containing k.
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All-Pairs: Recursion on index of intermediate nodes

If dist(k, k,k — 1) < 0 then G has a negative length cycle
containing k.
Now if i can reach k and k can reach j then dist(i,j, k) = —oc.

Therefore, recursion below is valid only if dist(k, k, k — 1) > 0.

dist(i,j, k) = min { @St k=1)
dist(i, k, k — 1) + dist(k,j, k — 1)
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All-Pairs: Recursion on index of intermediate nodes

If dist(k, k,k — 1) < 0 then G has a negative length cycle
containing k.
Now if i can reach k and k can reach j then dist(i,j, k) = —oc.

Therefore, recursion below is valid only if dist(k, k, k — 1) > 0.

dist(i, j, k — 1)

dist(i,j, k) = mi
ist(i,j, k) = min {dist(i, k,k —1) + dist(k,j, k — 1)

We can detect this during the algorithm or wait till the end.
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j=1 to n do
dist(i,j, 0) = £(i,j) (+ £(i,j) = oo if (i,j) ¢ E, 0 if i=j %
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j=1 to n do
dist(i,j,0) = €(i,j) (x £(i,j) = oo if (i,j) € E, 0 if i =j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do

N
dist(i, j, k) = min {d’“("’ , )

dist(i, k, k — 1) + dist(k, j, k — 1)
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j=1 to n do
dist(i,j, 0) = £(i,j) (+ £(i,j) = oo if (i,j) ¢ E, 0 if i=j %

for k=1 to n do
for i=1 to n do
for j=1 to n do

dist(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j=1 to n do
dist(i,j, 0) = £(i,j) (+ £(i,j) = oo if (i,j) ¢ E, 0 if i=j %

for k=1 to n do
for i=1 to n do
for j=1 to n do

dist(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)

Running Time:
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j=1 to n do
dist(i,j, 0) = £(i,j) (+ £(i,j) = oo if (i,j) ¢ E, 0 if i=j %

for k=1 to n do
for i=1 to n do
for j=1 to n do

dist(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)

Running Time: @(n?), Space: @(n?).
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Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

for i=1 to n do
for j=1 to n do

dist(i,j,0) = £(i,j) (x £(i,j) = 00 if (i,j) ¢ E, 0 if i=j %

for k=1 to n do
for i=1 to n do
for j=1 to n do

dist(i,j, k) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G

dist(i, j, k — 1),
dist(i, k, k — 1) + dist(k, j, k — 1)

Running Time: @(n?), Space: @(n?).
Correctness: via induction and recursive definition
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

© Create a n X n array Next that stores the next vertex on
shortest path for each pair of vertices

@ With array Next, for any pair of given vertices i, j can compute
a shortest path in O(n) time.
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Floyd-Warshall Algorithm

Finding the Paths

for i=1 to n do
for j=1 to n do
dist(i,j,0) = £(i,j)
(x £(i,j) = oo if (i,j) not edge, 0 if i =j *)
Next(i,j) = —1
for k=1 to n do
for i=1 to n do
for j=1 to n do
dist(i, j, k) = dist(i,j, k — 1)
if (dist(i,j, k — 1) > dist(i, k, k — 1) + dist(k, j, k — 1)) then
dist(i, j, k) = dist(i, k, k — 1) + dist(k, j, k — 1)
Next(i,j) = k

for i=1 to n do
if (dist(i,i,n) < 0) then
Output that there is a negative length cycle in G
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Floyd-Warshall Algorithm

Finding the Paths

Exercise: Given Next array and any two vertices i, j describe an
O(n) algorithm to find a i-j shortest path.
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Johnson’s Algorithm

@ Bellman-Ford gives O(nm) time algorithm to solve
single-source shortest paths when G has no negative lengths.

@ To compute APSP running Bellman-Ford n times will give a run
time of O(n%*m).

@ However, if G has no negative length cycle, after computing
shortest paths from one vertex using Bellman-Ford, one can use
“reduced” costs to convert the graph into one with non-negative
edge lengths. And then one can run n Dijkstra’s on this new
graphs to solve APSP. This gives a run time of
O(nm + n?log n) for APSP.

See notes for more details.
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Summary of results on shortest paths

Single Source Shortest Paths

No negative edges

Dijkstra

O(nlog n + m)

Edge lengths can be negative

Bellman Ford

O(nm)

All Pairs Shortest Paths

No negative edges

n * Dijkstra

2

O(n?log n + nm)

No negative cycles

n * Bellman Ford

0

*m) = O(n")

No negative cycles

BF + n * Dijkstra

No negative cycles

Floyd-Warshall

n?)

Unweighted

Matrix multiplication

(
(n
O(nm + n’log n)
(
(

ole)

n2 38) O(n2 58)

4
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