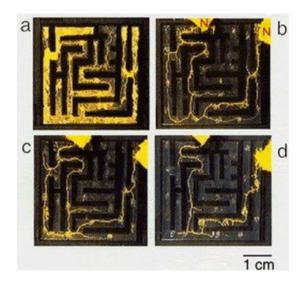
Aside: Slime Mould Solving Shortest Path



Dynamic Programming: Shortest Paths

Lecture 5 Feb 9, 2021

Part I

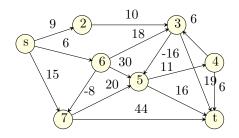
Shortest Paths with Negative Length Edges

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input: A *directed* graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

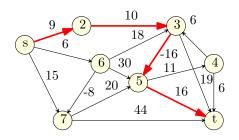


Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems

Input: A *directed* graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

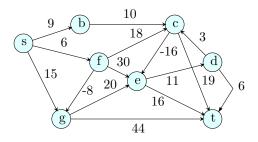
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.



Negative Length Cycles

Definition

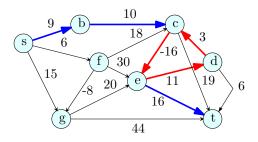
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.



Negative Length Cycles

Definition

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.



Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- $oldsymbol{0}$ $oldsymbol{G}$ has a negative length cycle $oldsymbol{C}$, and
- 2 s can reach C and C can reach t.

Question: What is the shortest **distance** from **s** to **t**?

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest **distance** from **s** to **t**?

Possible answers: Define shortest distance to be:

- \bullet undefined, that is $-\infty$ OR
- the length of a shortest simple path from s to t.

CS473 6 Spring 2021

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest **distance** from **s** to **t**?

Possible answers: Define shortest distance to be:

- \bullet undefined, that is $-\infty$ OR
- the length of a shortest simple path from s to t. NP-Hard!

CS473 6 Spring 2021

Given a graph G = (V, E):

1 A path is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$.

Given a graph G = (V, E):

- **1** A path is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$.
- ② A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. Vertices are allowed to repeat.

Given a graph G = (V, E):

- **1** A path is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$.
- ② A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a **shortest walk** from u to v.

Given a graph G = (V, E):

- A path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$.
- ② A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a **shortest walk** from u to v.

• If there is a walk from u to v that contains negative length cycle then $dist(u, v) = -\infty$

Given a graph G = (V, E):

- **1** A path is a sequence of *distinct* vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for 1 < i < k-1.
- ② A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a **shortest walk** from u to v.

- If there is a walk from u to v that contains negative length cycle then $dist(u, v) = -\infty$
- ② Else there is a path with at most n-1 edges whose length is equal to the length of a shortest walk and dist(u, v) is finite

Helpful to think about walks

Shortest Paths with Negative Edge Lengths

Problems

Algorithmic Problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Questions:

- Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest path from s to t.
- Question of the contract of
- Oheck if G has a negative length cycle or not.

Shortest Paths with Negative Edge Lengths In Undirected Graphs

Note: Negative cycle detection in undirected graph can not be reduced to directed gaph by bi-directing edges, why?

Shortest Paths with Negative Edge Lengths In Undirected Graphs

Note: Negative cycle detection in undirected graph can not be reduced to directed gaph by bi-directing edges, why?

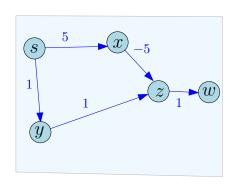
Problem can be solved efficiently in undirected graphs but algorithms are different and more involved than those for directed graphs. Need min-cost matchings which we will see later in the course.

Why Negative Lengths?

Several Applications

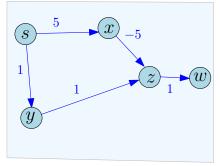
- Shortest path problems useful in modeling many situations in some negative lenths are natural
- Negative length cycle can be used to find arbitrage opportunities in currency trading
- Important sub-routine in algorithms for more general problem: minimum-cost flow

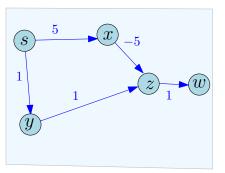
What are the distances computed by Dijkstra's algorithm?

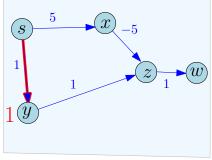


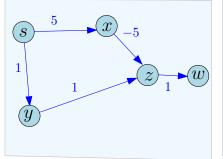
The distance as computed by Dijkstra algorithm starting from s:

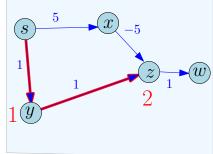
- (A) s = 0, x = 5, y = 1, z = 0.
- (B) s = 0, x = 1, y = 2, z = 5.
- (C) s = 0, x = 5, y = 1, z = 2.
- (D) IDK.

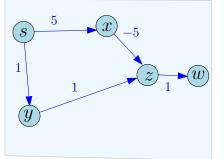


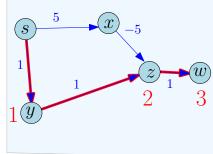


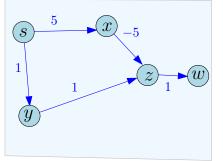


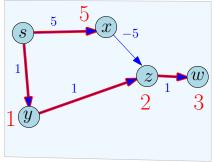


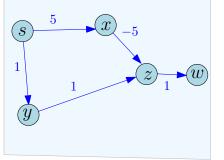


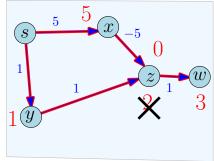


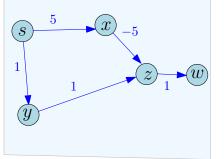


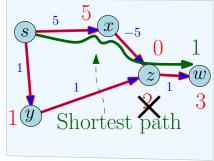




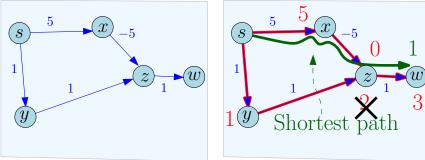








With negative length edges, Dijkstra's algorithm can fail



False assumption: Dijkstra's algorithm is based on the assumption that if $s = v_0 \rightarrow v_1 \rightarrow v_2 \dots \rightarrow v_k$ is a shortest path from s to v_k then $dist(s, v_i) \leq dist(s, v_{i+1})$ for $0 \leq i < k$. Holds true only for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma

Let **G** be a directed graph with arbitrary edge lengths. If $s \to v_1 \to v_2 \to \ldots \to v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

Shortest Paths with Negative Lengths

Lemma

Let **G** be a directed graph with arbitrary edge lengths. If $s \to v_1 \to v_2 \to \ldots \to v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

- $lackbox{0} \ s
 ightarrow v_1
 ightarrow v_2
 ightarrow \ldots
 ightarrow v_i$ is a shortest path from s to v_i
- **2** False: $dist(s, v_i) \le dist(s, v_k)$ for $1 \le i < k$. Holds true only for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma

Let **G** be a directed graph with arbitrary edge lengths. If $s \to v_1 \to v_2 \to \ldots \to v_k$ is a shortest path from s to v_k then for $1 \le i < k$:

- $lackbox{0} \ s
 ightarrow v_1
 ightarrow v_2
 ightarrow \ldots
 ightarrow v_i$ is a shortest path from s to v_i
- **2** False: $dist(s, v_i) \le dist(s, v_k)$ for $1 \le i < k$. Holds true only for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Shortest Paths: Sub-problems

What are the smaller sub-problems?

Shortest Paths: Sub-problems

What are the smaller sub-problems?

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

 \bullet $s = v_0 \rightarrow v_1 \rightarrow v_2 \dots \rightarrow v_i$ is a shortest path from s to v_i

Shortest Paths: Sub-problems

What are the smaller sub-problems?

Lemma

Let G be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

 \bullet $s = v_0 \rightarrow v_1 \rightarrow v_2 \dots \rightarrow v_i$ is a shortest path from s to v_i

Sub-problem idea: paths of fewer hops/edges

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source *s*.

Assume that all nodes can be reached by s in G. (Remove nodes unreachable from s).

d(v, k): shortest walk length from s to v using at most k edges (∞ if none exists).

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source *s*.

Assume that all nodes can be reached by s in G. (Remove nodes unreachable from s).

d(v, k): shortest walk length from s to v using at most k edges (∞ if none exists).

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G. (Remove nodes unreachable from s).

d(v, k): shortest walk length from s to v using at most k edges (∞ if none exists).

Recursion for d(v, k):

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G. (Remove nodes unreachable from s).

d(v, k): shortest walk length from s to v using at most k edges (∞ if none exists).

Recursion for d(v, k):

$$d(v,k) = \min \begin{cases} \min_{u:(u,v)\in E} (d(u,k-1) + \ell(u,v)). \\ d(v,k-1) \end{cases}$$

Base case:

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.

Assume that all nodes can be reached by s in G. (Remove nodes unreachable from s).

d(v, k): shortest walk length from s to v using at most k edges (∞ if none exists).

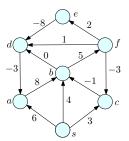
Recursion for d(v, k):

$$d(v,k) = \min \begin{cases} \min_{u:(u,v)\in E} (d(u,k-1) + \ell(u,v)). \\ d(v,k-1) \end{cases}$$

Base case: d(s,0) = 0 and $d(v,0) = \infty$ for all $v \neq s$.

Ruta (UIUC) CS473 15 Spring 2021 15 / 45

Example



A Basic Lemma

Lemma

Assume s can reach all nodes in G = (V, E). Then,

- There is a negative length cycle in G iff d(v, n) < d(v, n 1) for some node $v \in V$.
- ② If there is no negative length cycle in G then dist(s, v) = d(v, n 1) for all $v \in V$.

Bellman-Ford Algorithm

for each
$$u \in V$$
 do $d(u,0) \leftarrow \infty$ $d(s,0) \leftarrow 0$

Bellman-Ford Algorithm

```
\begin{array}{l} \text{for each } u \in V \text{ do} \\ d(u,0) \leftarrow \infty \\ d(s,0) \leftarrow 0 \end{array} \begin{array}{l} \text{for } k=1 \text{ to } n \text{ do} \\ \text{for each } v \in V \text{ do} \\ d(v,k) \leftarrow d(v,k-1) \\ \text{for each edge } (u,v) \in \mathit{In}(v) \text{ do} \\ d(v,k) = \min\{d(v,k),d(u,k-1)+\ell(u,v)\} \end{array}
```

```
for each u \in V do
    d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n do
          for each v \in V do
               d(v,k) \leftarrow d(v,k-1)
               for each edge (u, v) \in In(v) do
                    d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
          \operatorname{dist}(s,v) \leftarrow d(v,n-1)
          If d(v,n) < d(v,n-1)
               Return 'Negative Cycle in G''
```

```
for each u \in V do
    d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n do
          for each v \in V do
               d(v,k) \leftarrow d(v,k-1)
               for each edge (u, v) \in In(v) do
                    d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
          \operatorname{dist}(s,v) \leftarrow d(v,n-1)
          If d(v,n) < d(v,n-1)
               Return 'Negative Cycle in G''
```

Running time:

```
for each u \in V do
    d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n do
          for each v \in V do
               d(v,k) \leftarrow d(v,k-1)
               for each edge (u, v) \in In(v) do
                    d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
          \operatorname{dist}(s,v) \leftarrow d(v,n-1)
          If d(v,n) < d(v,n-1)
               Return 'Negative Cycle in G''
```

Running time: O(mn)

Ruta (UIUC) CS473 18 Spring 2021 18 / 45

```
for each u \in V do
    d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n do
          for each v \in V do
               d(v,k) \leftarrow d(v,k-1)
               for each edge (u, v) \in In(v) do
                    d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
          \operatorname{dist}(s,v) \leftarrow d(v,n-1)
          If d(v,n) < d(v,n-1)
               Return "Negative Cycle in G"
```

Running time: O(mn) Space:

```
for each u \in V do
    d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n do
          for each v \in V do
               d(v,k) \leftarrow d(v,k-1)
               for each edge (u, v) \in In(v) do
                    d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
          \operatorname{dist}(s,v) \leftarrow d(v,n-1)
          If d(v,n) < d(v,n-1)
               Return "Negative Cycle in G"
```

Running time: O(mn) Space: $O(m + n^2)$

Ruta (UIUC) CS473 18 Spring 2021 18 / 45

```
for each u \in V do
    d(u,0) \leftarrow \infty
d(s,0) \leftarrow 0
for k = 1 to n do
          for each v \in V do
               d(v,k) \leftarrow d(v,k-1)
               for each edge (u, v) \in In(v) do
                    d(v, k) = \min\{d(v, k), d(u, k - 1) + \ell(u, v)\}\
for each v \in V do
          \operatorname{dist}(s,v) \leftarrow d(v,n-1)
          If d(v,n) < d(v,n-1)
               Return "Negative Cycle in G"
```

Running time: O(mn) Space: $O(m + n^2)$ Space can be reduced to O(m + n).

Ruta (UIUC) CS473 18 Spring 2021 18 / 45

Bellman-Ford with Space Saving

```
\begin{array}{l} \text{for each } u \in V \text{ do} \\ d(u) \leftarrow \infty \\ d(s) \leftarrow 0 \end{array} \begin{array}{l} \text{for } k = 1 \text{ to } n-1 \text{ do} \\ \text{for each } v \in V \text{ do} \\ \text{for each edge } (u,v) \in \textit{In}(v) \text{ do} \\ d(v) = \min\{d(v), d(u) + \ell(u,v)\} \end{array}
```

```
for each u \in V do
   d(u) \leftarrow \infty
d(s) \leftarrow 0
for k = 1 to n - 1 do
         for each v \in V do
               for each edge (u, v) \in In(v) do
                    d(v) = \min\{d(v), d(u) + \ell(u, v)\}\
(* One more iteration to check if distances change *)
for each v \in V do
     for each edge (u, v) \in In(v) do
         if (d(v) > d(u) + \ell(u, v))
               Output "Negative Cycle"
for each v \in V do
          \operatorname{dist}(s,v) \leftarrow d(v)
```

Exercise: Show that this algorithm achieves same result.

Ruta (UIUC) CS473 19 Spring 2021 19 / 45

Via induction show: For each v, d(v, k) is the length of a shortest walk from s to v with at most k hops.

Ruta (UIUC) CS473 20 Spring 2021 20 / 45

Via induction show: For each v, d(v, k) is the length of a shortest walk from s to v with at most k hops. And for each $1 \le k \le n-1$, $d(v, k) \le d(v, k-1)$.

Ruta (UIUC) CS473 20 Spring 2021 20 / 45

Via induction show: For each v, d(v, k) is the length of a shortest walk from s to v with at most k hops.

And for each 1 < k < n-1, d(v, k) < d(v, k-1).

Lemma

Assume s can reach all nodes in G = (V, E). Then,

- There is a negative length cycle in G iff d(v, n) < d(v, n - 1) for some node $v \in V$.
- If there is no negative length cycle in G then dist(s, v) = d(v, n-1) for all $v \in V$.

Ruta (UIUC) CS473 20 Spring 2021 20 / 45

Via induction show: For each v, d(v, k) is the length of a shortest walk from s to v with at most k hops.

And for each $1 \le k \le n-1$, $d(v,k) \le d(v,k-1)$.

Lemma

Assume s can reach all nodes in G = (V, E). Then,

- There is a negative length cycle in G iff d(v, n) < d(v, n 1) for some node $v \in V$.
- ② If there is no negative length cycle in G then dist(s, v) = d(v, n 1) for all $v \in V$.

Exercise: Prove algorithm correctness from above two.

Ruta (UIUC) CS473 20 Spring 2021 20 / 45

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v,h) < d(v,n-1) for an $h \ge n$.

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v,h) < d(v,n-1) for an $h \ge n$. Choose smallest such h. P : s - v walk with h edges of length d(v,h).

Ruta (UIUC) CS473 21 Spring 2021 21 / 45

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v,h) < d(v,n-1) for an $h \ge n$. Choose smallest such h. P : s-v walk with h edges of length d(v,h). P has a cycle C.

Proposition

Suppose there is no negative length cycle in G then d(v,h) > d(v,n-1) for all h > n and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v, h) < d(v, n-1) for an h > n. Choose smallest such **h**. **P**: s-v walk with **h** edges of length d(v, h).

P has a cycle C. P': walk after removing C from P. k: #edges on P'

CS473 Spring 2021 21 / 45

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v,h) < d(v,n-1) for an $h \ge n$. Choose smallest such h. P: s-v walk with h edges of length d(v,h). P has a cycle C. P': walk after removing C from P. k: #edges on P' $\ell(P') = \ell(P) - \ell(C) \le \ell(P)$.

Ruta (UIUC) CS473 21 Spring 2021 21 / 45

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v,h) < d(v,n-1) for an $h \ge n$. Choose smallest such h. P: s-v walk with h edges of length d(v,h). P has a cycle C. P': walk after removing C from P. k: #edges on P' $\ell(P') = \ell(P) - \ell(C) \le \ell(P)$.

Case I $k \leq (n-1)$:

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v, h) < d(v, n - 1) for an $h \ge n$.

Choose smallest such h. P: s-v walk with h edges of length d(v, h).

P has a cycle C. P': walk after removing C from P. k: #edges on P' $\ell(P') = \ell(P) - \ell(C) < \ell(P)$.

Case I $k \leq (n-1)$: $d(v,k) \leq \ell(P') \leq \ell(P) < d(v,n-1)$, a contradiction.

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v,h) < d(v,n-1) for an $h \ge n$.

Choose smallest such h. P: s-v walk with h edges of length d(v, h).

P has a cycle **C**. **P'**: walk after removing **C** from **P**. **k**: #edges on **P'** $\ell(P') = \ell(P) - \ell(C) < \ell(P)$.

Case I $k \leq (n-1)$: $d(v,k) \leq \ell(P') \leq \ell(P) < d(v,n-1)$, a contradiction.

Case II k > (n-1):

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Proof.

By contradiction. Suppose for some v, d(v,h) < d(v,n-1) for an $h \ge n$.

Choose smallest such h. P: s-v walk with h edges of length d(v,h).

P has a cycle **C**. **P'**: walk after removing **C** from **P**. **k**: #edges on **P'** $\ell(P') = \ell(P) - \ell(C) \le \ell(P)$.

 $\ell(P') = \ell(P) - \ell(C) \leq \ell(P).$

Case I $k \leq (n-1)$: $d(v,k) \leq \ell(P') \leq \ell(P) < d(v,n-1)$, a contradiction.

Case II k > (n-1): $k < h \Rightarrow$ a contradiction to the choice of h.

Ruta (UIUC) CS473 21 Spring 2021 21 / 45

Proposition

Suppose there is no negative length cycle in G then $d(v,h) \ge d(v,n-1)$ for all $h \ge n$ and for all $v \in V$.

Ruta (UIUC) CS473 22 Spring 2021 22 / 45

Proposition

If G has a negative length cycle reachable from s then there is some v such that d(v, n) < d(v, n - 1).

Proof.

Proposition

If G has a negative length cycle reachable from s then there is some v such that d(v, n) < d(v, n - 1).

Proof.

Suppose not.

Proposition

If G has a negative length cycle reachable from s then there is some v such that d(v, n) < d(v, n - 1).

Proof.

Suppose not.

Let $C = v_1 \to \ldots \to v_h \to v_1$ be negative length cycle reachable from s. $d(v_i, n-1)$ is finite for $1 \le i \le h$ since C is reachable from s.

Ruta (UIUC) CS473 23 Spring 2021 23 / 45

Proposition

If G has a negative length cycle reachable from s then there is some v such that d(v, n) < d(v, n - 1).

Proof.

Suppose not.

Let $C = v_1 \rightarrow \ldots \rightarrow v_h \rightarrow v_1$ be negative length cycle reachable from s.

 $d(v_i, n-1)$ is finite for $1 \le i \le h$ since C is reachable from s.

By assumption $d(v, n - 1) \le d(v, n)$ for all $v \in C$; this means

Proposition

If G has a negative length cycle reachable from s then there is some v such that d(v, n) < d(v, n - 1).

Proof.

Suppose not.

Let $C = v_1 \rightarrow \ldots \rightarrow v_h \rightarrow v_1$ be negative length cycle reachable from s.

 $d(v_i, n-1)$ is finite for $1 \le i \le h$ since C is reachable from s.

By assumption $d({\it v},{\it n}-1) \leq d({\it v},{\it n})$ for all ${\it v} \in {\it C}$; this means

 $d(v_i, n-1) \le d(v_i, n) \le d(v_{i-1}, n-1) + \ell(v_{i-1}, v_i) \text{ for } 2 \le i \le h$ and $d(v_1, n-1) \le d(v_1, n) \le d(v_n, n-1) + \ell(v_n, v_1)$.

Ruta (UIUC) CS473 23 Spring 2021 23 / 45

Proposition

If G has a negative length cycle reachable from s then there is some v such that d(v, n) < d(v, n - 1).

Proof.

Suppose not.

Let ${\it C}={\it v}_1
ightarrow \ldots
ightarrow {\it v}_h
ightarrow {\it v}_1$ be negative length cycle reachable from ${\it s}$.

 $d(v_i, n-1)$ is finite for $1 \leq i \leq h$ since C is reachable from s.

By assumption $d(v, n-1) \leq \overline{d(v, n)}$ for all $v \in C$; this means

$$d(v_i, n-1) \le d(v_i, n) \le d(v_{i-1}, n-1) + \ell(v_{i-1}, v_i) \text{ for } 2 \le i \le h$$
 and $d(v_1, n-1) \le d(v_1, n) \le d(v_n, n-1) + \ell(v_n, v_1)$.

Adding up all these inequalities results in the inequality $0 \le \ell(C)$ which contradicts the assumption that $\ell(C) < 0$.

Ruta (UIUC) CS473 23 Spring 2021 23 / 45

Exercise: Finish proof of lemma using the two propositions.

Ruta (UIUC) CS473 24 Spring 2021 24 / 45

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the d(v) can only get smaller as algorithm proceeds.
- If d(v) becomes smaller it is because we found a vertex u such that $d(v) > d(u) + \ell(u, v)$ and we update $d(v) = d(u) + \ell(u, v)$. That is, we found a shorter path to v through u.

Ruta (UIUC) CS473 25 Spring 2021 25 / 45

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the d(v) can only get smaller as algorithm proceeds.
- If d(v) becomes smaller it is because we found a vertex u such that $d(v) > d(u) + \ell(u, v)$ and we update $d(v) = d(u) + \ell(u, v)$. That is, we found a shorter path to v through u.
- For each v have a prev(v) pointer and update it to point to u if v finds a shorter path via u.
- At end of algorithm prev(v) pointers give a shortest path tree oriented towards the source s.

Ruta (UIUC) CS473 25 Spring 2021 25 / 45

Negative Cycle Detection

Given directed graph *G* with arbitrary edge lengths, does it have a negative length cycle?

Negative Cycle Detection

Given directed graph *G* with arbitrary edge lengths, does it have a negative length cycle?

Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may negative cycles not reachable from s.

Negative Cycle Detection

Given directed graph *G* with arbitrary edge lengths, does it have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle C that is reachable from a specific vertex s. There may negative cycles not reachable from s.
- Run Bellman-Ford |V| times, one from each node u?

- Add a new node s' and connect it to all nodes of G with zero length edges. Bellman-Ford from s' will fill find a negative length cycle if there is one. Exercise: why does this work?
- Negative cycle detection can be done with one Bellman-Ford invocation.

Part II

Shortest Paths in DAGs

Ruta (UIUC) CS473 28 Spring 2021 28 / 45

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.

Ruta (UIUC) CS473 29 Spring 2021 29 / 45

Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative) edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

- No cycles and hence no negative length cycles! Hence can find shortest paths even for negative edge weights.
- Can order nodes using topological sort.

Ruta (UIUC) CS473 29 Spring 2021 29 / 45

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- 2 Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of G

- Want to find shortest paths from s. Ignore nodes not reachable from s.
- 2 Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of G

Observation:

• shortest path from s to v_i cannot use any node from v_{i+1}, \ldots, v_n

- \bullet Want to find shortest paths from s. Ignore nodes not reachable from s.
- $ext{2}$ Let $s = v_1, v_2, v_{i+1}, \dots, v_n$ be a topological sort of G

Observation:

- shortest path from s to v; cannot use any node from v_{i+1}, \ldots, v_n , since no path from s to v_i uses any of them.
- can find shortest paths in topological sort order.

CS473 30 Spring 2021 30 / 45

```
\begin{aligned} &\text{for } i=1 \text{ to } n \text{ do} \\ &\quad d(s,v_i)=\infty \\ &d(s,s)=0 \end{aligned} &\text{for } i=1 \text{ to } n-1 \text{ do} \\ &\quad \text{for each edge } (v_i,v_j) \text{ in } \mathrm{Adj}(v_i) \text{ do} \\ &\quad d(s,v_j)=\min\{d(s,v_j),d(s,v_i)+\ell(v_i,v_j)\} \end{aligned} &\text{return } d(s,\cdot) \text{ values computed}
```

```
\begin{aligned} &\text{for } i=1 \text{ to } n \text{ do} \\ &\quad d(s,v_i)=\infty \\ &d(s,s)=0 \end{aligned} &\text{for } i=1 \text{ to } n-1 \text{ do} \\ &\text{for each edge } (v_i,v_j) \text{ in } \mathrm{Adj}(v_i) \text{ do} \\ &\quad d(s,v_j)=\min\{d(s,v_j),d(s,v_i)+\ell(v_i,v_j)\} \end{aligned} &\text{return } d(s,\cdot) \text{ values computed}
```

Correctness by induction: If by the end of *i*th round $d(s, v_j)$ is the shortest path length from s to v_j for each $1 \leq j \leq i$, then after (i+1)th round $d(s, v_{i+1})$ is the shortest path length from s to v_{i+1} .

```
\begin{aligned} &\text{for } i=1 \text{ to } n \text{ do} \\ &\quad d(s,v_i)=\infty \\ &d(s,s)=0 \end{aligned} &\text{for } i=1 \text{ to } n-1 \text{ do} \\ &\text{for each edge } (v_i,v_j) \text{ in } \mathrm{Adj}(v_i) \text{ do} \\ &\quad d(s,v_j)=\min\{d(s,v_j),d(s,v_i)+\ell(v_i,v_j)\} \end{aligned} &\text{return } d(s,\cdot) \text{ values computed}
```

Correctness by induction: If by the end of *i*th round $d(s, v_j)$ is the shortest path length from s to v_j for each $1 \le j \le i$, then after (i+1)th round $d(s, v_{i+1})$ is the shortest path length from s to v_{i+1} . Use observation in the previous slide.

```
\begin{aligned} &\text{for } i=1 \text{ to } n \text{ do} \\ &\quad d(s,v_i)=\infty \\ &d(s,s)=0 \end{aligned} &\text{for } i=1 \text{ to } n-1 \text{ do} \\ &\text{for each edge } (v_i,v_j) \text{ in } \mathrm{Adj}(v_i) \text{ do} \\ &\quad d(s,v_j)=\min\{d(s,v_j),d(s,v_i)+\ell(v_i,v_j)\} \end{aligned} &\text{return } d(s,\cdot) \text{ values computed}
```

Correctness by induction: If by the end of *i*th round $d(s, v_j)$ is the shortest path length from s to v_j for each $1 \le j \le i$, then after (i+1)th round $d(s, v_{i+1})$ is the shortest path length from s to v_{i+1} . Use observation in the previous slide.

Running time: O(m + n) time algorithm! Works for negative edge lengths and hence can find *longest* paths in a DAG.

Part III

All Pairs Shortest Paths

Shortest Path Problems

Shortest Path Problems

```
Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), \ell(e) = \ell(u, v) is its length.
```

- **1** Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.

Dijkstra's algorithm for non-negative edge lengths. Running time: $O((m+n)\log n)$ with heaps and $O(m+n\log n)$ with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- ② Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

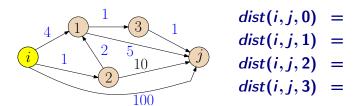
Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

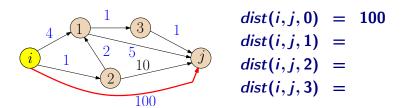
- Non-negative lengths. $O(nm \log n)$ with heaps and $O(nm + n^2 \log n)$ using advanced priority queues.
- ② Arbitrary edge lengths: $O(n^2m)$. $\Theta(n^4)$ if $m = \Omega(n^2)$.

Can we do better?

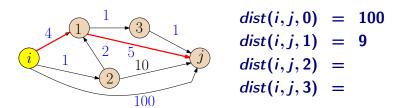
- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- **2** dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be $-\infty$ if there is a negative length cycle).



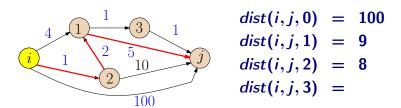
- Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- ② dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be $-\infty$ if there is a negative length cycle).



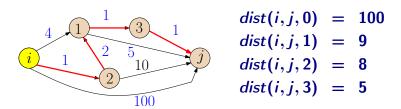
- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- **2** dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be $-\infty$ if there is a negative length cycle).



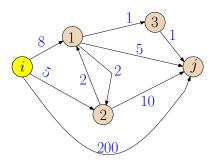
- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- **2** dist(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be $-\infty$ if there is a negative length cycle).



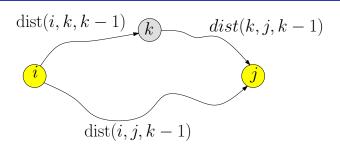
- **1** Number vertices arbitrarily as v_1, v_2, \ldots, v_n
- **4 dist**(i, j, k): length of shortest walk from v_i to v_j among all walks in which the largest index of an *intermediate node* is at most k (could be $-\infty$ if there is a negative length cycle).



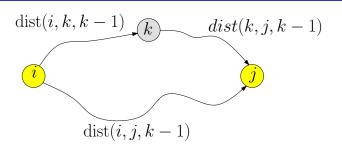
For the following graph, dist(i, j, 2) is...



- (A) 9
- (B) 10
- (C) 11
- (D) 12
- (E) 15

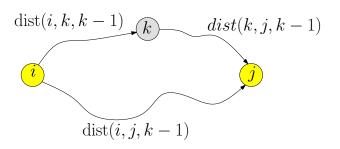


$$dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$$



$$dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$$

Base case: $dist(i,j,0) = \ell(i,j)$ if $(i,j) \in E$, otherwise ∞



$$dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$$

Base case: $dist(i, j, 0) = \ell(i, j)$ if $(i, j) \in E$, otherwise ∞ Correctness: If $i \to j$ shortest walk goes through k then k occurs only once on the path — otherwise there is a negative length cycle.

If dist(k, k, k - 1) < 0 then G has a negative length cycle containing k.

If dist(k, k, k - 1) < 0 then G has a negative length cycle containing k.

Now if i can reach k and k can reach j then $dist(i, j, k) = -\infty$.

Therefore, recursion below is valid only if $dist(k, k, k - 1) \ge 0$.

$$dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$$

If dist(k, k, k - 1) < 0 then G has a negative length cycle containing k.

Now if i can reach k and k can reach j then $dist(i, j, k) = -\infty$.

Therefore, recursion below is valid only if $dist(k, k, k - 1) \ge 0$.

$$dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1) \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}$$

We can detect this during the algorithm or wait till the end.

Floyd-Warshall Algorithm

for All-Pairs Shortest Paths

```
for i=1 to n do
for j=1 to n do
dist(i,j,0)=\ell(i,j) \ (* \ \ell(i,j)=\infty \ \text{if} \ (i,j)\notin E, \ 0 \ \text{if} \ i=j \ *)
```

```
for i=1 to n do for j=1 to n do  dist(i,j,0) = \ell(i,j) \ (*\ \ell(i,j) = \infty \ \text{if} \ (i,j) \notin E, \ 0 \ \text{if} \ i=j \ *)  for k=1 to n do for i=1 to n do  for \ j=1 \ \text{to} \ n \ \text{do}   dist(i,j,k) = \min \begin{cases} dist(i,j,k-1), \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}
```

```
for i = 1 to n do
     for j = 1 to n do
          dist(i,j,0) = \ell(i,j) \ (* \ \ell(i,j) = \infty \ \text{if} \ (i,j) \notin E, \ 0 \ \text{if} \ i = j \ *)
for k = 1 to n do
     for i = 1 to n do
          for j = 1 to n do
                dist(i,j,k) = \min \begin{cases} dist(i,j,k-1), \\ dist(i,k,k-1) + dist(k,j,k-1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
           Output that there is a negative length cycle in G
```

```
for i = 1 to n do
     for j = 1 to n do
           dist(i,j,0) = \ell(i,j) \ (* \ \ell(i,j) = \infty \ \text{if} \ (i,j) \notin E, \ 0 \ \text{if} \ i = j \ *)
for k = 1 to n do
     for i = 1 to n do
           for j = 1 to n do
                dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1), \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
           Output that there is a negative length cycle in G
```

Running Time:

Running Time: $\Theta(n^3)$, Space: $\Theta(n^3)$.

for All-Pairs Shortest Paths

```
for i = 1 to n do
     for j = 1 to n do
          dist(i,j,0) = \ell(i,j)  (* \ell(i,j) = \infty if (i,j) \notin E, 0 if i = j *)
for k = 1 to n do
     for i = 1 to n do
          for j = 1 to n do
               dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1), \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
          Output that there is a negative length cycle in G
```

```
for i = 1 to n do
     for j = 1 to n do
           dist(i,j,0) = \ell(i,j) \ (* \ \ell(i,j) = \infty \ \text{if} \ (i,j) \notin E, \ 0 \ \text{if} \ i = j \ *)
for k = 1 to n do
     for i = 1 to n do
           for j = 1 to n do
                dist(i, j, k) = \min \begin{cases} dist(i, j, k - 1), \\ dist(i, k, k - 1) + dist(k, j, k - 1) \end{cases}
for i = 1 to n do
     if (dist(i, i, n) < 0) then
           Output that there is a negative length cycle in G
```

Correctness: via induction and recursive definition

Running Time: $\Theta(n^3)$, Space: $\Theta(n^3)$.

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a $n \times n$ array Next that stores the next vertex on shortest path for each pair of vertices
- With array Next, for any pair of given vertices i, j can compute a shortest path in O(n) time.

Floyd-Warshall Algorithm

if (dist(i, i, n) < 0) then

Finding the Paths

```
for i = 1 to n do
   for i = 1 to n do
         dist(i, j, 0) = \ell(i, j)
(* \ell(i,j) = \infty \text{ if } (i,j) \text{ not edge, } 0 \text{ if } i = j *)
         Next(i, j) = -1
for k = 1 to n do
   for i = 1 to n do
         for i = 1 to n do
              dist(i, j, k) = dist(i, j, k - 1)
              if (dist(i, j, k-1) > dist(i, k, k-1) + dist(k, j, k-1)) then
                   dist(i, j, k) = dist(i, k, k-1) + dist(k, j, k-1)
                   Next(i, i) = k
for i = 1 to n do
```

Ruta (UIUC) CS473 42 Spring 2021 42 / 45

Output that there is a negative length cycle in G

Floyd-Warshall Algorithm

Finding the Paths

Exercise: Given *Next* array and any two vertices i, j describe an O(n) algorithm to find a i-j shortest path.

Johnson's Algorithm

- Bellman-Ford gives O(nm) time algorithm to solve single-source shortest paths when G has no negative lengths.
- To compute APSP running Bellman-Ford n times will give a run time of $O(n^2m)$.
- However, if G has no negative length cycle, after computing shortest paths from one vertex using Bellman-Ford, one can use "reduced" costs to convert the graph into one with non-negative edge lengths. And then one can run n Dijkstra's on this new graphs to solve APSP. This gives a run time of O(nm + n² log n) for APSP.

See notes for more details.

Summary of results on shortest paths

Single Source Shortest Paths

No negative edges	Dijkstra	$O(n \log n + m)$
Edge lengths can be negative	Bellman Ford	O(nm)

All Pairs Shortest Paths

No negative edges	n * Dijkstra	$O(n^2 \log n + nm)$
No negative cycles	n * Bellman Ford	$O(n^2m) = O(n^4)$
No negative cycles	BF + n * Dijkstra	$O(nm + n^2 \log n)$
No negative cycles	Floyd-Warshall	$O(n^3)$
Unweighted	Matrix multiplication	$O(n^{2.38}), O(n^{2.58})$